

ISO5851 SLLSEN5C - JUNE 2015 - REVISED MAY 2023

ISO5851 High-CMTI 2.5-A and 5-A Isolated IGBT, MOSFET Gate Driver With Active Protection Features

1 Features

Texas

INSTRUMENTS

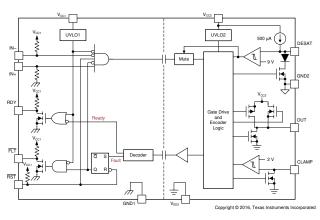
- 100-kV/µs Minimum Common-Mode Transient Immunity (CMTI) at V_{CM} = 1500 V
- 2.5-A Peak Source and 5-A Peak Sink Currents
- Short Propagation Delay: 76 ns (Typ), 110 ns (Max)
- 2-A Active Miller Clamp
- Output Short-Circuit Clamp
- Fault Alarm upon Desaturation Detection is Signaled on FLT and Reset Through RST
- Input and Output Undervoltage Lockout (UVLO) with Ready (RDY) Pin Indication
- Active Output Pull-down and Default Low Outputs with Low Supply or Floating Inputs
- 3-V to 5.5-V Input Supply Voltage
- 15-V to 30-V Output Driver Supply Voltage
- **CMOS** Compatible Inputs
- **Rejects Input Pulses and Noise Transients Shorter** Than 20 ns
- Operating Temperature: -40°C to +125°C Ambient
- Isolation Surge Withstand Voltage 12800-V_{PK}
- Safety-Related Certifications:
 - 8000-V_{PK} V_{IOTM} and 2121-V_PK V_{IORM} Reinforced Isolation per DIN V VDE V 0884-10 (VDE V 0884-10):2006-12
 - 5700-V_{RMS} Isolation for 1 Minute per UL 1577
 - CSA Component Acceptance Notice 5A, IEC 60950-1 and IEC 60601-1 End Equipment Standards
 - TUV Certification per EN 61010-1 and EN 60950-1
 - GB4943.1-2011 CQC Certification

2 Applications

- Isolated IGBT and MOSFET Drives in:
 - Industrial Motor Control Drives
 - Industrial Power Supplies
 - Solar Inverters
 - **HEV and EV Power Modules**
 - Induction Heating

3 Description

The ISO5851 is a 5.7-kV_{RMS}, reinforced isolated gate driver for IGBTs and MOSFETs with 2.5-A source and 5-A sink current. The input side operates from a single 3-V to 5.5-V supply. The output side allows for a supply range from minimum 15 V to maximum 30 V. Two complementary CMOS inputs control the output state of the gate driver. The short propagation time of 76 ns assures accurate control of the output stage.


An internal desaturation (DESAT) fault detection recognizes when the IGBT is in an overload condition. Upon a DESAT detect, the gate driver output is driven low to V_{FF2} potential, turning the IGBT immediately off.

When desaturation is active, a fault signal is sent across the isolation barrier, pulling the FLT output at the input side low and blocking the isolator input. The FLT output condition is latched and can be reset through a low-active pulse at the \overline{RST} input.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
ISO5851	SOIC (16)	10.30 mm × 7.50 mm

For all available packages, see the orderable addendum at (1) the end of the datasheet.

Functional Block Diagram

Table of Contents

1 Features1
2 Applications1
3 Description1
4 Revision History
5 Description (continued)4
6 Pin Configuration and Function
7 Specifications
7.1 Absolute Maximum Ratings
7.2 ESD Ratings
7.3 Recommended Operating Conditions
7.4 Thermal Information6
7.5 Power Ratings7
7.6 Insulation Characteristics7
7.7 Safety-Related Certifications9
7.8 Safety Limiting Values
7.9 Electrical Characteristics10
7.10 Switching Characteristics11
7.11 Insulation Characteristics Curves
7.12 Typical Characteristics13
8 Parameter Measurement Information
9 Detailed Description21
9.1 Overview

9.2 Functional Block Diagram	.21
9.3 Feature Description.	
9.4 Device Functional Modes	
10 Application and Implementation	24
10.1 Application Information	
10.2 Typical Applications	
11 Power Supply Recommendations	
12 Layout	
12.1 Layout Guidelines	
12.2 Layout Example	
12.3 PCB Material	
13 Device and Documentation Support	
13.1 Device Support	
13.2 Documentation Support	
13.3 Receiving Notification of Documentation Updates.	
13.4 Support Resources	
13.5 Trademarks	
13.6 Electrostatic Discharge Caution	
13.7 Glossary	
14 Mechanical, Packaging, and Orderable	
Information	36

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision B (January 2017) to Revision C (May 2023)	Page
•	Added Additional manufacturing certification pending in the Safety-Related Certifications table	9
С	hanges from Revision A (June 2015) to Revision B (January 2017)	Page
•	Changed the Title From: "Active Safety Features" To: Active Protection Features"	1
•	Changed Feature From: Surge Immunity 12800-V _{PK} (according to IEC 61000-4-5) To: Isolation Surge	
	Withstand Voltage 12800-V _{PK}	1
•	Added Feature to Safety and Regulatory Certifications: TUV Certification per EN 61010-1 and EN 6095	60-1 <mark>1</mark>
•	Added the Power Ratings table	7
•	Moved Insulation Characteristics to the Specifications	
•	Changed the Test Conditions and values for qpd in Insulation Characteristics	7
•	Changed R _{IO} From: $100^{\circ}C \le T_A \le max$ To: $100^{\circ}C \le T_A \le 125^{\circ}C$ in the <i>Insulation Characteristics</i>	
•	Moved Safety-Related Certifications to the Specifications	9
•	Changed the CSA status from planned to certified	9
•	Moved Safety Limiting Values to the Specifications	
•	Added the Reinforced High-Voltage Capacitor Life Time Projection figure to Insulation Characteristics C	Curves
		12
•	Changed the Thermal Derating Curve for Limiting Current per VDE figure and Added the Thermal Dera	
	Curve for Limiting Power per VDE figure	
٠	Added the I _{CC1} Supply Current vs Temperature figure to the Typical Characteristics	
٠	Changed the OUT Propagation Delay, Non-Inverting Configuration figure	
٠	Changed the OUT Propagation Delay, Inverting Configuration figure	19
٠	Added text ", but connecting CLAMP output of the gate driver to the IGBT gate is also not an issue." to	
	Supply and Active Miller Clamp	22
•	Changed the second paragraph of the Section 10.2	24
•	Added text "and RST input signal" to Section 10.2.1	
•	Deleted text " and a 220-pF filtering capacitor." from Recommended ISO5851 Application Circuit	26

•	Deleted text "thereby, providing protection against further catastrophic failures." From: the Global-Shutc	lown
	and Reset section.	28
•	Changed the Normal Operation - Bipolar Supply and Normal Operation - Unipolar Supply figures	
•	Changed the PCB Material section	35

Changes from Revision * (June 2015) to Revision A (June 2015)

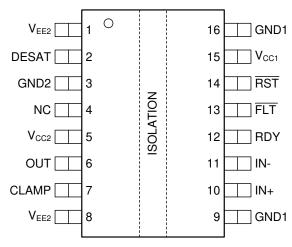
Page

• (Changed from a ´	1-page Product Preview to the full datasheet	1
-----	------------------	--	---

5 Description (continued)

When the IGBT is turned off during normal operation with bipolar output supply, the output is hard clamp to V_{EE2} . If the output supply is unipolar, an active Miller clamp can be used, allowing Miller current to sink across a low impedance path preventing IGBT to be dynamically turned on during high voltage transient conditions.

