
1SLUA640B–August 2012–Revised May 2016
Submit Documentation Feedback

Copyright © 2012–2016, Texas Instruments Incorporated

Host System Calibration Method

Impedance Track is a trademark of Texas Instruments.

Application Report
SLUA640B–August 2012–Revised May 2016

Host System Calibration Method

JaredCasey

ABSTRACT
To add improvements to the Impedance Track™ algorithm, changes have been made to free up firmware
code space. In the process of freeing up code space, the calibration calculations are no longer
automatically performed by the gauge but must be performed by the host and the results written back to
the gauge. This application note provides a flow on how to implement the calibration algorithm on a host
device.

1 Gauges That Use the Host System Calibration Method
The host system calibration method is utilized by gauges that implement the Impedance Track (IT)
algorithm as well as Impedance Track with Dynamic Voltage Correlation (IT–DVC) algorithm. Note that
gauges that implement the IT-DVC algorithm only need to perform the voltage and temperature
calibrations.

1.1 Impedance Track Gauges (as of time of writing)
• bq27542-G1
• bq27545-G1
• bq27546-G1
• bq27510-G3
• bq27520-G4
• bq27530-G1
• bq27531-G1
• bq27532-G1
• bq27742-G1

1.2 Impedance Track with Dynamic Voltage Correlation (as of time of writing)
• bq27621-G1

2 General I2C Command Information
In the following flow charts, all I2C functions take 3 arguments.

Write command arguments: Read command arguments:
1. Address 1. Address
2. Data 2. Number of bytes read
3. Wait time in ms 3. Wait time in ms

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA640B

I2CWriteWord (0x0000, 0x0081, 100)

calMod == 1

I2CReadBlock (0x00, 2, 100)

Device did not enter
calibration mode; retry

True

False

ENTER_CAL MAC Command:
0x0081 to 0x0000

I2CWriteWord (0x0000, 0x0000, 100)

End

Calibration Method www.ti.com

2 SLUA640B–August 2012–Revised May 2016
Submit Documentation Feedback

Copyright © 2012–2016, Texas Instruments Incorporated

Host System Calibration Method

3 Calibration Method
The calibration method is broken up into the following sections:
1. Enter Calibration Mode
2. Exit Calibration Mode
3. CC Offset
4. Board Offset
5. Obtain Raw Calibration Data
6. Current Calibration
7. Voltage Calibration
8. Temperature Calibration
9. Floating Point Conversion

Each section includes a sample code excerpt for an implementation of the calibration step.

4 Enter Calibration Mode
This sequence puts the gauge into CALIBRATION mode. These steps must be performed when the
gauge is in the UNSEALED mode.

void enterCalibrationMode(void) {
printf("Entering Calibration Mode.\n");

send_subCommand(0x00, 0x2D); //Enable Calibration mode
send_subCommand(0x00, 0x81); //Enter Calibration mode
send_subCommand(0x00, 0x00);
send_Command(0x00);
unsigned char buffer[2] = { 0x00, 0x00 };
_delay_cycles(10000);
I2C_read(buffer, 2);

do {
printf("%x\n", buffer[1]);
printf("Gauge is not in Calibration mode.\n");

} while ((buffer[1] & 0x10) != 0x10);

printf("Gauge is in Calibration mode.\n");

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA640B

I2CWriteWord (0x0000, 0x0080, 100)

calMod == 0

I2CReadBlock (0x00, 2, 100)

Device did not exit
calibration mode; retry

True

False

EXIT_CAL MAC Command:
0x0080 to 0x0000

I2CWriteWord (0x0000, 0x0000, 100)

End

www.ti.com Exit Calibration Mode

3SLUA640B–August 2012–Revised May 2016
Submit Documentation Feedback

Copyright © 2012–2016, Texas Instruments Incorporated

Host System Calibration Method

5 Exit Calibration Mode
This sequence takes the gauge out of CALIBRATION mode. These steps must be performed when the
gauge is in the UNSEALED mode.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA640B

I2CWriteWord (0x0000, 0x000A, 100)

CCA == 1

I2CReadBlock (0x00, 2, 100)

CCA == 0

Wait for CCA bit
to clear

I2CWriteWord (0x0000, 0x000B, 100)

Device is not calibrating
CC offset; retry

The device is in the
process of calibrating

CC offset while the
CCA bit is set. Host
should check

the CCA bit more
than once every 0.5 s.

