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ABSTRACT
This application note discusses the anti-collision sequence of the ISO15693 standard
implemented in the MSP430F2370 (a 16-bit ultra-low power microcontroller from the TI
MSP430 family) used with Texas Instruments’ TRF796x, a fully integrated 13.56-MHz
radio frequency identification (RFID) analog front end and data framing reader system.

This document is designed for use by customers who are experienced with RFID and
firmware development and want to develop their own application using the TRF796x.
This reference guide should be used in conjunction with the ISO15693 standard which
specifies the standard protocol, commands and other parameters required for
communication between the transponder and the reader.
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1 Anti-Collision Sequence for ISO15693
Anti-Collision Sequence for ISO15693 www.ti.com

The following describes the inventory procedure/anti-collision sequence for the ISO15693.

The VCD sends a mask value and number of slots along with the inventory request. The VICC compares
the least significant bits of its UID to the slot counter + mask value. If it matches, it sends a response. If
only one VICC responds, then there is no collision and the VCD receives the complete UID. If the reader
detects a collision, it makes note of the slot number in which collision occurred. The reader sends an EOF
to switch to the next slot. The VICC increments its slot counter on reception of EOF. This is repeated for
all 16 slots. At the end of 16 slots, the slot pointer contents are examined. If it is not zero, it means that
collision has occurred in one or more slots. A new mask value is calculated and the inventory request is
sent with the new mask. This is repeated until there are no collisions.

Consider four VICCs with UIDs E00700000000012A, E00700000000032A, E00700000000045A and
E007000000000345 in the read range of the reader. For convenience, the UIDs are represented as x12A,
x32A, x45A and x345 respectively.

The first row in the tables below represents the slot number and their hexa-decimal representation in
brackets. The second row shows the UIDs of the VICCs that respond in that slot.

Round 1: Mask value = 0, Mask length = 0
0 1 2 3 4 5 6 7 8 9 10(A) 11(B) 12(C) 13(D) 14(E) 15(F)
– – – – – x345 – – – – x12A – – – – –

x32A
x45A

The reader sends out an Inventory request with mask value and length zero. The VICC compares the LSB
of its UID with the slot number + mask. Since the mask value is zero in Round 1, the VICCs compare their
UIDs to the slot number only. Thus, each VICC in the reader’s read range will find a match and will
respond in one of the 16 slots.

In this example, in slot 5, the VICC with UID x345 responds. Since only one VICC responded in this slot,
there is no collision and the reader receives the UID completely. The reader raises an interrupt with the
End of RX flag set in the interrupt status register of the TRF796x. For more details, refer to Section 2 on
interrupts.

In slot 10, VICCs with UIDs x12A, x32A and x45A respond since the last four bits of their UID match
10(A). This collision is noted by the reader and it raises an interrupt with the collision flag set in the
interrupt status register. The microcontroller services this interrupt and makes note of the slot number in
which collision occurred.

In all other slots, the VCD does not receive any response from the VICCs. The reader waits for a
predefined amount of time before sending the EOF to switch to the next slot. The reader raises an
interrupt with the no-response flag set to inform the micro to send the ‘transmit next slot’ command.

Note: The reader should send an EOF at the end of each slot to switch to the next slot, irrespective
of the VICC response. This can be done via a direct command to the reader. This is
explained in Section 1.4.

Round 2: Mask value = A, Mask length = 4
0 1 2 3 4 5 6 7 8 9 10(A) 11(B) 12(C) 13(D) 14(E) 15(F)
– – x12A – – x45A – – – – – – – – – –

x32A

In round 1, it was noted that collision occurred in slot 10. Hence the new mask value = 10 (new mask
value = slot number + old mask value) and the new mask length is incremented by 4 bits. The VCD sends
out another inventory request with mask value = A and mask length = 4. Now the VICCs compare the LSB
of their UID with slot number + mask value (A). Thus in slot 2, VICCs x12A and x32A respond since the
LSB of their UID matches 2A. The VICC with UID x45A responds in the 5th slot.
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1.1 Pseudo-Code for ISO15693 Anti-Collision Algorithm

www.ti.com Anti-Collision Sequence for ISO15693

Round 3: Mask value = 2A, Mask length = 8
0 1 2 3 4 5 6 7 8 9 10(A) 11(B) 12(C) 13(D) 14(E) 15(F)
– x12A – x32A – – – – – – – – – – – –

Since there was another collision in slot 2 of Round 2, the reader sends out another Inventory request with
mask value = 2A (collision slot number + old mask value) and mask length = 8 (incremented by 4 bits).
VICC with UID x12A responds in slot 1 and VICC with UID x32A responds in slot 3. Since there are no
collisions detected in this round, the anti-collision sequence ends here.