When desaturation is active, a fault signal is sent across the isolation barrier pulling the \overline{FLT} output at the input side low and blocking the isolator input. The \overline{FLT} output condition is latched and can be reset through a low-active pulse at the \overline{RST} input.


When the IGBT is turned off during normal operation with bipolar output supply, the output is hard clamp to V_{EE2} . If the output supply is unipolar, an active Miller clamp can be used, allowing Miller current to sink across a low impedance path preventing IGBT to be dynamically turned on during high voltage transient conditions.

The readiness for the gate driver to be operated is under the control of two undervoltage-lockout circuits monitoring the input side and output side supplies. If either side has insufficient supply the RDY output goes low; otherwise, this output is high.

The ISO5851 is available in a 16-pin SOIC package. Device operation is specified over a temperature range from –40°C to +125°C ambient.

6 Pin Configuration and Function

Table 6-1.	Pin	Functions
------------	-----	-----------

PIN		1/0	DESCRIPTION		
NAME	NO.		DESCRIPTION		
CLAMP	7	0	Miller clamp output		
DESAT	2	I	Desaturation voltage input		
FLT	13	0	Fault output, low-active during DESAT condition		
GND1	9, 16	—	Input ground		
GND2	3	_	Gate drive common. Connect to IGBT emitter.		
IN+	10	I	Non-inverting gate drive voltage control input		
IN–	11	I	rting gate drive voltage control input		
NC	4	—	t connected		
OUT	6	0	ate drive voltage output		
RDY	12	0	Power-good output, active high when both supplies are good.		
RST	14	I	Reset input, apply a low pulse to reset fault latch.		
V _{CC1}	15	_	ositive input supply (3 V to 5.5 V)		
V _{CC2}	C2 5 — Most positive output supply potential.		Most positive output supply potential.		
V _{EE2} 1, 8		—	Output negative supply. Connect to GND2 for Unipolar supply application.		

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC1}	Supply voltage input side		GND1 – 0.3	6	V
V _{CC2}	Positive supply voltage output side	V _{CC2} – GND2	-0.3	35	V
V _{EE2}	Negative supply voltage output side	V _{EE2} – GND2	-17.5	0.3	V
V _(SUP2)	Total supply output voltage	V _{CC2} – V _{EE2}	-0.3	35	V
V _{OUT}	Gate driver output voltage		V _{EE2} - 0.3	V _{CC2} + 0.3	V
I _(OUTH)	Gate driver high output current	Gate driver high output current max pulse width = 10 μ s, max duty cycle = 0.2%		2.7	A
I _(OUTL)	Gate driver low output current	Gate driver high output current max pulse width = 10 μ s, max duty cycle = 0.2%		5.5	А
V _(LIP)	Voltage at IN+, IN–, FLT, RDY, RST	- <u> </u>	GND1 – 0.3	V _{CC1} + 0.3	V
I _(LOP)	Output current of FLT, RDY			10	mA
V _(DESAT)	Voltage at DESAT		GND2 – 0.3	V _{CC2} + 0.3	V
V _(CLAMP)	Clamp voltage		V _{EE2} - 0.3	V _{CC2} + 0.3	V
TJ	Junction temperature		-40	150	°C
T _{STG}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

		VALUE	UNIT
V	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±4000	V
V _{(E}	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1500	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{CC1}	Supply voltage input side	3		5.5	V
V _{CC2}	Positive supply voltage output side (V _{CC2} – GND2)	15		30	V
V _{EE2}	Negative supply voltage output side (V _{EE2} – GND2)	-15		0	V
V _(SUP2)	Total supply voltage output side (V _{CC2} – V _{EE2})	15		30	V
V _{IH}	High-level input voltage (IN+, IN–, RST)	0.7 × V _{CC1}		V _{CC1}	V
V _{IL}	Low-level input voltage (IN+, IN–, RST)	0		0.3 × V _{CC1}	V
t _{UI}	Pulse width at IN+, IN– for full output (C _{LOAD} = 1 nF)	40			ns
t _{RST}	Pulse width at RST for resetting fault latch	800			ns
T _A	Ambient temperature	-40	25	125	°C

7.4 Thermal Information

		ISO5851	
	THERMAL METRIC ⁽¹⁾	DW (SOIC)	UNIT
		16 PINS	
$R_{\theta J A}$	Junction-to-ambient thermal resistance	99.6	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	48.5	°C/W
$R_{\theta J B}$	Junction-to-board thermal resistance	56.5	°C/W

7.4 Thermal Information (continued)

		ISO5851	
	THERMAL METRIC ⁽¹⁾	DW (SOIC)	UNIT
		16 PINS	
ΨJT	Junction-to-top characterization parameter	29.2	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	56.5	°C/W

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics (SPRA953).

7.5 Power Ratings

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
PD	Maximum power dissipation ⁽¹⁾				1255	mW
P _{ID}	Maximum input power dissipation				175	mW
P _{OD}	Maximum output power dissipation				1080	mW

(1) Full chip power dissipation is de-rated 10.04 mW/°C beyond 25°C ambient temperature. At 125°C ambient temperature, a maximum of 251 mW total power dissipation is allowed. Power dissipation can be optimized depending on ambient temperature and board design, while ensuring that Junction temperature does not exceed 150°C.

7.6 Insulation Characteristics

	PARAMETER	TEST CONDITIONS	SPECIFICATION	UNIT
CLR	External clearance ⁽¹⁾	Shortest terminal-to-terminal distance through air	8	mm
CPG	External creepage ⁽¹⁾	Shortest terminal-to-terminal distance across the package surface	8	mm
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	21	μm
СТІ	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112; UL 746A	>600	V
	Material group	According to IEC 60664-1	I	
		Rated mains voltage ≤ 600 V _{RMS}	I-IV	
	Overvoltage category per IEC 60664-1	Rated mains voltage ≤ 1000 V _{RMS}	I-III	
DIN V V	'DE V 0884-10 (VDE V 0884-10):2006-12 ⁽²⁾			
V _{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	2121	V _{PK}
V _{IOWM}	Maximum isolation working voltage	AC voltage. Time dependent dielectric breakdown (TDDB) Test, see Figure 7-1	1500	V _{RMS}
101111		DC voltage	2121	V _{DC}
V _{IOTM}	Maximum Transient isolation voltage	V _{TEST} = V _{IOTM} , t = 60 sec (qualification), t = 1 sec (100% production)	8000	
V _{IOSM}	Maximum surge isolation voltage ⁽³⁾	Test method per IEC 60065, 1.2/50 μ s waveform, V _{TEST} = 1.6 x V _{IOSM} = 12800 V _{PK} (qualification)	8000	V _{PK}
	Apparent charge ⁽⁴⁾	$ \begin{array}{l} \mbox{Method a: After I/O safety test subgroup 2/3,} \\ V_{ini} = V_{IOTM}, t_{ini} = 60 s; \\ V_{pd(m)} = 1.2 \times V_{IORM} = 2545 \ V_{PK}, \\ t_m = 10 \ s \end{array} $	≤5	
q _{pd}		Method a: After environmental tests subgroup 1, $V_{ini} = V_{IOTM}$, $t_{ini} = 60 s$; $V_{pd(m)} = 1.6 \times V_{IORM} = 3394 V_{PK}$, $t_m = 10 s$	≤5	рС
		Method b1: At routine test (100% production) and preconditioning (type test) $V_{ini} = V_{IOTM}, t_{ini} = 60 s; V_{pd(m)} = 1.875 \times V_{IORM} = 3977 V_{PK}, t_m = 10 s$	≤5	
		V _{IO} = 500 V at T _S	> 10 ⁹	Ω
R _{IO}	Isolation resistance, input to output ⁽⁵⁾	istance, input to output ⁽⁵⁾ $V_{IO} = 500 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C}$		Ω
		$V_{IO} = 500 \text{ V}, \ 100^{\circ}\text{C} \le \text{T}_{A} \le 125^{\circ}\text{C}$	>10 ¹¹	Ω
CIO	Barrier capacitance, input to output ⁽⁵⁾	V _{IO} = 0.4 x sin (2πft), f = 1 MHz	~1	pF
	Pollution degree		2	
	Climatic category		40/125/21	

7.6 Insulation Characteristics (continued)

PARAMETER	TEST CONDITIONS	SPECIFICATION	UNIT
V _{ISO} Withstanding Isolation voltage		5700	V _{RMS}

(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.

