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Stability Analysis of Voltage-Feedback Op Amps
Including Compensation Techniques

Ron Mancini

ABSTRACT
This report presents an analysis of the stability of voltage-feedback operational amplifiers
(op amps) using circuit performance as the criteria to attain a successful design. It
discusses several compensation techniques for op amps with and without internal
compensation.

1 Introduction

Voltage-feedback amplifiers (VFA) have been with us for about 60 years, and they
have been a problem for circuit designers since the first day. You see, the
feedback that makes them versatile and accurate, also has a tendency to make
them unstable. The operational-amplifier (op amp) circuit configuration uses a
high-gain amplifier whose parameters are determined by external feedback
components. The amplifier gain is so high, that without these external feedback
components, the slightest input signal would saturate the amplifier output. The
op amp is in common usage, so this configuration is examined in detail, but the
results are applicable to many other voltage feedback circuits. Current feedback
amplifiers (CFA) are similar to VFAs, but the differences are important enough to
warrant CFAs being handled in a separate application note.

Stability, as used in electronic circuit terminology, is often defined as achieving
a nonoscillatory state. This is a poor, inaccurate definition of the word. Stability
is a relative term, and this situation makes people uneasy because relative
judgments are exhaustive. It is easy to draw the line between a circuit that
oscillates and one that does not oscillate, so we can understand why some
people believe that oscillation is a natural boundary between stability and
instability.

Feedback circuits exhibit poor phase response, overshoot, and ringing long
before oscillation occurs, and these effects are considered undesirable by circuit
designers. This application note is not concerned with oscillators; thus, relative
stability is defined in terms of performance. By definition, when designers decide
what tradeoffs are acceptable they determine what the relative stability of the
circuit is. A relative-stability measurement is the damping ratio (ζ) and the
damping ratio is discussed in detail in Reference 1. The damping ratio is related
to phase margin, hence, phase margin is another measure of relative stability.
The most stable circuits have the longest response times, lowest bandwidth,
highest accuracy, and least overshoot. The least stable circuits have the fastest
response times, highest bandwidth, lowest accuracy, and some overshoot.
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Amplifiers are built with active components such as transistors. Pertinent
transistor parameters like transistor gain are subject to drift and initial
inaccuracies from many sources. So, amplifiers being built from these
components are subject to drift and inaccuracies. The drift and inaccuracy is
minimized or eliminated by using negative feedback. The op-amp circuit
configuration employs feedback to make the transfer equation of the circuit
independent of the amplifier parameters (well almost), and while doing this, the
circuit transfer function is made dependent on external passive components. The
external passive components can be purchased to meet almost any drift or
accuracy specification; only the cost and size of the passive components limit
their use.

Once feedback is applied to the op amp, it is possible for the op-amp circuit to
become unstable. Certain amplifiers belong to a family called internally
compensated op amps; they contain internal capacitors which are sometimes
advertised as precluding instabilities. Although internally compensated op amps
should not oscillate when operated under specified conditions, many have
relative stability problems that manifest themselves as poor phase response,
ringing, and overshoot. The only absolutely stable internally compensated op
amp is the one lying on the workbench without power applied! All other internally
compensated op amps oscillate under some external circuit conditions.

Noninternally compensated or externally compensated op amps are unstable
without the addition of external stabilizing components. This situation is a
disadvantage in many cases because they require additional components, but
the lack of internal compensation enables the top-drawer circuit designer to
squeeze the last drop of performance from the op amp. You have two options: op
amps internally compensated by the IC manufacturer, or op amps externally
compensated by you. Compensation, except that done by the op amp
manufacturer, must be done external to the IC. Surprisingly enough, internally
compensated op amps require external compensation for demanding
applications.

Compensation is achieved by adding external components that modify the circuit
transfer function so that it becomes unconditionally stable. There are several
different methods of compensating an op amp, and as you might suspect, there
are pros and cons associated with each method of compensation. Teaching you
how to compensate and how to evaluate the results of compensation is the intent
of this application note. After the op-amp circuit is compensated, it must be
analyzed to determine the effects of compensation. The modifications that
compensation have on the closed-loop transfer function often determine which
compensation scheme is most profitably employed.
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2 Development of the Circuit Equations
A block diagram for a generalized feedback system is shown in Figure 1. This
simple block diagram is sufficient to determine the stability status of any system.

A

β

Σ
+

–

VIN VOUT
E

Figure 1. Feedback System Block Diagram

The output and error equations are written below.