NOT

True

True

False

False

CC_OFFSET MAC Command:
0x000A to 0x0000

CC_OFFSET_SAVE MAC Command:
0x000B to 0x0000

I2CWriteWord (0x0000, 0x0000, 100)

Enter Calibration Mode

Exit Calibration Mode

End

CC Offset www.ti.com

4 SLUA640B–August 2012–Revised May 2016
Submit Documentation Feedback

Copyright © 2012–2016, Texas Instruments Incorporated

Host System Calibration Method

6 CC Offset
Use MAC commands for CC Offset calibration. The host system does not need to write information to the
Data Flash (DF). Refer to the fuel gauge data sheet for the location of the [CCA] bit. The host system
needs to ensure the fuel gauge is unsealed.

NOTE: While the device is calibrating the CC Offset, the host system must not read the
ControlStatus() Register at a rate greater than once every 0.5 seconds.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA640B

www.ti.com CC Offset

5SLUA640B–August 2012–Revised May 2016
Submit Documentation Feedback

Copyright © 2012–2016, Texas Instruments Incorporated

Host System Calibration Method

void calibrate_CC_Offset(void) {
enterCalibrationMode(); //Enter Calibration Mode

unsigned char buffer[2] = { 0x00, 0x00 };

//Perform CC Offset calibration
do {

send_subCommand(0x00, 0x0A);
send_subCommand(0x00, 0x00);
send_Command(0x00);
_delay_cycles(10000);
I2C_read(buffer, 2);

} while ((buffer[1] & 0x08) != 0x08);

printf("Calibrating...\n");

while ((buffer[1] & 0x08) == 0x08) {
printf("%x\n", buffer[1]);
send_subCommand(0x00, 0x00);
send_Command(0x00);
_delay_cycles(6000000); //0.5s delay
I2C_read(buffer, 2);
if ((buffer[1] & 0x08) == 0x00) {

printf("%x\n", buffer[1]);
printf("Done Calibrating CC offset.\n");
break;

}

}

send_subCommand(0x00, 0x80); //Exit Calibration mode

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA640B

I2CWriteWord(0x0000, 0x0009, 100)

CCA == 1 && BCA == 1

I2CReadBlock(0x00, 2, 100)

Wait for CCA bit
to clear

I2CWriteWord(0x0000, 0x000B, 100)

Device is not calibrating
CC offset; retry

The device is in the
process of calibrating

CC offset while the
CCA bit is set. The

CCA bit will clear and
then the device will
calibrate the board
offset. Host should

check the CCA/
BCA bits more than

once every 0.5 s.

NOT

True

True

False

False

BCA == 0

CC_OFFSET_SAVE MAC Command:
0x000B to0x0000

I2CWriteWord(0x0000, 0x0000, 100)
BOARD_OFFSET MAC Command:
0x0009 to 0x0000

Enter Calibration Mode

End

Exit Calibration Mode

Board Offset www.ti.com

6 SLUA640B–August 2012–Revised May 2016
Submit Documentation Feedback

Copyright © 2012–2016, Texas Instruments Incorporated

Host System Calibration Method

7 Board Offset
Use MAC commands for Board Offset calibration. The host system does not need to write information to
the DF. The host system needs to ensure the fuel gauge is unsealed. Refer to the fuel gauge data sheet
for the location of the [CCA] and [BCA] bits.

NOTE: Calculating the Board Offset also calculates the CC Offset; therefore, it is not necessary to
go through the CC Offset calibration process if the Board Offset calibration process is
implemented.

NOTE: While the device is calibrating the CC Offset, the host system should not read the
ControlStatus() Register at a rate greater than once every 0.5 seconds.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA640B

www.ti.com Board Offset

7SLUA640B–August 2012–Revised May 2016
Submit Documentation Feedback

Copyright © 2012–2016, Texas Instruments Incorporated

Host System Calibration Method

void calibrate_Board_Offset(void) {

enterCalibrationMode(); //Enter Calibration Mode

unsigned char buffer[2] = { 0x00, 0x00 };

//Perform Board Offset calibration
do {

send_subCommand(0x00, 0x09);
send_subCommand(0x00, 0x00);
send_Command(0x00);
_delay_cycles(10000);
I2C_read(buffer, 2);