- (2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- (3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.
- (4) Apparent charge is electrical discharge caused by a partial discharge (pd).
- (5) All pins on each side of the barrier tied together creating a two-terminal device.
- (6) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.

7.7 Safety-Related Certifications

VDE	CSA	UL	CQC	TUV
Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 and DIN EN 60950-1 (VDE 0805 Teil 1):2011-01	Certified according to CSA Component Acceptance Notice 5A, IEC 60950-1, and IEC 60601-1	Certified according to UL 1577 Component Recognition Program	Certified according to GB 4943.1-2011	Certified according to EN 61010-1:2010 (3rd Ed) and EN 60950-1:2006/A11:2009/ A1:2010/ A12:2011/A2:2013
Reinforced Insulation Maximum Transient isolation voltage, 8000 V_{PK} ; Maximum surge isolation voltage, 8000 V_{PK} , Maximum repetitive peak isolation voltage, 2121 V_{PK}	Isolation Rating of 5700 V _{RMS} ; Reinforced insulation per CSA 60950-1-07+A1+A2 and IEC 60950-1 (2nd Ed.), 800 V _{RMS} max working voltage (pollution degree 2, material group I) ; 2 MOPP (Means of Patient Protection) per CSA 60601-1:14 and IEC 60601-1 Ed. 3.1, 250 V _{RMS} (354 V _{PK}) max working voltage	Single Protection, 5700 V _{RMS}	Reinforced Insulation, Altitude ≤ 5000m, Tropical climate, 400 V _{RMS} maximum working voltage	5700 V _{RMS} Reinforced insulation per EN 61010-1:2010 (3rd Ed) up to working voltage of 600 V _{RMS} 5700 V _{RMS} Reinforced insulation per EN 60950-1:2006/A11:2009/ A1:2010/ A12:2011/A2:2013 up to working voltage of 800 V _{RMS}
Certification completed Certificate number: 40040142	Certification completed Master contract number: 220991	Certification completed File number: E181974	Certification completed Certificate number: CQC16001141761 Additional manufacturing certification pending	Certification completed Client ID number: 77311

7.8 Safety Limiting Values

Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier, potentially leading to secondary system failures.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		R _{0JA} = 99.6°C/W, V _I = 3.6 V, T _J = 150°C, T _A = 25°C			349	
	Safety input, output or supply	$R_{\theta JA} = 99.6^{\circ}C/W, V_{I} = 5.5 V, T_{J} = 150^{\circ}C, T_{A} = 25^{\circ}C$			228	mA
	current	R _{0JA} = 99.6°C/W, V _I = 15 V, T _J = 150°C, T _A = 25°C			84	ША
		R _{0JA} = 99.6°C/W, V _I = 30 V, T _J = 150°C, T _A = 25°C			42	
Ps	Safety input, output, or total power	R _{θJA} = 99.6°C/W, T _J = 150°C, T _A = 25°C			1255 <mark>(1)</mark>	mW
Τs	Maximum ambient safety temperature				150	°C

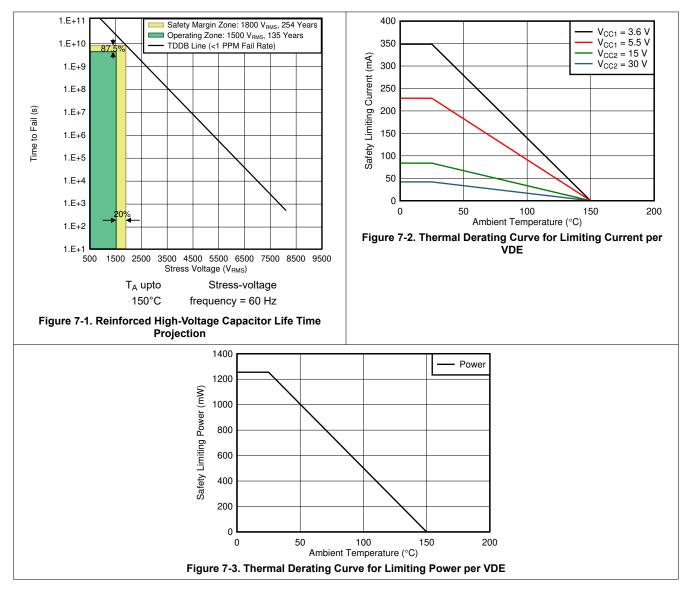
(1) Input, output, or the sum of input and output power should not exceed this value

The safety-limiting constraint is the maximum junction temperature specified in the data sheet. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the *Section 7.4* table is that of a device installed on a high-K test board for leaded surface-mount packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

7.9 Electrical Characteristics

Over recommended operating conditions unless otherwise noted. All typical values are at $T_A = 25^{\circ}C$, $V_{CC1} = 5 V$, $V_{CC2} - GND2 = 15 V$, $GND2 - V_{FE2} = 8 V$