VOUT � EA

E � VIN� �VOUT

Combining equations 1 and 2 yields equation 3:

VOUT
A

� VIN� �VOUT

Collecting terms yields equation 4:

VOUT
�1
A
� �� � VIN

Rearranging terms yields the classic form of the feedback equation.

VOUT
VIN

� A
1� A�

Notice that equation 5 reduces to equation 6 when the term Aβ in equation 5
becomes very large with respect to one. Equation 6 is called the ideal feedback
equation because it depends on the assumption that Aβ >>1, and it finds
extensive use when amplifiers are assumed to have ideal qualities. Under the
conditions that Aβ >>1, the system gain is determined by the feedback factor β.
Stable-passive circuit components are used to implement the feedback factor,
thus, the ideal closed-loop gain is predictable and stable because β is predictable
and stable.

VOUT
VIN

� 1
�

The quantity Aβ is so important that it has been given a special name, loop gain.
Consider Figure 2; when the voltage inputs are grounded (current inputs are
opened) and the loop is broken, the calculated gain is the loop gain, Aβ. Now,
keep in mind that this is mathematics of complex numbers which have magnitude
and direction. When the loop gain approaches minus one, or to express it
mathematically 1∠ 180°, equation 5 approaches infinity because 1/0⇒∞ . The
circuit output heads for infinity as fast as it can using the equation of a straight line.
If the output were not energy limited, the circuit would explode the world, but it
is energy limited by the power supplies so the world stays intact.

(1)

(2)

(3)

(4)

(5)

(6)
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A

β

Σ
+

+

VOUT

V(Test)

V(Return)

V(Test)

V(Return)
= Aβ

E

Figure 2. Feedback Loop Broken to Calculate Loop Gain

Active devices in electronic circuits exhibit nonlinear behavior when their output
approaches a power supply rail, and the nonlinearity reduces the amplifier gain
until the loop gain no longer equals 1∠ 180°. Now the circuit can do two things:
first, it could become stable at the power supply limit, or second, it can reverse
direction (because stored charge keeps the output voltage changing) and head
for the negative power supply rail.

The first state where the circuit becomes stable at a power supply limit is named
lockup; the circuit will remain in the locked up state until power is removed. The
second state where the circuit bounces between power supply limits is named
oscillatory. Remember, the loop gain, Aβ, is the sole factor that determines
stability for a circuit or system. Inputs are grounded or disconnected when the
loop gain is calculated, so they have no effect on stability. The loop-gain criteria
is analyzed in depth later.

Equations 1 and 2 are combined and rearranged to yield equation 7 which gives
an indication of system or circuit error.

E�
VIN

1� A�

First, notice that the error is proportional to the input signal. This is the expected
result because a bigger input signal results in a bigger output signal, and bigger
output signals require more drive voltage. Second, the loop gain is inversely
proportional to the error. As the loop gain increases the error decreases, thus
large loop gains are attractive for minimizing errors. Large loop gains also
decrease stability, thus, there is always a tradeoff between error and stability.

A noninverting op amp is shown in Figure 3.

_
+

VIN
VOUT

ZF

ZGVB

a

Figure 3. Noninverting Op Amp

(7)
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Equation 8 is the amplifier transfer equation:

VOUT � a �VIN� VB
�

Equation 9 is the output equation:

VB �
VOUTZG
ZF� ZG

for IB � 0

Combining equations 8 and 9 yields equation 10:

VOUT � aVIN�
aZG VOUT
ZG� ZF

Rearranging terms in equation 10 yields equation 11, which describes the
transfer function of the circuit:

VOUT
VIN

� a

1�
aZG

ZG�ZF

Equation 5 is repeated as equation 12 to make a term by term comparison of the
equations easy.

VOUT
VIN

� A
1� Aβ

By virtue of the comparison we get equation 13, which is the loop-gain equation
for the noninverting op amp. The loop-gain equation determines the stability of
the circuit.

A��
aZG

ZG� ZF

Equation 13 could have been derived by breaking the op amp feedback loop, say
at point B, and calculating the loop gain. This procedure is used later to derive
the inverting loop gain. Also, by comparison the direct gain A is seen to be
A = a, or the direct gain for the noninverting op amp is the same as the op amp
gain. The inverting, op-amp circuit is shown in Figure 4.