} while ((buffer[1] & 0x0C) != 0x0C);

printf("Calibrating...\n");

while ((buffer[1] & 0x0C) == 0x0C) {
printf("Calibrating...\n");
printf("%x\n", buffer[1]);
send_subCommand(0x00, 0x00);
send_Command(0x00);
_delay_cycles(10000000); //0.5s delay
I2C_read(buffer, 2);
if ((buffer[1] & 0x0C) == 0x00) {

printf("%x\n", buffer[1]);
printf("Done Calibrating Board offset.\n");
break;

}

}

send_subCommand(0x00, 0x80); //Exit Calibration mode

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA640B

loopCount = 0, rawDataSum = 0
counterNow = Analog Conversion Counter

CounterPrev = counterNow

Analog Current:

Analog Cell Voltage:

Analog Temperature:

0x7A, 0x7B (LSB, MSB)

0x7C, 0x7D (LSB, MSB)

0x7E, 0x7F (LSB, MSB)

rawDataSum + = (MSB << 8) + LSB

Analog Conversion Counter:
0x79

counterNow ==
counterPrev

loopCount++
counterPrev = counterNow

Enter Calibration Mode

End

Exit Calibration Mode

Wait 200 ms

counterNow = Analog Conversion Counter

loopCount <
samplesToAvg

avgRawData = rawDataSum / samplesToAvg

True

False

Read MSB and LSB of the raw data we are interested in

True

Obtain Raw Calibration Data www.ti.com

8 SLUA640B–August 2012–Revised May 2016
Submit Documentation Feedback

Copyright © 2012–2016, Texas Instruments Incorporated

Host System Calibration Method

8 Obtain Raw Calibration Data
The following flow chart demonstrates how the host system obtains the raw data to calibrate current,
voltage, and temperature. The host system uses this flow in conjunction with the Section 8, Section 9,
Section 10, and Section 11 flows described in this application report. It is recommended that the host
system samples the raw data multiple times, at a rate of once per second, to obtain an average of the raw
current, voltage, and temperature. The host system needs to ensure the fuel gauge is unsealed.

The extended command, 0x79, returns a counter that the host system can use to determine if the raw
data sample is a newer sample than the previous sample read. If the Analog Conversion Counter has not
increased by at least 1 count in between reads, then the host should wait approximately 200 ms, until the
counter is checked again. The counter can be larger than just a single count. The loop should exit when
the number of averaged samples has been obtained, but the host should not read from the fuel gauge
until the Analog Conversion Counter has increased by at least one count.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA640B

www.ti.com Obtain Raw Calibration Data

9SLUA640B–August 2012–Revised May 2016
Submit Documentation Feedback

Copyright © 2012–2016, Texas Instruments Incorporated

Host System Calibration Method

/**
* Use this function to obtain raw calibration data from the gauge
* when calibrating voltage, current or temperature.
* dataWanted = 1 for voltage, 2 for current, 3 for temperature
*/

void obtainRawCalibrationData(int dataWanted) {

enterCalibrationMode();
unsigned char analogConversionCounter[1] = { 0x79 }; //Analog Conversion Counter extended

command must be a direct single-byte write to the gauge.
unsigned char buffer[1] = { 0x00 };
int loopCount = 0, counterNow = 0, counterPrev = 0, samples = 15;

//Obtain the desired raw Data
uint16_t rawDataSum = 0;

switch (dataWanted) {
case 1:

I2C_write(analogConversionCounter, 1);
_delay_cycles(10000);
I2C_read(buffer, 1);
counterNow = (int) buffer[0]; //Initialize ADC conversion counter
counterPrev = counterNow;

for (loopCount = 0; loopCount < samples;) {

if (counterNow != counterPrev) {
read_Register(0x7C);
rawDataSum +=
(((uint16_t) block[1] << 8) + (uint16_t) block[0]);
loopCount++;
counterPrev = counterNow;

} else {
_delay_cycles(10000);
I2C_write(analogConversionCounter, 1);
_delay_cycles(10000);
I2C_read(buffer, 1);
counterNow = (int) buffer[0];

}

}

avgRawData = rawDataSum / samples;
printf("avgRawData is %X\n", avgRawData);
break;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA640B