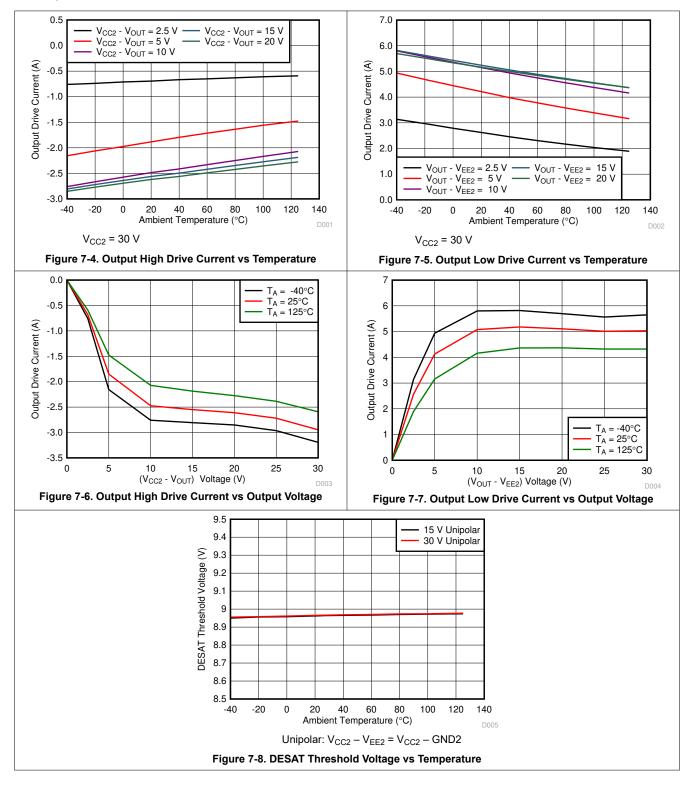
Virtum, RST) Positive-going input threshold voltage (IN+, NN-, RST) 0.7 × V _{CC1} V Virtum, RST) Negative-going input threshold voltage (IN+, NN-, RST) 0.3 × V _{CC1} V Virtum, RST) Input typesteresis voltage (IN+, IN-, RST) 0.15 × V _{CC1} V Virtum, RST) Input typesteresis voltage (IN+, IN-, RST) 0.15 × V _{CC1} V Virtum, RST) Input typesteresis voltage (IN+, IN-, RST) 0.15 × V _{CC1} V Virtum, RST, Input typesteresis voltage (IN+, IN-, RST) 0.15 × V _{CC1} V Virtum, RST, Input typesteresis voltage (IN+, IN-, RST) Input typesteresis voltage (IN+, IN-, RST) V Virtum, RST, Input typesteresis voltage (IN+, RST) IN = GND1, RST = GND1 -100 µA Voluc Low-level output voltage at FLT, RDY V _(RDY) = GND1, V _(RLT) = GND1 0.02 V V(outrp) Active output voltage IouT = 20 mA V _{CC2} - 0.5 V _{CC2} - 0.24 V V(outrp) Low-level output voltage IouT = 20 mA V _{EE2} + 13 V _{EE2} + 50 mV Iquit_1) Low-level output peak current IN+ = high, IN- = Iow, I		PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Virre, Mono Input side (Vice, - OND1) Image: Constraint of the second voltage (Mice, - OND1) Virre, Mono Image: Constraint of the second voltage (Mice, - OND1) Virre, Mono Image: Constraint of the second voltage (Mice, - OND2) Virre, Mono Image: Constraint of the second voltage (Mice, - OND2) Virre, Mono Image: Constraint of the second voltage (Mice, - OND2) Virre, Mono Image: Constraint of the second voltage (Mice, - OND2) Virre, Mono Image: Constraint of the second voltage (Mice, - OND2) Virre, Mono Image: Constraint of the second voltage (Mice, - OND2) Virre, Mono Image: Constraint of the second voltage (Mice, - OND2) Virre, Mice, - OND2 Image: Constraint of the second voltage (Mice, - OND2) Virre, Mice, - OND2 Image: Constraint of the second voltage (Mice, - OND2) Virre, Mice, - OND2 Image: Constraint of the second voltage (Mice, - OND2) Virre, Mice, - OND2 Image: Constraint of the second voltage (Mice, - OND2) Virre, Mice, - OND2 Virre,	VOLTAGE SU	IPPLY					
Virtuktion Instruction Instruction Instruction Virtuktion Virtuktion State 0.24 Virtuktion 0.24 Virtuktion Virtuktion Positive-going UVC0 Histories voltage (Vr_r_ Vr_r_) input Instruction 0.24 Virtuktion Virtuktion Positive-going UVC0 Histories voltage (Vr_r_ Vr_r) Instruction Instruction Virtuktion Virtuktion UVC02 Hysteresis voltage (Vr_r_ Vr_r) Instruction Instruction Virtuktion Instruction UVC02 Hysteresis voltage (Vr_r_ Vr_r) Instruction Instruction Virtuktion Instruction UVC02 Hysteresis voltage (IN+, RST) Instruction Instruction Virtuktion Instruction Positive-going input threshold voltage (IN+, RST) Instruction Instruction Virtuktion Virtuktion Regative-going input threshold voltage (IN+, RST) Instruction Instruction Virtuktion Virtuktion High-level input leakage at (IN+, RST) Instruction Instruction Virtuktion Virtuktion Positive-going input threshold voltage Instruction Instruction	VIT+(UVLO1)					2.25	V
VHR80XC00 aide U.4.4 V VIRT_SUADOP output side U.2.4 12 13 V VIRT_SUADOP output side V.2.2 HS V	V _{IT-(UVLO1)}			1.7			V
Virt.(ULC2) output side (V _{CC2} = CMD2) C II V VIrt.(ULC2) Noghte-going VLC2 9.5 11 V VIV.02 / Hysteresis voltage (V _{Tr.} = V _{Tr.}) 1 V V Vol.02 / Hysteresis voltage (V _{Tr.} = V _{Tr.}) 1 V V Vol.02 / Hysteresis voltage (V _{Tr.} = V _{Tr.}) 1 V V Vol.02 / Hysteresis voltage (V _{Tr.} = V _{Tr.}) 3.6 6 mA LOGIC 10 Output side 3.6 6 mA LOGIC 10 Negative-going input threshold voltage (IN+. 0.3 × V _{CC1} V V Vring(R, RST) Negative-going input threshold voltage (IN+. 0.15 × V _{CC1} V V Virig(R, RST) Input Hysteresis voltage (IN+. RST) IN - GND1, RST = GND1 -100 µA Inp. Pullep current of FLT, RDY V _{RC1} , RST Negative-going input Hysteresis voltage IQUT = 200 mA, V _{CC2} = open 2 V V(QUTH) High-level output voltage at (IN RST) IN - = GND1, V _{RL1} , G GND1 -002 V V(QUTH) High-level output voltage <td>V_{HYS(UVLO1)}</td> <td></td> <td></td> <td></td> <td>0.24</td> <td></td> <td>V</td>	V _{HYS(UVLO1)}				0.24		V
Virt(WD2) output side 0.3.3 11 V Virt(WD2) Output side 1 V Imput supply quiescent current 2.8 4.5 mA Imput supply quiescent current 3.6 6 mA IncGic I/O Output supply quiescent current 0.7 × V _{CC1} V Virt(NR, RST) Positive-going input threshold voltage (IN+, INF, RST) 0.3 × V _{CC1} V Virt(NR, RST) Negative-going input threshold voltage (IN+, INF, RST) 0.15 × V _{CC1} V Virt(NR, RST) Negative-going input threshold voltage (IN+, INF, RST) 0.15 × V _{CC1} V Virt(NR, RST) Negative-going input threshold voltage (IN+, INF, RST) INF = V _{CC1} 100 µA Iu_ Low-level input textage at (IN+) INF = V _{CC1} 100 µA Iu_ Current of FUT, RDY V _[RUT,T] = GND1, V _[RUT,T] = GND1 -100 µA Iu_ Current of FUT, RDY V _[RUT,T] = SOMA V _{CC2} - 0.5 V _{CC2} - 0.2 V V(current) Active output put dotage Iou_T = 20 mA V _{EE2} + 13 V _{EE2} +	V _{IT+(UVLO2)}				12	13	V