_
+

IB

VIN

VOUT

ZFZG
VA

a

Figure 4. Inverting Op Amp

The transfer equation is given in equation 14:

VOUT �� aVA

(8)

(9)

(10)

(11)

(12)

(13)

(14)
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The node voltage is described by equation 15, and equation 16 is obtained by
combining equations 14 and 15.

VA�
VIN ZF

ZG� ZF
�

VOUT ZG
ZG� ZF

for IB� 0

VOUT
VIN

�

–aZF
ZG�ZF

1�
aZG

ZG�ZF

Equation 16 is the transfer function of the inverting op amp. The direct gain
garnered by the comparison method is a –ZG/(ZG +ZF). The inverting op amp with
the feedback loop broken is shown in Figure 5, and this circuit is used to calculate
the loop gain given in equation 17.

_
+

VOUT

ZF

ZG

a

V(Return)V(Test)

V(Test)

V(Return)
=  a

ZF + ZG

ZG

Figure 5. Inverting Op Amp: Feedback Loop Broken for Loop Gain Calculation

VRETURN
VTEST

�

aZG
ZG� ZF

� A�

Several things must be mentioned at this point in the analysis. First, the transfer
functions for the noninverting and inverting equations, 11 and 16, are different.
For a common set of ZG and ZF values, the magnitude and polarity of the gains
are different. Second, the loop gain of both circuits, as given by equations 13 and
17, is identical. Thus, the stability performance of both circuits is identical
although their transfer equations are different. This makes the important point
that stability is not dependent on the circuit inputs. Third, the A gain block shown
in Figure 1 is different for each op-amp circuit. By comparison of equations 5, 11,
and 16 we see that ANON–INV = a and AINV = aZF ÷ (ZG + ZF). Equation 7 shows
that the error is inversely proportional to the loop gain; thus, the accuracy of
identical closed-loop gain inverting and noninverting op-amp circuits is different.

Equation 17 is used to compensate all op amp circuits. First, we determine what
compensation method to use. Second, we derive the compensation equations.
Third, we analyze the closed-loop transfer function to determine how it is modified
by the compensation. The effect of the compensation on the closed-loop transfer
function often determines which compensation technique will be used.

(15)

(16)

(17)
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3 Internal Compensation
Op amps are internally compensated to save external components and to enable
their use by less knowledgeable people. It takes some measure of analog
knowledge to compensate an analog circuit. Internally compensated op amps
normally are stable when they are used in accordance with the applications
instructions. Internally compensated op amps are not unconditionally stable.
They are multiple pole systems, but they are internally compensated such that
they appear as a single pole system over much of the frequency range. The cost
of internal compensation is that it severely decreases the closed-loop bandwidth
of the op amp.

Internal compensation is accomplished in several ways, but the most common
method is to connect a capacitor across the collector-base junction of a voltage
gain transistor (see Figure 6). The Miller effect multiplies the capacitor value by
an amount approximately equal to the stage gain, thus, the Miller effect uses
small value capacitors for compensation. Figure 7 shows the gain/phase diagram
for an older op amp (TL03X). When the gain crosses the 0-dB axis (gain equal
to one) the phase shift is about 100°, thus, the op amp must be modeled as a
second order system because the phase shift is more than 90°.

VIN

VCC

C

RB

RC

Figure 6. Miller Effect Compensation

This yields a phase margin of φ = 180° – 100° = 80°, thus the circuit should be
very stable (Reference 1 explains feedback analysis tools). Referring to Figure 8,
the damping ratio is one and the expected overshoot is zero. Figure 7 shows
approximately 10% overshoot which is unexpected, but inspecting Figure 7
further reveals that the loading capacitance for the two plots is different. The pulse
response is loaded with 100 pF rather than 25 pF shown for the gain/phase plot,
and this extra loading capacitance accounts for the loss of phase margin.
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Figure 8. Phase Margin and Percent Overshoot Versus Damping Ratio

Why does the loading capacitance make the op amp unstable? Look closely at
the gain/phase response between 1 MHz and 9 MHz, and observe that the gain
curve changes slope drastically while the rate of phase change approaches
120°/decade. The radical gain/phase slope change proves that several poles are
located in this area. The loading capacitance works with the op-amp output
impedance to form another pole, and the new pole reacts with the internal op-amp
poles. As the loading capacitor value is increased, its pole migrates down in
frequency, causing more phase shift at the 0-dB crossover frequency. The proof
of this is given in the TL03X data sheet where plots of ringing and oscillation
versus loading capacitance are shown.