Obtain Raw Calibration Data www.ti.com

10 SLUA640B–August 2012–Revised May 2016
Submit Documentation Feedback

Copyright © 2012–2016, Texas Instruments Incorporated

Host System Calibration Method

case 2:
I2C_write(analogConversionCounter, 1);
_delay_cycles(10000);
I2C_read(buffer, 1);
counterNow = (int) buffer[0]; //Initialize ADC conversion counter
counterPrev = counterNow;

for (loopCount = 0; loopCount < samples;) {

if (counterNow != counterPrev) {
read_Register(0x7A);
rawDataSum +=
(((uint16_t) block[1] << 8) + (uint16_t)block[0]);
loopCount++;
counterPrev = counterNow;

} else {
_delay_cycles(10000);
I2C_write(analogConversionCounter, 1);
I2C_read(buffer, 1);
counterNow = (int) buffer[0];

}
}
avgRawData = rawDataSum / samples;
break;

case 3:
I2C_write(analogConversionCounter, 1);
_delay_cycles(10000);
I2C_read(buffer, 1);
counterNow = (int) buffer[0]; //Initialize ADC conversion counter
counterPrev = counterNow;

for (loopCount = 0; loopCount < samples;) {

if (counterNow != counterPrev) {
read_Register(0x7E);
rawDataSum +=
(((uint16_t) block[1] << 8) + (uint16_t)block[0]);
loopCount++;
counterPrev = counterNow;

} else {
_delay_cycles(10000);
I2C_write(analogConversionCounter, 1);
I2C_read(buffer, 1);
counterNow = (int) buffer[0];

}
}

avgRawData = rawDataSum / samples;
break;

}

send_subCommand(0x00, 0x80); //Exit Calibration mode
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA640B

Convert ccGain and ccDelta to
Gauge’s floating point

representation and write to DF

Obtain avgRawCurrent

current current= forced load

Force known load current

Typically 1000 mA

Obtain CC offset and Board offset from DF

End

The signs of the variables are important.
current and avgRawCurrent should be
positive. ccOffset should be treated as a
16-bit signed integer and boardOffset
should be an 8-bit signed integer.

The sign of current should be positive. Raw
current samples are positive in discharge
mode. This ensures that ccGain is positive.

ccGain = current / (avgRawCurrent – (ccOffset + boardOffset) / 16)

ccDelta = ccGain 1,193,046´

www.ti.com Current Calibration

11SLUA640B–August 2012–Revised May 2016
Submit Documentation Feedback

Copyright © 2012–2016, Texas Instruments Incorporated

Host System Calibration Method

9 Current Calibration
The CC Gain and CC Delta are two calibration parameters of concern for current calibration. A known
load, typically 1000 mA, is applied to the device during this process. Details on converting the CC Gain
and CC Delta to floating point format are in Obtain Raw Calibration Data. The host system must ensure
the fuel gauge is unsealed.

NOTE: The step labeled Obtain avgRawCurrent refers to Obtain Raw Calibration Data.

The step labeled Convert ccGain and ccDelta to Gauge’s floating point representation
and write to DF refers to Floating Point Conversion.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA640B

Current Calibration www.ti.com

12 SLUA640B–August 2012–Revised May 2016
Submit Documentation Feedback

Copyright © 2012–2016, Texas Instruments Incorporated

Host System Calibration Method

void calibrateCurrent(int knownCurrent) {
printf("Begin Calibrating Current.\n");
obtainRawCalibrationData(2);

send_extendedCommand(0X3E, 0x00, 0x68);
read_Block();
int ccOffset = (((uint16_t) block[8] << 8) + (uint16_t) block[9]);
signed char boardOffset = block[10];
float ccGain = (float) (knownCurrent

/ (float) ((int) avgRawData - ((ccOffset + boardOffset) / 16)));
printf("ccGain is %3.5f\n", ccGain);

float ccDelta = ccGain * 1193046;
printf("ccDelta is %3.5f\n", ccDelta);

floating2Byte(ccGain);
send_extendedCommand(0X3E, 0x00, 0x68);
read_Block();
read_Checksum();
printf("oldChk is %x\n", checksum);
unsigned char newChecksum = calculate_New_Checksum_4B(0, rawData[0],

rawData[1], rawData[2], rawData[3]); //Calculate new checksum based on 4 bytes
calculated from ccGain.