VHYSQUXQ2 output side Lith V Id_1 Input supply quiescent current 2.8 4.5 mA LGG2 Output supply quiescent current 3.6 6 mA LGG1 VIn+(R, RST) Positive-going input threshold voltage (IN+, IN+, RST) 0.3 × V _{CC1} V VIn+(R, RST) Input supply quiescent current 0.3 × V _{CC1} V V Vin+(R, RST) Input supply quiescent current 0.3 × V _{CC1} V V Vin+(R, RST) Input supply quiescent current 0.15 × V _{CC1} V V Vin+(R, RST) Input supply quiescent current Inv = GND1, RST GND1 -100 µA Input guiescent current Inv = GND1, RST GND1 -100 µA Volu- Low-level output voltage at FLT, RDY Ign= 3 FA 0.2 V V(gurmp) Active output puldown voltage Iour = 20 mA V _{CUC2} - 0.5 V _{CUC2} - 0.24 V V(gurmp) Active output puldown voltage Iour = 20 mA V _{CUC2} - 0.5 V _{CUC2} - 0.24 V V(gurm) High-	V _{IT-(UVLO2)}			9.5	11		V
Couput supply quiescent current 3.6 6 mA LOGC UO VIT+(nk, RST) Positive-going input threshold voltage (IN+, IN-, RST) 0.7 × V _{CC1} V Vmm(nk, RST) Negative-going input threshold voltage (IN+, RST) 0.3 × V _{CC1} V Vmm(nk, RST) Negative-going input threshold voltage (IN+, RST) 0.3 × V _{CC1} V Vmm(nk, RST) Input theshade voltage (IN+, RST) 0.15 × V _{CC1} V Vmm(nk, RST) Input theshade voltage (IN+, RST) 0.15 × V _{CC1} V Vmm(nk, RST) Input theshade voltage (IN+, RST) Inmut theshade voltage (IN+, RST) V Vmm(nk, RST) Input theshade at (IN+) IN + = V _{CC1} 0.00 µA Vmm(nk, RST) Low-level input theshade at (IN+) IN + = V _{CC1} 0.00 µA Vmm(nk, RST) Low-level input theshade at (IN+) IN + = V _{CC1} 0.01 µA Volut Low-level output voltage Input + = 200 mA V _{CC2} - 0.5 V _{CC2} - 0.24 V V(num) High-level output voltage Input + = Inpi, IN- = Iow, Input + Input Input + Iom Input + Iom Input Input Input + Iom Input + Iom Input + Iom Input + Iom	V _{HYS(UVLO2)}				1		V
Logic I/O Desitive-going input threshold voltage (IN+, IN+, RST) 0.7 × V _{CC1} V VIrr(IN, RST) Negative-going input threshold voltage (IN+, IN+, RST) 0.3 × V _{CC1} V VIrr(IN, RST) Negative-going input threshold voltage (IN+, IN+, RST) 0.15 × V _{CC1} V VIrr(IN, RST) Input hysteresis voltage (IN+, IN-, RST) 0.15 × V _{CC1} V Int High-level input leakage at (IN+, IN-, RST) IN- = GND1, RST = GND1 -100 µA Int_ Low-level output leakage at (IN-, RST) IN = GND1, RST = GND1 -100 µA Vot Low-level output voltage at FLT, RDY V _(RCY) = GND1 0.02 V GATE DRIVER STAGE V(OUTPD) Active output voltage IoUT = 200 mA, V _{CC2} = open 0.2 V V(OUTPD) Active output voltage IoUT = 200 mA, V _{CC2} = open 0.2 V V(OUTD) Low-level output voltage IoUT = 200 mA, V _{CC2} = open V _{CC2} - 0.5 V _{CC2} -	I _{Q1}	Input supply quiescent current			2.8	4.5	mA
Positive-going input threshold voltage (IN+, IN-, RST)0.7 × V _{CC1} V $V_{Trr(HN, RST)}$ Negative-going input threshold voltage (IN+, IN-, RST)0.3 × V _{CC1} V $V_{H_{1}(N, RST)}$ Input tysteresis voltage (IN+, IN-, RST)0.15 × V _{CC1} V $V_{WS(N, RST)}$ Input tysteresis voltage (IN+, IN-, RST)0.15 × V _{CC1} V $V_{H_{1}}$ High-level input leakage at (IN+, IN-, RST)IN- = GND1, RST = GND1-100 μA $I_{P_{1}}$ Pull-up current of FLT, RDY $V_{(ROY)}$ = GND1, $V_{(FLT)}$ = GND1100 μA $V_{Q_{1}}$ Low-level output voltage at FLT, RDY $V_{(ROY)}$ = GND1, $V_{(FLT)}$ = GND10.2V $V_{(QUTPO)}$ Active output voltage I_{QUT} = 20 mA, V_{CC2} = open2V $V_{(QUTPL)}$ Low-level output voltage I_{QUT} = 20 mA V_{CC2} = 0.5 V_{CC2} = 0.24V $V_{(QUTD_1)}$ Low-level output voltage I_{QUT} = 20 mA V_{CC2} = 0.5 V_{CC2} = 0.24V $V_{(QUTL)}$ Low-level output puldown voltage I_{QUT} = 20 mA V_{CC2} = 0.5 V_{CC2} = 0.24V $V_{(QUTL)}$ Low-level output peak current V_{NT} + Sigh, IN- = Iow, V_{CC2} = 0.5 V_{CC2} = 0.24V $V_{(QUTL)}$ Low-level clamp voltage $I_{(CLF)}$ = 20 mA V_{EC2} + 0.015 V_{EC2} + 5.0 $V_{(QUTL)}$ Low-level clamp voltage $I_{(CLF)}$ = 20 mA V_{EC2} + 0.015 V_{EC2} + 0.08V $I_{(QUT)}$ Low-level clamp voltage $I_{(CLF)}$ = 20 mA V_{EC2} + 0.015 $V_$	I _{Q2}	Output supply quiescent current			3.6	6	mA
Virtue, RET) N=, RST) C 0.7 × Vcc1 V Virtue, RET) Negative-going input threshold voltage (IN+, N=, RST) 0.3 × Vcc1 V Virtue, RET) Input hysteresis voltage (IN+, IN-, RST) 0.15 × Vcc1 V Virtue, RET) Input hysteresis voltage (IN+, IN-, RST) 0.15 × Vcc1 V Virtue, RET) Input hysteresis voltage (IN+, IN-, RST) 100 µA Int Low-level input leakage at (IN+) IN + = GND1, RST = GND1 -100 µA Voluc Current of FLT, RDY V(RDY) = SND1, V(FLT) = GND1 100 µA Voluc Low-level output voltage at FLT, RDY I _{VRLT} = 20 mA, Vcc2 = open 0.2 V V(GUTH) High-level output voltage I _{OUT} = 20 mA, Vcc2 = 0.5 Vcc2 - 0.24 V V(GUTH) High-level output voltage I _{OUT} = 20 mA Vcc2 - 0.5 Vcc2 - 0.24 V V(GUTH) High-level output voltage I _{OUT} = 20 mA Vcc2 - 0.5 Vcc2 + 0.5 A I(OUTH) High-level output peak current IN + = high, IN - = low, VouT = Vcc2 + 15 V 1.6 2.5 A	LOGIC I/O						