Figure 9 shows similar plots for the TL07X which is the newer family of op amps.
Notice that the phase shift is 100� when the gain crosses the 0-dB axis. This
yields a phase margin of 80�, which is close to being unconditionally stable. The
slope of the phase curve changes to 180�/decade about one decade from the
0-dB crossover point. The radical slope change causes suspicion about the 90°
phase margin. Furthermore, the gain curve must be changing radically when the
phase is changing radically. The gain/phase plot may not be totally false, but it
sure is overly optimistic.
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Figure 9. TL07X Frequency and Time Response Plots

The TL07X pulse response plot shows approximately 20% overshoot. There is
no loading capacitance indicated on the plot to account for a seemingly
unconditionally stable op amp exhibiting this large an overshoot. Something is
wrong here: the analysis is wrong, the plots are wrong, or the parameters are
wrong. Figure 10 shows the plots for the TL08X family of op amps which are
sisters to the TL07X family. The gain/phase curve and pulse response is virtually
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identical, but the pulse response lists a 100-pF loading capacitor. This little
exercise illustrates three valuable points: first, if the data seems wrong it probably
is wrong, second, even the factory people make mistakes, and third, the loading
capacitor makes op amps ring, overshoot, or oscillate.
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The frequency and time-response plots for the TLV277X family of op amps is
shown in Figures 11 and 12. First, notice that the information is more
sophisticated because the phase response is given in degrees of phase margin;
second, both gain/phase plots are done with substantial loading capacitors
(600 pF), so they have some practical value; and third, the phase margin is a
function of power supply voltage.
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Figure 12. TLV227X Time Response Plots

At VCC = 5 V, the phase margin at the 0-dB crossover point is 60°, while it is 30°
at VCC = 2.7 V. This translates into an expected overshoot of 18% at VCC = 5 V,
and 28% at VCC = 2.7 V. Unfortunately, the time response plots are done with
100-pF loading capacitance, hence we can not check our figures very well. The
VCC = 2.7-V overshoot is approximately 2%, and it is almost impossible to figure
out what the overshoot would have been with a 600-pF loading capacitor. The
small-signal pulse response is done with mV-signals, and that is a more realistic
measurement than using the full-signal swing.

Internally compensated op amps are very desirable because they are easy to
use, and they do not require external compensation components. Their drawback
is that the bandwidth is limited by the internal compensation scheme. The op-amp
open-loop gain eventually (when it shows up in the loop gain) determines the
error in an op-amp circuit. In a noninverting buffer configuration, the TL277X is
limited to 1% error at 50 kHz (VCC = 2.7 V) because the op amp gain is 40 dB at
that point. Circuit designers can play tricks such as bypassing the op amp with
a capacitor to emphasize the high-frequency gain, but the error is still 1%. Keep
equation 7 in mind because it defines the error. If the TLV277X were not internally
compensated, it could be externally compensated for a lower error at 50 kHz
because the gain would be much higher.
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4 External Compensation, Stability, and Performance
This section is approached on a compensation type basis. Nobody compensates
an op amp because it is there; they have a reason to compensate the op amp,
and that reason is usually stability. They want the op amp to perform a function
in a circuit where it is potentially unstable. Internally and noninternally
compensated op amps are compensated externally because certain circuit
configurations do cause oscillations. Several potentially unstable circuit
configurations are analyzed in this section, and the reader can extend the
external compensation techniques as required.

Other reasons for externally compensating op amps are noise reduction, flat
amplitude response, and obtaining the highest bandwidth possible from an op
amp. An op amp generates noise, and noise is generated by the system. The
noise contains many frequency components, and when a high-pass filter is
incorporated in the signal path, it reduces high-frequency noise. Compensation
can be employed to roll off the op amp’s high-frequency, closed-loop response,
thus, causing the op amp to act as a noise filter. Internally compensated op amps
are modeled with a second order equation, and this means that the output voltage
can overshoot in response to a step input. When this overshoot (or peaking) is
undesirable, external compensation can increase the phase margin to 90° where
there is no peaking. An uncompensated op amp has the highest bandwidth
possible. External compensation is required to stabilize uncompensated op
amps, but the compensation can be tailored to the specific circuit, thus yielding
the highest possible bandwidth consistent with the pulse response requirements.
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5 Dominant-Pole Compensation
We saw that capacitive loading caused potential instabilities, thus, an op amp
loaded with an output capacitor is a circuit configuration that must be analyzed.
This circuit is called dominant pole compensation because if the pole formed by
the op amp output impedance and the loading capacitor is located close to the
zero frequency axis, it becomes dominant. The op-amp circuit is shown in
Figure 13, and the open-loop circuit used to calculate the loop gain (Aβ) is shown
in Figure 14.