The default configuration after power-up supports ISO15693, single sub-carrier, high data rate, 1-out-of-4
operation. The low-level option registers (0x02…0x0B) are automatically set to optimally adapt the circuitry
to the protocol demands.
1. Check bit B5 of flag in the inventory request. If set, number of slots = 1; else number of slots = 16; If

number of slots = 16, enable no response interrupt.
2. Initialize mask length and mask value to zero.
3. Initialize slot number pointer to zero.
4. Send inventory request with mask length and mask value.
5. Wait for end of transmit interrupt.
6. Wait for next interrupt. This can be due to any of the following:

a. End of RX
b. Collision
c. No response

Check the IRQ status register to determine the cause of the interrupt (for more details, refer to
Section 2 on interrupts).
If interrupt is due to End of RX, this means that UID is received in the FIFO without any
error/collision. Read the FIFO to obtain the complete UID.
If interrupt is due to collision, note the slot number in the slot number pointer. Increment the slot
number pointer.
If interrupt is due to no response from the VICC, ignore.

7. Reset FIFO.
8. If number of slots is 16, transmit EOF. If number of slots is 1, exit.
9. Repeat steps 5 and 6 for all 16 slots. At the end of 16 slots, disable no response interrupt.
10. Examine slot number pointer. If not zero, calculate new mask. If zero, exit.

A. Increment mask length by 4 bits.
B. Calculate new mask = slot number (in which collision occurred) + old mask

11. Go to step 4 (new mask value and length).
12. Decrement slot pointer by 1.
13. Go to step 10.
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1.2 Procedure to Initiate Transmission (Send Inventory Request Command)
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Note: The general procedure to start transmission is described below. This is applicable to all
commands that need to be transmitted to the tag.

The data/command that is to be transmitted is written in to the FIFO, a 12 byte buffer.
Transmission starts when the first data byte is written into FIFO. The reader adds SOF, EOF
and CRC to the request packet before transmitting.

1. Start condition
2. Send reset command 0x0F (command mode – 0x8F)
3. Send transmission command (0x90 - without CRC or 0x91 – with CRC)
4. Continuous write to register 0x1D (0x3D)
5. Data for register 0x1D (upper and middle nibble of the number of bytes to be transmitted)
6. Data for register 0x1E (lower nibble of the number of bytes to be transmitted)
7. Data byte(s) for FIFO
8. Stop condition

The FIFO can be written to (and read from) in continuous mode only.

For details on the Start and Stop conditions, refer to the timing diagrams for SPI/Parallel mode.

The inventory request format (according to the ISO 15693-3 spec) is as follows:
INVENTORY MASK MASKSOF FLAGS CRC EOFCOMMAND LENGTH VALUE

8 bits 8 bits 8 bits 0 to 8 bytes 16 bits

As mentioned earlier, the SOF, CRC and EOF will be added automatically by the reader. Only the flags,
inventory command, mask length and value have to written to the FIFO for transmission.

Pseudo-code:
buf is an array that holds all the command/data bytes that are to be sent to the reader.

size is the number of bytes to be transmitted.

flags is the ISO15693 flag byte in the Inventory Request command format.

length is the mask length.

mask is the mask value.
buf[0] = 0x8f; /* Reset FIFO command */
buf[1] = 0x91; /* Send with CRC */
buf[2] = 0x3d; /* Write continuous from register 1D */
buf[3] = (char) (size >> 8); /* Data for register 1D */
buf[4] = (char) (size << 4); /* Data for register 1E */
buf[5] = 0x05; /* ISO15693 flag with 16 slots bit set*/
buf[6] = 0x01; /* ISO15693 anti collision command code */
buf[7] = length; /* Mask length */
If (length > 0)
{
xxxxxfor (i = 0; i < masksize; i++)
xxxxxbuf[i + 8] = *(mask + i); /* Mask value */
}
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1.3 Procedure to Send EOF (to Switch to Next Slot)

1.4 Procedure to Enable No Response Interrupt

www.ti.com Anti-Collision Sequence for ISO15693

Write buf[0] to buf[i + 8] to TRF796x via SPI or Parallel mode (refer to the Parallel/SPI timing diagrams in
the TRF7960-61 data sheet, SLOU186).