Vhr(mk, RST) IN-, RST) U.S. X V _{CC1} V Virvs(m, RST) input hysteresis voltage (IN+, IN-, RST) 0.15 × V _{CC1} V Iµ High-level input leakage at (IN+) IN+ = V _{CC1} 100 µA Iµ Low-level input leakage at (IN-, RST) IN- = GND1, RST = GND1 -100 µA Iµ Low-level output voltage at FLT, RDY V _(RDY) = GND1, V _(FLT) = GND1 100 µA Vou Low-level output voltage at FLT, RDY V _(RDY) = GND1, V _(FLT) = GND1 0.2 V GATE DRIVER STAGE Vicur = 200 mA, V _{CC2} = open 0.2 V V(oUTH) High-level output voltage Iour = 200 mA, V _{CC2} = open 2 V V(oUTL) Low-level output voltage Iour = 200 mA V _{EE2} + 13 V _{EE2} + 50 MV I(oUTL) Low-level output voltage Iour = 20 mA V _{EE2} + 13 V _{EE2} + 50 MV I(oUTL) Low-level output peak current IN+ = high, IN- = Iow, V _{OUT} = V _{EE2} + 13 V _{EE2} + 0.015 V _{EE2} + 50 MV I(oUTL) Low-level clamp voltage I(OLP) = 20 mA V	VIT+(IN, RST)					0.7 × V _{CC1}	V
InterventionInterventionIN+ = V _{CC1} IOOµAIntLow-level input leakage at (IN+)IN = GND1, RST = GND1-100µAIntPull-up current of FLT, RDYV(RDY) = GND1, V(FLT) = GND1100µAVotLow-level output voltage at FLT, RDYV(RDY) = GND1, V(FLT) = GND1100µAVotCarte BarlingIntervention0.2VGATE DRIVER STAGEVotor0.2VGUITEDActive output pulldown voltageIour = 200 mA, V _{CC2} = open2VV(OUTH)High-level output voltageIour = 200 mA, V _{CC2} = open2VV(OUTH)High-level output voltageIour = 200 mA, V _{CC2} = open2VV(OUTH)High-level output voltageIour = 20 mAV _{CC2} - 0.5V _{CC2} - 0.24VV(OUTH)Low-level output voltageIour = 20 mAV _{EE2} + 13V _{EE2} + 50mVI(ouTH)High-level output peak currentIN+ = high, IN- = low, V _{OUT} = V _{CC2} - 15 V1.52.5AI(ouTH)Low-level output peak currentIN+ = high, IN- = low, IN- = high, V _{OUT} = V _{EE2} + 0.015V _{EE2} + 0.06VV(CLP)Low-level clamp voltageI(CLP) = 20 mAV _{EE2} + 0.015V _{EE2} + 0.06VV(CLP)Low-level clamp voltageI(CLP) = 20 mAV _{EE2} + 0.015V _{EE2} + 0.06VV(CLP)Low-level clamp voltageI(LCP) = 20 mAV _{EE2} + 0.015V _{EE2} + 0.06VV(CLP)Low-level clamp voltageIIN+ = high, IN- = low, IcLP = 10 µS, IC	V _{IT-(IN, RST)}			0.3 × V _{CC1}			V
In 	V _{HYS(IN, RST)}	Input hysteresis voltage (IN+, IN–, RST)			0.15 × V _{CC1}		V
Interpret Interpret Pull-up current of FLT, RDY $V_{(RDY)} = GND1, V_{(FLT)} = GND1$ 100µA V_{OL} Low-level output voltage at FLT, RDY $I_{(FLT)} = 5 \text{ mA}$ 0.2V GATE DRIVER STAGE $V_{(OUTPO)}$ Active output pulldown voltage $I_{OUT} = 200 \text{ mA}, V_{CC2} = open$ 2V $V_{(OUTPO)}$ Active output voltage $I_{OUT} = 200 \text{ mA}, V_{CC2} = open$ 2V $V_{(OUTh)}$ Low-level output voltage $I_{OUT} = 20 \text{ mA}$ $V_{CC2} - 0.5$ $V_{CC2} - 0.24$ V $V_{(OUTh)}$ Low-level output voltage $I_{OUT} = 20 \text{ mA}$ $V_{CC2} - 0.5$ $V_{EE2} + 13$ $V_{EE2} + 50$ $I_{(OUTh)}$ High-level output peak current $N^* = nigh, IN = now, V_{OUT} = V_{CC2} - 15 V$ 1.52.5A $I_{(OUTh)}$ Low-level output peak current $N^* = nigh, N = nigh, V_{OUT} = V_{EE2} + 15 V$ 3.45A ACTIVE MILLER CLAMP VV(CLP) = $V_{CE2} + 15 V$ 1.62.5A $V_{(CLP)}$ Low-level clamp voltage $I_{(CLP)} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ V $I_{(CLP)}$ Low-level clamp voltage $I_{(CLP)} = V_{EE2} + 2.5 V$ 1.62.5A $V_{(CLP, OUT)}$ Clamping voltage $IN^* = nigh, IN^- = low, t_{CLP} = 10 \mu s, I(OUTh) = 500 \text{ mA}$ 0.81.3V $V_{(CLP, OUT)}$ C_{C2} $IN^* = nigh, IN^- = low, t_{CLP} = 10 \mu s, I(OUTh) = 500 \text{ mA}$ 0.71.1V DESAT PROTECTION V $I_{(CLP)} = 500 \text{ mA}$ 0.71.1V	I _{IH}	High-level input leakage at (IN+)	IN+ = V _{CC1}		100		μA
VolLow-level output voltage at FLT, RDY $I_{(FLT)} = 5 \text{ mA}$ 0.2VGATE DRIVER STAGEV(oUTPD)Active output puldown voltage $I_{(UT} = 200 \text{ mA}, V_{CC2} = open$ 2VV(oUTPD)Active output voltage $I_{0UT} = 200 \text{ mA}, V_{CC2} = open$ V(cC2 = 0.5V(cC2 = 0.24VV(oUTL)Low-level output voltage $I_{0UT} = 20 \text{ mA}$ V(cC2 = 0.5V(cC2 = 0.24VV(oUTL)Low-level output voltage $I_{0UT} = 20 \text{ mA}$ V(cC2 = 0.5V(cC2 = 0.24VI(oUTH)High-level output peak currentIN+ = high, IN-= low, V_{0UT} = V_{CC2} = 15 V1.52.5AI(oUTH)Low-level output peak currentIN+ = high, IN-= low, V_{0UT} = V_{CC2} = 15 V3.45AI(oUTL)Low-level output peak currentIN+ = high, IN-= low, V_{0UT} = V_{EE2} + 13 VVEE2 + 0.015VEE2 + 0.08VI(oUTL)Low-level clamp voltage $I_{(CLP)} = 20 \text{ mA}$ VEE2 + 0.015VEE2 + 0.08VV(CLP)Low-level clamp currentV(cLP) = 20 mAVEE2 + 2.5 V1.62.5AV(CLP)Clamping voltageIN+ = high, IN- = low, t_{CLP} = 10 \mu s, (V_{CUT} - V_{CC2})0.81.3VV(CLP_CLAMP)Clamping voltageIN+ = high, IN- = low, t_{CLP} = 10 \mu s, (V_{CLP} - 500 mA0.31.3VV(CLP_CLAMP)Clamping voltage at CLAMPIN+ = High, IN- = low, t_{CLP} = 10 \mu s, (U_{CLP} - CLAMP)0.81.3VV(CLP_CLAMP)Clamping voltage at CLAMPIN+ = High, IN- = Low,	IIL	Low-level input leakage at (IN–, RST)	IN- = GND1, RST = GND1		-100		μA