ZO

∆VA

+

–

VIN

VOUT

CL

ZF

ZG

∆V

POINT X

Figure 13. Capacitively-Loaded Op Amp

ZO ZF

CL ZG

V(Return)

v(Test) = ∆VA

VOUT

Figure 14. Capacitively-Loaded Op Amp With Loop Broken for Loop-Gain (Aβ) Calculation

The analysis starts by looking into the capacitor and taking the Thevenin
equivalent circuit.

VTH �
�Va

ZOCLs� 1

ZTH �
ZO

ZOCLs� 1

Then the output equation is written:

VRETURN �
VTHZG

ZG � ZF� ZTH
� �Va

ZOCLs� 1
��
�

�

ZG

ZF� ZG �
ZO

ZOCLs�1

��
�

�

(18)

(19)

(20)
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Rearranging terms yields equation 21:

VRETURN
VTEST

� A��

aZG
ZF �ZG�ZO

�ZF�ZG
�ZOCLs

ZF�ZG�ZO
� 1

When the assumption is made that (ZF + ZG) >> ZO, equation 21 reduces to
equation 22:

A��
aZG

ZF � ZG
� 1

ZOCLs� 1
�

Equation 23 models the op amp as a second-order system. Hence, substituting
the second-order model for a in equation 22 yields equation 24 which is the
stability equation for the dominant-pole compensation circuit:

a � K
�s� �1

��s� �2
�
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�s� �1

��s� �2
�
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Figure 15. Possible Bode Plot of the Op Amp Described in Equation 23

Several conclusions can be drawn from equation 24 depending on the location
of the poles. If the Bode plot of equation 23, the op amp transfer function, looks
like that shown in Figure 15, it only has 25° phase margin, and there is
approximately 48% overshoot. When the pole introduced by ZO and CL moves
towards the zero frequency axis it comes close to the τ2 pole, and it adds phase
shift to the system. Increased phase shift increases peaking and decreases
stability. In the real world, many loads, especially cables, are capacitive, and an
op amp like the one pictured in Figure 15 would ring while driving a capacitive
load. The load capacitance causes peaking and instability in internally
compensated op amps when the op amps do not have enough phase margin to
allow for the phase shift introduced by the load.

(21)

(22)

(23)

(24)
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Prior to compensation, the Bode plot of an uncompensated op amp looks like that
shown in Figure 16. Notice that the break points are located close together thus
accumulating about 180° of phase shift before the 0 dB crossover point; the op
amp is not usable and probably unstable. Dominant pole compensation is often
used to stabilize these op amps. If a dominant pole, in this case ωD, is properly
placed it rolls off the gain so that τ1 introduces 45� phase at the 0 dB crossover
point. After the dominant pole is introduced the op amp is stable with 45° phase
margin, but the op-amp gain is drastically reduced for frequencies higher than ωD.
This procedure works well for internally compensated op amps, but is seldom
used for externally compensated op amps because inexpensive discrete
capacitors are readily available.
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Figure 16. Dominant-Pole Compensation Plot

Assuming that ZO << ZF, the closed-loop transfer function, is easy to calculate
because CL is enclosed in the feedback loop. The ideal closed-loop transfer
equation is the same as equation 11 for the noninverting op amp, and is repeated
below as equation 25:

VOUT
VIN

�
a

1�
aZG

ZG�ZF

When a ⇒  ∞ equation 25 reduces to equation 26:

VOUT
VIN

�

ZF� ZG
ZG

As long as the op amp has enough compliance and current to drive the capacitive
load, and ZO is small, the circuit functions as though the capacitor was not there.
When the capacitor becomes large enough, its pole interacts with the op amp
pole causing instability. When the capacitor is huge, it completely kills the op
amp’s bandwidth, thus lowering the noise while retaining a large, low-frequency
gain.

(25)

(26)
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6 Gain Compensation

When the closed-loop gain of an op-amp circuit is related to the loop gain, as it
is in voltage feedback op amps, the gain can be used to stabilize the circuit. This
type of compensation can not be used in current feedback op amps because the
mathematical relationship between the loop gain and ideal closed-loop gain does
not exist. The loop gain equation is repeated as equation 27. Notice that the
closed-loop gain parameters ZG and ZF are contained in equation 27, hence the
stability can be controlled by manipulating the closed-loop gain parameters.