The VCD sends an EOF command to the VICC at the end of every slot to switch to the next slot. If you
are using SPI mode, special procedures need to be followed to send EOF. Please refer to the application
note (SLOA140),Using the SPI Interface with TRF7960, for detailed information.
1. Send Block RX command (0x16) (command byte – 0x96)
2. Send Enable RX command (0x17) (command byte – 0x97)
3. Send Transmit Next Slot (EOF) command (0x14) (command byte – 0x94)

During an inventory process, when the VCD receives no response from the VICC, it shall wait for a preset
time (defined in RX no response wait time register) before sending the EOF. The TRF796x informs the
microcontroller when to send the EOF command to the TRF796x via a no response interrupt. This is
enabled by setting bit B0 in the collision position and Interrupt mask register (CPIM). Thus if there is no
response within the defined time, an interrupt request is sent and a flag is set in the IRQ status register.

Pseudo-code:
Read the CPIM register value.

Set bit B0.

Write the final value to the CPIM register.

The CPIM register has masks for other interrupts like collision, errors, etc. To ensure that the mask status
is maintained for other interrupts, the CPIM register is read first and then the bit zero (corresponding to no
response interrupt) alone is set in the value obtained from the read. Alternately, if the mask status is
known for all the interrupts, the register can be directly written to with the desired value, thereby avoiding
the read operation.

A detailed description of the firmware implementation of the anti-collision sequence is given in Figure 1
and Figure 2 in the form of a flowchart.

Note: Due to the recursive nature of the anti-collision algorithm, there is a risk of stack overflow
when collision occurs. It is highly recommended that the user implement stack overflow
check in the firmware.
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Figure 1. InventoryRequest (1)
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Figure 2. InventoryRequest (2)

The physical memory of an ISO15693 VICC is organized in the form of blocks or pages of fixed size. Up
to 256 blocks can be addressed and a block size can be up to 32 bytes.

According the ISO15693-3 spec, the format for the read multiple blocks command is as follows:
1 2 3 4 5 6 7 8

READ FIRST NUMBER OFSOF FLAGS MULTIPLE UID BLOCK CRC EOFBLOCKSBLOCKS NUMBER
8 bits 8 bits 64 bits 8 bits 8 bits 16 bits
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Note: UID is optional. If the UID is not included, the command can be executed by any VICC in the
vicinity of the reader. While if UID field is included, only that VICC whose UID matches the
UID specified in the command will respond.

The Number of Blocks field is one less than the number of blocks that the VICC shall return
its response.

For more details on the Flags field, please refer to the ISO15693-3 spec.

Except for the SOF, CRC and EOF, all the command fields (2 to 7) have to be placed in the FIFO for
transmission.

Pseudo-code (for read multiple blocks command with no UID):
buf is an array that holds all the command/data bytes that are to be sent to the reader.

size is the number of bytes to be transmitted.
In this case, size = 4 (flags + command code + first block number + number of blocks)

flags is the ISO15693 flags byte.
buf[0] = 0x8f; /* Reset FIFO command */
buf[1] = 0x91; /* Send with CRC */
buf[2] = 0x3d; /* Write continuous from register 1D */
buf[3] = (char) (size >> 8); /* Data for register 1D */
buf[4] = (char) (size << 4); /* Data for register 1E */
buf[5] = 0x00; /* ISO15693 flag with option flag not set*/
buf[6] = 0x23; /* Read multiple blocks command code */
buf[7] = First block number
buf[8] = Number of blocks

1. Write buf[0] to buf[8] to TRF796x in a continuous write mode via SPI or Parallel mode (refer to the
Parallel/SPI timing diagrams in the TRF7960-61 data sheet, SLOU186).

2. Wait for a End of TX interrupt (use a timer for timeout).
3. Wait for next interrupt (use a timer for timeout). This can be due to any of the following:

a. End of RX
b. Collision
Check the IRQ status register to determine the cause of the interrupt (for more details, refer to
Section 2 on interrupts).
If interrupt is due to End of RX, this means that the response is received in the FIFO without any
error/collision. Read the FIFO to obtain the block data.
If interrupt is due to collision, the user can choose what to do next – try again (repeat from step 1) or
ignore.