VOLLow-level output voltage at FLT, RDY $I_{FLT} = 5 \text{ mA}$ 0.2VGATE DRIVER STAGEV(CUTPD)Active output pulldown voltage $I_{OUT} = 200 \text{ mA}, V_{CC2} = open$ 2VV(OUTPD)Active output voltage $I_{OUT} = 20 \text{ mA}$ $V_{CC2} - 0.5$ $V_{CC2} - 0.24$ VV(OUTL)Low-level output voltage $I_{OUT} = 20 \text{ mA}$ $V_{CC2} - 0.5$ $V_{CC2} - 0.24$ VV(OUTL)Low-level output voltage $I_{OUT} = 20 \text{ mA}$ $V_{CC2} - 0.5$ $V_{CC2} - 0.24$ VI(OUTL)Low-level output peak current $IN = high, IN = how, V_{OUT} = V_{CC2} + 15 V$ 1.52.5AI(OUTL)Low-level output peak current $IN = high, IN = high, V_{OUT} = V_{EC2} + 15 V$ 3.45AACTIVE MILLER CLAMPV(CLP)Low-level clamp voltage $I_{(CLP)} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ VV(CLP)Low-level clamp voltage $I_{(CLP)} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ VU(CLP)Low-level clamp outrage $I_{(CLP)} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ VU(CLP)Low-level clamp outrage $I_{(CLP)} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ VU(CLP)Low-level clamp outrage $I_{(CLP)} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ VU(CLP)Clamp intreshold voltage $I_{(CLP)} = 500 \text{ mA}$ $I.6$ 2.5 AV(CLP_OUT)Clamping voltage $IN = high, IN = low, t_{CLP} = 10 \mu s, t_{(CLP)} = 500 \text{ mA}$ </td <td>I_{PU}</td> <td>Pull-up current of FLT, RDY</td> <td>V_(RDY) = GND1, V_(FLT) = GND1</td> <td></td> <td>100</td> <td></td> <td>μA</td>	I _{PU}	Pull-up current of FLT, RDY	V _(RDY) = GND1, V _(FLT) = GND1		100		μA
GATE DRIVER STAGEV(OUTPD)Active output pulldown voltage $I_{OUT} = 200 \text{ mA}, V_{CC2} = open$ 2VV(OUTH)High-level output voltage $I_{OUT} = -20 \text{ mA}$ $V_{CC2} - 0.5$ $V_{CC2} - 0.24$ VV(OUTL)Low-level output voltage $I_{OUT} = 20 \text{ mA}$ $V_{CC2} - 0.5$ $V_{CC2} - 0.24$ VI(OUTH)High-level output voltage $I_{OUT} = 20 \text{ mA}$ $V_{EE2} + 13$ $V_{EE2} + 50$ mVI(OUTH)High-level output peak current $IN + = high, IN = how, V_{OUT} = V_{CC2} - 15 V$ 1.52.5AI(OUTL)Low-level output peak current $IN + = how, IN - = high, V_{OUT} = V_{EE2} + 15 V$ 3.45AACTIVE MILLER CLAMPV(CLP)Low-level clamp voltage $I_{(CLP)} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ VI(CLP)Low-level clamp voltage $I_{(CLP)} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ VV(CLP)Low-level clamp voltage $I_{(CLP)} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ VI(CLP)20 mA $V_{CE2} + 5V$ 1.62.5AV(CLP)Low-level clamp voltage $I_{ICLP} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ VV(CLP_OUT)Clamp ing voltage $I_{ICLP} = 500 \text{ mA}$ $I_{CLP} = 10 \mu s, I_{ICUP} = 500 \text{ mA}$ $I_{IC} = 0.8$ $I_{IC} = 0$	V _{OL}	Low-level output voltage at FLT, RDY				0.2	V
$ \begin{array}{c c c c c c c } V_{(\text{OUTH})} & \text{High-level output voltage} & I_{\text{OUT}} = -20 \text{ mA} & V_{\text{CC2}} - 0.5 & V_{\text{CC2}} - 0.24 & V \\ \hline V_{(\text{OUTL})} & \text{Low-level output voltage} & I_{\text{OUT}} = 20 \text{ mA} & V_{\text{EE2}} + 13 & V_{\text{EE2}} + 50 & \text{mV} \\ \hline I_{(\text{OUTH})} & \text{High-level output peak current} & \begin{matrix} \text{IN} + = \text{high, IN} = \text{how,} \\ V_{\text{OUT}} = V_{\text{CC2}} - 15 & V & 1.5 & 2.5 & A \\ \hline I_{(\text{OUTL})} & \text{Low-level output peak current} & \begin{matrix} \text{IN} + = \text{high, IN} = \text{how,} \\ V_{\text{OUT}} = V_{\text{CC2}} + 15 & V & 3.4 & 5 & A \\ \hline \textbf{ACTIVE MILLER CLAMP} & \\ \hline \textbf{V}_{(\text{CLP})} & \text{Low-level clamp voltage} & I_{(\text{CLP})} = 20 \text{ mA} & V_{\text{EE2}} + 0.015 & V_{\text{EE2}} + 0.08 & V \\ \hline I_{(\text{CLP})} & \text{Low-level clamp voltage} & I_{(\text{CLP})} = 20 \text{ mA} & V_{\text{EE2}} + 0.015 & V_{\text{EE2}} + 0.08 & V \\ \hline I_{(\text{CLP})} & \text{Low-level clamp outgage} & I_{(\text{CLP})} = 20 \text{ mA} & V_{\text{EE2}} + 0.015 & V_{\text{EE2}} + 0.08 & V \\ \hline I_{(\text{CLP})} & \text{Low-level clamp outgage} & I_{(\text{CLP})} = 20 \text{ mA} & V_{\text{EE2}} + 0.015 & V_{\text{EE2}} + 0.08 & V \\ \hline I_{(\text{CLP})} & \text{Low-level clamp outgage} & I_{(\text{CLP})} = 20 \text{ mA} & V_{\text{EE2}} + 0.015 & V_{\text{EE2}} + 0.08 & V \\ \hline I_{(\text{CLP})} & \text{Low-level clamp outgage} & I_{(\text{CLP})} = 20 \text{ mA} & V_{\text{EE2}} + 0.015 & V_{\text{EE2}} + 0.08 & V \\ \hline I_{(\text{CLP})} & \text{Low-level clamp outgage} & I_{(\text{CLP})} = 0 \text{ mA} & V_{\text{EE2}} + 0.015 & V_{\text{EE2}} + 0.08 & V \\ \hline I_{(\text{CLP})} & \text{Clamping voltage} & I_{(\text{N}+ = \text{high, IN}- = \text{low, } t_{\text{CLP}} = 10 \mu \text{s}, \\ \hline I_{(\text{OUTH})} & \frac{1}{500 \text{ mA}} & 0.8 & 1.3 & V \\ \hline V_{(\text{CLP}, \text{CLAMP})} & \hline V_{(\text{CLP}, \text{CLAMP}) & I_{(\text{CLP})} = 500 \text{ mA} & 1.3 & V \\ \hline V_{(\text{CLP}, \text{CLAMP}) & Clamping voltage at CLAMP & IN+ = \text{high, IN} = \text{low, } t_{\text{CLP}} = 10 \mu \text{s}, \\ I_{(\text{CLP})} & \text{Son mA} & 0.7 & 1.1 & V \\ \hline DESAT PROTECTION & & & & & & & & & & & & & & & & & & &$		R STAGE					