printf("newChk is %x\n", newChecksum);

send_extendedCommand_1B((0x40 + (0 % 32)), rawData[0]);
send_extendedCommand_1B((0x40 + (1 % 32)), rawData[1]);
send_extendedCommand_1B((0x40 + (2 % 32)), rawData[2]);
send_extendedCommand_1B((0x40 + (3 % 32)), rawData[3]);

send_extendedCommand_1B(0x60, newChecksum);
_delay_cycles(100000);

floating2Byte(ccDelta);
send_extendedCommand(0X3E, 0x00, 0x68);
read_Block();
read_Checksum();
printf("oldChk is %x\n", checksum);
newChecksum = calculate_New_Checksum_4B(4, rawData[0], rawData[1],

rawData[2], rawData[3]); //Calculate new checksum based on 4 bytes calculated from
ccDelta.

printf("newChk is %x\n", newChecksum);

send_extendedCommand_1B((0x40 + (4 % 32)), rawData[0]);
send_extendedCommand_1B((0x40 + (5 % 32)), rawData[1]);
send_extendedCommand_1B((0x40 + (6 % 32)), rawData[2]);
send_extendedCommand_1B((0x40 + (7 % 32)), rawData[3]);

send_extendedCommand_1B(0x60, newChecksum);
_delay_cycles(100000);

send_extendedCommand(0X3E, 0x00, 0x68);
read_Block();
printf("Done Calibrating Current.\n");

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA640B

Write vOffset to DF

End

voltage = known voltage

Apply known voltage

int vOffset = voltage - avgRawVoltage

Obtain avgRawVoltage

www.ti.com Voltage Calibration

13SLUA640B–August 2012–Revised May 2016
Submit Documentation Feedback

Copyright © 2012–2016, Texas Instruments Incorporated

Host System Calibration Method

10 Voltage Calibration
A known voltage must be applied to the device for voltage calibration. The calculated voltage offset must
be written to the corresponding location in DF. The voltage offset is represented by an integer that is a
single byte in size and can be written to the appropriate location in DF without any intermediate steps. The
host system must ensure the fuel gauge is unsealed.

NOTE: The step labeled Obtain avgRawVoltage refers to the Obtain Raw Calibration Data section.

void calibrateVoltage(uint16_t knownVoltage) {
printf("Begin Calibrating Voltage.\n");
obtainRawCalibrationData(1);
int vOffset = knownVoltage - avgRawData;
char offset = (char) vOffset;
printf("vOffset is %X\n", offset);

send_extendedCommand(0X3E, 0x00, 0x68);
read_Block();
read_Checksum();
printf("oldChk is %x\n", checksum);
unsigned char newChecksum = calculate_New_Checksum_1B(13, (char) vOffset);
printf("newChk is %x\n", newChecksum);

send_extendedCommand_1B((0x40 + (13 % 32)), offset);
send_extendedCommand_1B(0x60, newChecksum);
_delay_cycles(100000);
send_extendedCommand(0X3E, 0x00, 0x68);
read_Block();
printf("Done Calibrating Voltage.\n");

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA640B

Write tOffset to DF

End

temp = known temperature

Apply known temperature

int tOffset = temp – avgRawTemp

Obtain avgRawTemp

Temperature Calibration www.ti.com

14 SLUA640B–August 2012–Revised May 2016
Submit Documentation Feedback

Copyright © 2012–2016, Texas Instruments Incorporated

Host System Calibration Method

11 Temperature Calibration
A known temperature must be applied to the device for temperature calibration. The calculated
temperature offset must be written to the corresponding location in DF. The temperature offset is
represented by an integer that is a single byte in size and can be written to the appropriate location in DF
without any intermediate steps. The host system must ensure the fuel gauge is unsealed.

NOTE: The step labeled Obtain avgRawTemp refers to the Obtain Raw Calibration Data section.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA640B

val < 0 mod _val = val

False

True

mod_val = val x (-1)

tmpVal = mod _val

False

True

byte2 = tmpVal LHS* of decimal

tmpVal = 28 × (tmpVal ± byte2)