Pseudo-code (for read multiple blocks command with UID):
buf is an array that holds all the command/data bytes that are to be sent to the reader.

size is the number of bytes to be transmitted.
In this case, size = 12 (flags + command code + UID + first block number + number of blocks)

flags is the ISO15693 flags byte.
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1.6 Write Multiple Blocks
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buf[0] = 0x8f; /* Reset FIFO command */
buf[1] = 0x91; /* Send with CRC */
buf[2] = 0x3d; /* Write continuous from register 1D */
buf[3] = (char) (size >> 8); /* Data for register 1D */
buf[4] = (char) (size << 4); /* Data for register 1E */
buf[5] = 0x00; /* ISO15693 flag with option flag not set*/
buf[6] = 0x23; /* Read multiple blocks command code */
buf[7] to buf[14] contains UID
buf[15] = First block number
buf[16] = Number of blocks

According to the ISO 15693 protocol, a multiple-byte field (here, the UID field) is transmitted least
significant byte first. For example, consider a tag with UID = E0007000006D6AC1C, then:
buf[7] = 1C;
buf[8] = AC;
buf[9] = D6;
buf[10] = 06;
buf[11] = 00;
buf[12] = 00;
buf[13] = 07;
buf[15] = E0;

1. Write buf[0] to buf[16] to TRF796x in a continuous write mode via SPI or Parallel mode (Refer to the
Parallel/SPI timing diagrams in the TRF7960-61 data sheet, SLOU186).

2. Wait for a End of TX interrupt (yse a timer for timeout).
3. Wait for next interrupt (use a timer for timeout). This can be due to any of the following:

a. End of RX
b. Collision
Check the IRQ status register to determine the cause of the interrupt (for more details, refer to
Section 2 on interrupts).
If interrupt is due to End of RX, this means that the response is received in the FIFO without any
error/collision. Read the FIFO to obtain the data received from the tag. Check for the Error_flag in the
Flags field. If set, the error code gives information about the type of error that occurred. Otherwise,
data has been received without any error.
If interrupt is due to collision, the user can choose how to act – try again (repeat from step 1) or ignore.

Note: Most tags do not support the write multiple blocks command. Hence the user should know
beforehand if the tag supports this command. If not, the ‘write single block command can be
used multiple times to write to many blocks.

The procedure to write multiple blocks is described below.

The write multiple blocks request format is as shown:
1 2 3 4 5 6 7 8 9

READ FIRST NUMBER OFSOF FLAGS MULTIPLE UID BLOCK DATA CRC EOFBLOCKSBLOCKS NUMBER
8 bits 8 bits 64 bits 8 bits 8 bits Block length 16 bits

Repeat as
needed
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Note: UID is optional. If the UID is not included, the command can be executed by any VICC in the
vicinity of the reader. While if UID field is included, only that VICC whose UID matches the
UID specified in the command will respond.

The Number of Blocks field is one less than the number of blocks that the VICC shall return
its response.

For more details on the Flags field, please refer to the ISO15693-3 spec.

Except for the SOF, CRC and EOF, all the command fields (2 to 7) have to be placed in the FIFO for
transmission.

Pseudo-code (for write multiple blocks command with no UID):
buf is an array that holds all the command/data bytes that are to be sent to the reader.

size is the number of bytes to be transmitted.

flags is the ISO15693 flags byte.

datalength is the number of the data bytes to be written to the tag.
buf[0] = 0x8f; /* Reset FIFO command */
buf[1] = 0x91; /* Send with CRC */
buf[2] = 0x3d; /* Write continuous from register 1D */
buf[3] = (char) (size >> 8); /* Data for register 1D */
buf[4] = (char) (size << 4); /* Data for register 1E */
buf[5] = 0x00; /* ISO15693 flag with option flag not set*/
buf[6] = 0x24; /* Read multiple blocks command code */
buf[7] = First block number
buf[8] = Number of blocks
buf[9] to buf[8 + datalength] = Data

1. Write buf[0] to buf[8 + datalength] to TRF796x via SPI or Parallel mode (Refer to the Parallel/SPI
timing diagrams in the TRF7960-61 data sheet, SLOU186).

The FIFO buffer in the TRF796x is only 12 bytes long. Hence if the total number of bytes to be transmitted
is greater than 12, then:
1. Transmit the first 12 bytes.
2. Wait for TX active and 3 bytes left in FIFO interrupt (refer to Section 2 on interrupts for more details).
3. Transmit next 9 bytes or less.

Repeat from step 2 until all the bytes have been transmitted.

To transmit first 12 bytes:
buf[0] = 0x8f; /* Reset FIFO command */
buf[1] = 0x91; /* Send with CRC */
buf[2] = 0x3d; /* Write continuous from register 1D */
buf[3] = (char) (total number of bytes to be TX >> 8); /* Data for register 1D */
buf[4] = (char) (total number of bytes to be TX << 4); /* Data for register 1E */
buf[5] = 0x00; /* ISO15693 flag with option flag not set*/
buf[6] = 0x24; /* Read multiple blocks command code */
buf[7] = First block number
buf[8] = Number of blocks
buf[9] to buf[16] = Data
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2 Interrupt Handler Routine
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Write buf[0] to buf[16] to TRF796x via SPI or Parallel mode.