A��
aZG

ZG � ZF

The original loop-gain curve for a closed-loop gain of one is shown in Figure 17,
and it is or comes very close to being unstable. If the closed-loop noninverting
gain is changed to 9, then K changes from K/2 to K/10. The loop-gain intercept
on the Bode plot (see Figure 17) moves down 14 dB, and the circuit is stabilized.

Compensated
Loop Gain Curve

Loop Gain Curve
dB

0dB

20 Log
K
Z

Log(f)

1/τ1 1/τ2

–14 dB

20 Log �K
10
�

20 Log � KZG
ZF� ZG

�

Figure 17. Gain Compensation

Gain compensation works for inverting or noninverting op-amp circuits because
the loop gain equation contains the closed-loop gain parameters in both cases.
When the closed-loop gain is increased, the accuracy and the bandwidth
decrease. As long as the application can stand the higher gain, gain
compensation is the best type of compensation to use. Uncompensated versions
of normally internally compensated op amps are offered for sale as stable op
amps with minimum gain restrictions. As long as the gain in the circuit you design
exceeds the gain specified, this is economical and a safe mode of operation.

7 Lead Compensation

Sometimes lead compensation is forced on the circuit designer because of the
parasitic capacitance associated with packaging and wiring op amps. Figure 18
shows the circuit for lead compensation; notice the capacitor in parallel with RF.
That capacitor is often made by parasitic wiring and the ground plane, and high
frequency circuit designers go to great lengths to minimize or eliminate it. What
is good in one sense is bad in another, because adding the parallel capacitor is
a good way to stabilize the op amp and reduce noise. Let us analyze the stability
first, and then we will analyze the closed-loop performance.

(27)
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Figure 18. Lead-Compensation Circuit

The loop equation for the lead-compensation circuit is given by equation 28:

A� � � RG
RG � RF

� � RFCs � 1

RG � RFCs � 1
�
�� K
�s � �1

��s � �2
� 

�
	

The compensation capacitor introduces a pole and zero into the loop equation.
The zero always occurs before the pole because RF >RF||RG. When the zero is
properly placed it cancels out the τ2 pole along with its associated phase shift.
The original transfer function is shown in Figure 19, drawn as solid lines. When
the RFC zero is placed at ω = 1/τ2, it cancels out the τ2 pole causing the Bode plot
to continue on a slope of –20 dB/decade. When the frequency gets to
ω = 1/(RF||RG)C, this pole changes the slope to –40 dB/decade. Properly placed,
the capacitor aids stability, but what does it do to the closed-loop transfer
function? The equation for the inverting op amp closed-loop gain is repeated
below.

VOUT
VIN

�

–aZF
ZG �ZF

1 �
aZG

ZG�ZF

dB

0dB20
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Figure 19. Lead-Compensation Bode Plot

When a approaches infinity, equation 29 reduces to equation 30:

VOUT
VIN

��
ZF
ZG

(28)

(29)

(30)
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Substituting RF �C  for ZF and RG for ZG in equation 30 yields equation 31, which
is the ideal closed-loop gain equation for the lead compensation circuit:

VOUT
VIN

��
RF
RG
� 1

RFCs� 1
�

The forward gain for the inverting amplifier is given by equation 32. Compare
equation 29 with equation 5 to determine A.

A �
aZF

ZG � ZF
� � RF

RG � RF
� � 1

RF � RGCs� 1
�

The op-amp gain (a) the forward gain (A) and the ideal closed-loop gain are
plotted in Figure 20. The op-amp gain is plotted for reference only. The forward
gain for the inverting op amp is not the op-amp gain. Notice that the forward gain
is reduced by the factor RF/(RG +RF), and it contains a high-frequency pole. The
ideal closed-loop gain follows the ideal curve until the 1/RFC breakpoint (same
location as 1/τ2 breakpoint), and then it slopes down at –20 dB/decade. Lead
compensation sacrifices the bandwidth between the 1/RFC breakpoint and the
forward gain curve. The location of the 1/RFC pole determines the bandwidth
sacrifice, and it can be much greater than shown here. The pole caused by RF,
RG, and C does not appear until the op amp’s gain has crossed the 0 dB axis, thus,
it does not effect the ideal closed-loop transfer function.