False
byte1 = tmpVal LHS* of decimal

True

tmpVal = 28 × (tmpVal
± byte1)

decrement exp by 1

byte0 = tmpVal LHS* of decimal

False

True

True

Byte 2 OR with 0x80

False

True

False

rawData[byte0] = exp + 128

rawData[byte1] = byte2

rawData[byte2] = byte1

rawData[byte3] = byte0

 exp < í128

End

val = read in value

Create integer, set to 0
exp = 0

tmpVal = tmpVal × (1+2±25
)

tmpVal < 0.5

tmpVal < 0.5

multiply tmpVal by 2

tmpVal > = 1.0

tmpVal > = 1.0

divide tmpVal by 2

increment exp by 1

exp > 127 exp = 127

Write rawData [0-3] to
corresponding DF location

val < 0

tmpVal = 2
(8 ± exp)

× mod_val ± 128

exp �í128

www.ti.com Floating Point Conversion

15SLUA640B–August 2012–Revised May 2016
Submit Documentation Feedback

Copyright © 2012–2016, Texas Instruments Incorporated

Host System Calibration Method

12 Floating Point Conversion
This section details how to convert the floating point CC Gain and CC Delta values to the format
understood by the gauge. The output should be 4 bytes that need to be written to the corresponding DF
location.

* LHS is an abbreviation for Left Hand Side. This refers to truncating the floating point value by removing anything to
the right of the decimal point.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA640B

Floating Point Conversion www.ti.com

16 SLUA640B–August 2012–Revised May 2016
Submit Documentation Feedback

Copyright © 2012–2016, Texas Instruments Incorporated

Host System Calibration Method

void floating2Byte(float value) {
float CC_value = value; //Read CC_gain or CC_delta value from the gauge.
int exp = 0; //Initialize the exponential for the floating to byte conversion
float val = CC_value;
float mod_val;

if (val < 0) {
mod_val = val * -1;

} else {
mod_val = val;

}

float tmpVal = mod_val;
tmpVal = tmpVal * (1 + pow(2, -25));

if (tmpVal < 0.5) {
while (tmpVal < 0.5) {

tmpVal *= 2;
exp--;

}
} else if (tmpVal < = 1.0) {

while (tmpVal >= 1.0) {
tmpVal = tmpVal / 2;
exp++;

}
}

if (exp > 127) {
exp = 127;

} else if (exp < -128) {
exp = -128;

}

tmpVal = pow(2, 8 - exp) * mod_val - 128;
unsigned char byte2 = floor(tmpVal);

tmpVal = pow(2, 8) * (tmpVal - (float) byte2);
unsigned char byte1 = floor(tmpVal);

tmpVal = pow(2, 8) * (float) (tmpVal - (float) byte1);
unsigned char byte0 = floor(tmpVal);

if (val < 0) {
byte2 = (byte2 | 0x80);

}
rawData[0] = exp + 128;
rawData[1] = byte2;
rawData[2] = byte1;
rawData[3] = byte0;

int i = 0;
for (; i < 4; i++) {

printf("rawData[%d] is %x\n", i, rawData[i] & 0xff);
}

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA640B

www.ti.com Revision History

17SLUA640B–August 2012–Revised May 2016
Submit Documentation Feedback

Copyright © 2012–2016, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from A Revision (January 2015) to B Revision ... Page

• Changed list of Impedance Track Gauges. ... 1
• Changed list in Impedance Track with Dynamic Voltage Correlation. ... 1
• Added Enter Calibration Mode section. .. 2
• Added Exit Calibration Mode section. .. 3
• Added code and made small modification to image in the CC Offset section. ... 4
• Added code and made small modification to image in the Board Offset section. ... 6
• Added text and code, reworked the image in the Obtain Raw Calibration Data section... 8
• Changed Current section name to Current Calibration. Made changes to text and flow chart, added code. 11
• Changed Voltage section name to Voltage Calibration, and added code. ... 13
• Changed Temperature section name to Temperature Calibration. Made changes to text and flow chart. 14
• Changed DF Write – F4 section name to Floating Point Conversion. Made changes to text and added code. 15

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA640B

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Host System Calibration Method
	1 Gauges That Use the Host System Calibration Method
	1.1 Impedance Track Gauges (as of time of writing)
	1.2 Impedance Track with Dynamic Voltage Correlation (as of time of writing)

	2 General I2C Command Information
	3 Calibration Method
	4 Enter Calibration Mode
	5 Exit Calibration Mode
	6 CC Offset
	7 Board Offset
	8 Obtain Raw Calibration Data
	9 Current Calibration
	10 Voltage Calibration
	11 Temperature Calibration
	12 Floating Point Conversion

	Revision History
	Important Notice