To transmit next 9 bytes:
buf[0] = 0x3F; /* Continuous write to FIFO 0x1F */
buf[1] to buf[9] = Data; /* 9 data bytes for transmission */

1. Write buf[0] to buf[9] to TRF796x via SPI or Parallel mode.
2. Wait for a End of TX interrupt (use a timer for timeout).
3. If the Option_flag (in the Flags field in the request packet) is set, the VICC waits for the reception of an

EOF and upon such reception shall return its response.
a. Send reset command (0x0F) to FIFO (command byte - 0x8F)
b. Send transmit next slot (EOF) command (0x14) (command byte – 0x94)
If the Option_flag is not set, proceed to step 4.

4. Wait for next interrupt (use a timer for timeout). This can be due to any of the following:
a. End of RX
b. Collision
Check the IRQ status register to determine the cause of the interrupt (for more details, refer to
Section 2 on interrupts).
If interrupt is due to End of RX, this means that the response is received in the FIFO without any
error/collision. Read the FIFO to obtain the data received from the tag. Check for the Error_flag bit in
the Flags field of the response. The VICC reports the success of the operation in this bit.
If interrupt is due to collision, the user can choose what to do next – try again (repeat from step 1) or
ignore.

Pseudo-code (for write multiple blocks command with UID):
The procedure to write multiple blocks with UID is the similar to that of write multiple blocks except that the
8 bytes of the UID is sent along with the request packet. Please note that the UID being a multiple-byte
field, has to be sent with its least significant byte first. Please refer to Section 1.5 on Pseudo-code for read
multiple blocks command with UID for details.

The reader which is a slave device has an IRQ pin to prompt/flag the MCU for attention in cases when the
reader detects a response from the PICC/VICC. The interrupt handler routine described below determines
how the IRQ should be handled.

The TRF796x IRQ status register (Table 2) is read to determine the cause of the IRQ. The following
conditions (Table 1) are checked and appropriate actions taken:

Table 1. Interrupt Conditions
NO. CONDITION ACTION

1 Transmission complete Reset FIFO
1. Read collision position register (TRF796x). (1) (2) (3)

2. Determine the number of valid bytes and bits.
2 Collision occurred 3. Read the valid received bytes and bits in FIFO and write to local

buffer.
4. Reset FIFO.

(1) Though registers 0Dh and 0Eh give the collision position, only register 0Eh is used because the anti-collision command in ISO
14443A is maximum only 7 bytes long. Hence 8 bits (0Dh) are enough to determine the position.

(2) The lower nibble of the Collision register (0Eh) has the bit count and that the upper nibble has the byte count. For example, if
the Collision Position register holds the value 0x40, it means that the collision happened in the 4th byte on the bit 0.

(3) The anti-collision procedure in the ISO14443A standard is done in such a way, that the reader sends at least 2 bytes (cascade
level and length information) in the anti-collision command. The collision position is counted from this reader command on.
Therefore to know the number of valid bytes and bits, subtract 0x20 from the Collision Position register.
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Table 1. Interrupt Conditions (continued)
NO. CONDITION ACTION

1. Read FIFO status register (TRF796x) to determine the number of
unread bytes and bits in FIFO.

3 RX flag set (at End of RX) 2. Read the data in FIFO and write to local buffer.
3. Reset FIFO.
1. Read 9 bytes from FIFO.

4 RX active and 9 bytes in FIFO
2. Check if IRQ pin is still high. If yes, go to condition No. 3.

5 CRC error Set error flag.
6 Byte framing error Set error flag.
7 No-response time-out

1. Reset FIFO.
8 Any other

2. Clear interrupt flag.

Table 2. IRQ Status Register
BIT BIT NAME FUNCTION COMMENTS

Signals the TX is in progress. The flag is set at the
B7 Irq_tx IRQ set due to end of TX start of TX, but the interrupt request is sent when TX is

finished.
Signals that RX SOF was received and RX is in

B6 Irq_srx IRQ set due to RX start progress. The flag is set at the start of RX, but the
interrupt request is sent when RX is finished.

Signals the FIFO isB5 Irq_fifo Signals FIFO high or low (less than 4 or more than 8).1/3 > FIFO > 2/3
B4 Irq_err1 CRC error Reception CRC
B3 Irq_err2 Parity error
B2 Irq_err3 Byte framing or EOF error
B1 Irq_col Collision error For ISO14443A and ISO15693 single sub-carrier
B0 Irq_noresp No response interrupt Signal to MCU that next slot command can be sent.
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