Op Amp Gain
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1
(RF || RG)C

Ideal Closed Loop Gain

1
τ1

1
τ2

1
RFCand

20 Log a

aZF
ZG + ZF

20 Log

ZF
ZG

20 Log

0dB

Figure 20. Inverting Op Amp With Lead Compensation

The forward gain for the noninverting op amp is a; compare equation 11 to
equation 5. The ideal closed-loop gain is given by equation 33:

VOUT
VIN

�
ZF � ZG

ZG
� �RF � RG

RG
� �RF � RGCs� 1

RFCs� 1
�

(31)

(32)

(33)
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The plot of the noninverting op amp with lead compensation is shown in
Figure 21. There is only one plot for both the op-amp gain (a) and the forward gain
(A), because they are identical in the noninverting circuit configuration. The ideal
starts out as a flat line, but it slopes down because its closed-loop gain contains
a pole and a zero. The pole always occurs closer to the low-frequency axis
because RF > RF||RG. The zero flattens the ideal closed-loop gain curve, but it
never does any good because it can not fall on the pole. The pole causes a loss
in the closed-loop bandwidth by the amount separating the closed-loop and
forward-gain curves.
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Figure 21. Noninverting Op Amp With Lead Compensation

Although the forward gain is different in the inverting and noninverting circuits, the
closed-loop transfer functions take very similar shapes. This becomes truer as
the closed-loop gain increases because the noninverting forward gain
approaches the op-amp gain. This relationship can not be relied on in every
situation, and each circuit must be checked to determine the closed-loop effects
of the compensation scheme.

8 Compensated Attenuator Applied to Op Amp
Stray capacitance on op-amp inputs is a problem that circuit designers are always
trying to get away from because it decreases closed-loop frequency response or
causes peaking. The circuit shown in Figure 22 has some stray capacitance (CG)
connected from the inverting input to ground. Equation 34 is the loop-gain
equation for the circuit with input capacitance.

_
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VIN

VOUT

CG

Figure 22. Op Amp With Stray Capacitance on the Inverting Input
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A� � � RG
RG � RF

� � 1
RG � RFCs � 1

�	�� K
��1s � 1���2s � 1� 	

�
�

Op amps having high input and feedback resistors are subject to instability
caused by stray capacitance on the inverting input. Referring to equation 34,
when the 1/(RF||RGCG) pole moves close to τ2 the stage is set for instability.
Reasonable component values for a CMOS op amp are RF = 1 MΩ, RG = 1 MΩ,
and CG = 10 pF. The resulting pole occurs at 318 kHz, and this frequency is lower
than the breakpoint of τ2 for many op amps. There is 90� phase shift resulting
from τ1, the 1/(RF||RGC) pole adds 45° phase shift at 318 kHz, and τ2 adds
another 45° phase shift at about 600 kHz. This circuit is unstable because of the
stray input capacitance. The circuit is compensated by adding a feedback
capacitor as shown in Figure 23.

_
+
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RG

VIN

VOUT

CG

CF

Figure 23. Compensated Attenuator Circuit

The loop gain with CF added is given by equation 35:

A� �			




�

RG
RGCGs�1

RG
RGCGs�1

�
RF

RFCFs�1

			

�



	��

K
��1s � 1���2s � 1� 	

�
�

If RGCG = RFCF equation 35 reduces to equation 36:

A� � � RG
RG � RF

�	�� K
��1s � 1���2s � 1� 	

�
�

The compensated attenuator Bode plot is shown in Figure 24. Adding the correct
1/RFCF breakpoint cancels out the 1/RGCG breakpoint, the loop gain is
independent of the capacitors. Now is the time to take advantage of the stray
capacitance. CF can be formed by running a wide copper strip from the output of
the op amp over the ground plane under RF; do not connect the other end of this
copper strip. The circuit is tuned by removing some copper (a razor works well)
until all peaking is eliminated. Then measure the copper, and have an identical
trace put on the printed-circuit board.

(34)

(35)

(36)
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Figure 24. Compensated Attenuator Bode Plot

The inverting and noninverting closed-loop gain equations are a function of
frequency. Equation 37 is the closed-loop gain equation for the inverting op amp.
When RFCF = RGCG equation 37 reduces to equation 38 which is independent
of the breakpoint. This also happens to the noninverting op-amp circuit. This is
one of the few occasions when the compensation does not affect the closed-loop
gain frequency response.

VOUT
VIN

��

RF
RFCFs�1

RG
RGCGs�1

VOUT
VIN

�� �RF
RG
�RFCF = RGCGWhen

9 Lead-Lag Compensation
Lead-lag compensation stabilizes the circuit without sacrificing the closed-loop
gain performance. It is often used with uncompensated op amps. This type of
compensation leads to excellent high-frequency performance. The circuit
schematic is shown in Figure 25, and the loop gain is given by equation 39.
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Figure 25. Lead-Lag Compensated Op Amp
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(37)

(38)

(39)
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Referring to Figure 26, a pole is introduced at ω = 1/RC, and this pole reduces
the gain 3 dB at the breakpoint. When the zero occurs prior to the first op-amp
pole it cancels out the phase shift caused by the ω = 1/RC pole. The phase shift
is completely canceled before the second op-amp pole occurs, and the circuit
reacts as if the pole was never introduced. Nevertheless, Aβ is reduced by 3 dB
or more, so the loop gain crosses the 0-dB axis at a lower frequency. The beauty
of lead-lag compensation is that the closed-loop ideal gain is not affected as is
shown below. The Thevenin equivalent of the input circuit is calculated in
equation 40, the circuit gain in terms of Thevenin equivalents is calculated in
equation 41, and the ideal closed-loop gain is calculated in equation 42.
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Figure 26. Bode Plot of Lead-Lag Compensated Op Amp
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Equation 42 is intuitively obvious because the RC network is placed across a
virtual ground. As long as the loop gain (Aβ) is large, the feedback will null out the
closed-loop effect of RC, and the circuit will function as if it weren’t there. The
closed-loop log plot of the lead-lag compensated op amp is given in Figure 27.
Notice that the pole and zero resulting from the compensation occur and are gone
before the first amplifier poles come on the scene. This prevents interaction, but
it is not required for stability.

(40)

(41)

(42)
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Figure 27. Closed-Loop Plot of Lead-Lag Compensated Op Amp

10 Comparison of Compensation Schemes
Internally compensated op amps can, and often do, oscillate under some circuit
conditions. Internally compensated op amps need an external pole to get the
oscillation or ringing started, and circuit stray capacitances often supply the
phase shift required for instability. Loads, such as cables, often cause internally
compensated op amps to ring severely.

Dominant pole compensation is often used in IC design because it is easy to
implement. It rolls off the closed-loop gain early; thus, it is seldom used as an
external form of compensation unless filtering is required. Load capacitance,
depending on its pole location, usually causes the op amp to ring. Large load
capacitance can stabilize the op amp because it acts as dominant pole
compensation.

The simplest form of compensation is gain compensation. High, closed-loop
gains are reflected in lower-loop gains, and in turn, lower-loop gains increase
stability. If an op-amp circuit can be stabilized by increasing the closed-loop gain,
do it.

Stray capacitance across the feedback resistor tends to stabilize the op amp
because it is a form of lead compensation. This compensation scheme is useful
for limiting the circuit bandwidth, but it decreases the closed-loop gain.

Stray capacitance on the inverting input works with the parallel combination of the
feedback and gain setting resistors to form a pole in the Bode plot, and this pole
decreases the circuit’s stability. This effect is normally observed in high-
impedance circuits built with CMOS op amps. Adding a feedback capacitor forms
a compensated attenuator scheme which cancels out the input pole. The
cancellation occurs when the input and feedback RC time constants are equal.
Under the conditions of equal time constants, the op amp functions as though the
stray input capacitance was not there. An excellent method of implementing a
compensated attenuator is to build a stray feedback capacitor using the ground
plane and a trace off the output node.

Lead-lag compensation stabilizes the op amp, and it yields the best closed-loop
frequency performance. Contrary to some published opinions, no compensation
scheme will increase the bandwidth beyond that of the op amp. Lead-lag
compensation just gives the best bandwidth for the compensation.



Conclusion

26 SLOA020A

11 Conclusion
The stability criteria often is not oscillation, rather, it is circuit performance as
exhibited by peaking and ringing.

The circuit bandwidth can often be increased by connecting an external capacitor
in parallel with the op amp. Some op amps have hooks which enable a parallel
capacitor to be connected in parallel with a portion of the input stages. This
increases bandwidth because it shunts high frequencies past the low bandwidth
gm stages, but this method of compensation depends on the op amp type and
manufacturer.

The compensation techniques given here are adequate for the majority of
applications. When the new and challenging application presents itself, use the
procedure outline here to invent your own compensation technique.
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