V(OUTH)High-level output voltage $I_{OUT} = -20 \text{ mA}$ $V_{CC2} - 0.5$ $V_{CC2} - 0.24$ VV(OUTL)Low-level output voltage $I_{OUT} = 20 \text{ mA}$ $V_{EE2} + 13$ $V_{EE2} + 50$ mV $I_{(OUTH)}$ High-level output peak current $IN = high, IN = how, V_{OUT} = V_{CC2} - 15 V$ 1.52.5A $I_{(OUTL)}$ Low-level output peak current $IN = high, IN = high, V_{OUT} = V_{EC2} + 15 V$ 3.45A ACTIVE MILLER CLAMP $V_{(CLP)}$ Low-level clamp voltage $I_{(CLP)} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ V $I_{(CLP)}$ Low-level clamp voltage $I_{(CLP)} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ V $I_{(CLP)}$ Low-level clamp voltage $I_{(CLP)} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ V $I_{(CLP)}$ Low-level clamp outgage $I_{(CLP)} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ V $I_{(CLP)}$ Low-level clamp outgage $I_{(CLP)} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ V $I_{(CLP)}$ Low-level clamp outgage $I_{(CLP)} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ V $I_{(CLP)}$ Low-level clamp outgage $I_{(CLP)} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ V $V_{(CLP, CLAMP)}$ Clamping voltage $I_{(CLP)} = 10 \text{ µs}, I_{(OUTH)} = 500 \text{ mA}$ $I_{(OUTH)} = 500 \text{ mA}$ $I_{(CLP)} = 10 \text{ µs}, I_{(CLP)} = 20 \text{ mA}$ V_{V} $V_{(CLP_{CLAMP)}$ Clamping voltage at CLAMP $I_{(N$		Active output pulldown voltage	Iоцт = 200 mA. Vcc2 = open			2	V
V(OUTL) V(OUTL)Low-level output voltageIoUT = 20 mAVEE2 + 13VEE2 + 50mVI(OUTH)High-level output peak currentIN+ = high, IN- = low, VOUT = VCC2 - 15 V1.52.5AI(OUTH)Low-level output peak currentIN+ = high, IN- = high, VOUT = VCC2 - 15 V3.45AACTIVE MILLER CLAMPIN+ = low, IN- = high, VOUT = VEE2 + 15 V3.45AACTIVE MILLER CLAMPLow-level clamp voltageI(CLP) = 20 mAVEE2 + 0.015VEE2 + 0.08VI(CLP)Low-level clamp voltageI(CLP) = 20 mAVEE2 + 0.15VEE2 + 0.08VI(CLP)Low-level clamp voltageI(CLP) = 20 mAVEE2 + 0.162.5AV(CLP)Low-level clamp voltageV(CLAMP) = VEE2 + 2.5 V1.62.5AV(CLP)Clamp threshold voltageIN+ = high, IN- = low, tCLP = 10 µS, I(OUTH) = 500 mA0.81.3VV(CLP_OUT)Clamping voltage (VOUT - VCC2)IN+ = high, IN- = low, tCLP = 10 µS, I(CLP) = 500 mA1.3VV(CLP_CLAMP)Clamping voltage to LAMPIN+ = high, IN- = low, tCLP = 10 µS, I(CLP) = 500 mA1.3VV(CLP_CLAMP)Clamping voltage to LAMPIN+ = high, IN- = low, tCLP = 10 µS, I(CLP) = 20 mA0.71.1VDESAT PROTECTIONIN+ = high, IN- = Low, I(CLP) = 20 mA0.71.1VU(CLG)Blanking capacitor charge currentV(DESAT) - GND2 = 2 V0.420.50.58mAI(DCHG)Blanking capacitor discharge currentV(DESA				Vcc2 - 0.5	$V_{CC2} = 0.24$		V
ItourialHigh-level output peak currentIN+ = high, IN- = low, $V_{OUT} = V_{CC2} - 15 \vee$ 1.52.5AItourialLow-level output peak currentIN+ = high, $V_{OUT} = V_{CC2} - 15 \vee$ 3.45AACTIVE MILLER CLAMPIN+ = low, IN- = high, $V_{OUT} = V_{EE2} + 15 \vee$ 3.45AACTIVE MILLER CLAMPLow-level clamp voltage $I_{(CLP)} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ VItourialLow-level clamp voltage $I_{(CLP)} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ VItourialLow-level clamp current $V_{(CLAMP)} = V_{EE2} + 2.5 \vee$ 1.62.5AV(CLP)Clamp threshold voltageIN+ = high, IN- = low, t_{CLP} = 10 µs, $I_{(OUTH)} = 500 \text{ mA}$ 0.81.3VV(CLP_OUT)Clamping voltage $(V_{CLP} - V_{CC2})$ IN+ = high, IN- = low, t_{CLP} = 10 µs, $I_{(OUTH)} = 500 \text{ mA}$ 0.81.3VV(CLP_CLAMP)Clamping voltage to CLAMPIN+ = high, IN- = low, t_{CLP} = 10 µs, $I_{(CLP)} = 500 \text{ mA}$ 1.3VV(CLP_CLAMP)Clamping voltage to CLAMPIN+ = high, IN- = low, t_{CLP} = 20 \text{ mA}0.71.1VDESAT PROTECTIONItcHG)Blanking capacitor charge current $V_{(DESAT)} - GND2 = 2 \vee$ 0.420.50.58mAItcHG)Blanking capacitor discharge current $V_{(DESAT)} - GND2 = 6 \vee$ 914mAV(DSTH)DESAT threshold voltage with respect to GND28.399.5V				1002 0.0		Vrra + 50	-
$I_{(OUTL)}$ Low-level output peak currentIN+ = low, IN- = high, V_{OUT} = V_{EE2} + 15 V3.45AACTIVE MILLER CLAMP $V_{(CLP)}$ Low-level clamp voltage $I_{(CLP)} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ V $I_{(CLP)}$ Low-level clamp current $V_{(CLAMP)} = V_{EE2} + 2.5 V$ 1.62.5A $V_{(CLTH)}$ Clamp threshold voltageIN+ = high, IN- = low, t_{CLP} = 10 \mu s, I_{(OUT+)} = 500 mA0.81.3V $V_{(CLP_OUT)}$ Clamping voltage $(V_{OUT} - V_{CC2})$ IN+ = high, IN- = low, t_{CLP} = 10 \mu s, I_{(OUT+)} = 500 mA0.81.3V $V_{(CLP_CLAMP)}$ Clamping voltage at CLAMPIN+ = high, IN- = low, t_{CLP} = 10 \mu s, I_{(CLP)} = 500 mA0.71.1V $V_{(CLP_CLAMP)}$ Clamping voltage at CLAMPIN+ = high, IN- = low, t_{CLP} = 10 \mu s, I_{(CLP)} = 500 mA0.71.1V $V_{(CLP_CLAMP)}$ Clamping voltage at CLAMPIN+ = high, IN- = low, t_{CLP} = 10 \mu s, I_{(CLP)} = 500 mA0.71.1V $V_{(CLP_CLAMP)}$ Clamping voltage at CLAMPIN+ = high, IN- = low, t_{CLP} = 20 mA0.71.1VDESAT PROTECTIONIV_{(DESAT)} - GND2 = 2 V0.420.50.58mA $I_{(DCHG)}$ Blanking capacitor discharge current $V_{(DESAT)} - GND2 = 6 V$ 914mA $V_{(DSTH)}$ DESAT voltage with respect to GND2, when0.40.4V		· · · · · ·	IN+ = high, IN- = low,	1.5			
$V_{(CLP)}$ Low-level clamp voltage $I_{(CLP)} = 20 \text{ mA}$ $V_{EE2} + 0.015$ $V_{EE2} + 0.08$ V $I_{(CLP)}$ Low-level clamp current $V_{(CLAMP)} = V_{EE2} + 2.5 \text{ V}$ 1.62.5A $V_{(CLTH)}$ Clamp threshold voltage1.62.12.5VSHORT CIRCUIT CLAMPING $V_{(CLP_OUT)}$ Clamping voltage $(V_{OUT} - V_{CC2})$ IN+ = high, IN- = low, $t_{CLP} = 10 \ \mu s$, $I_{(OUTH)} = 500 \ mA$ 0.81.3V $V_{(CLP_CLAMP)}$ Clamping voltage $(V_{CLP} - V_{CC2})$ IN+ = high, IN- = low, $t_{CLP} = 10 \ \mu s$, $I_{(CLP)} = 500 \ mA$ 1.3V $V_{(CLP_CLAMP)}$ Clamping voltage at CLAMPIN+ = high, IN- = low, $t_{CLP} = 10 \ \mu s$, $I_{(CLP)} = 500 \ mA$ 1.3V $V_{(CLP_CLAMP)}$ Clamping voltage at CLAMPIN+ = High, IN- = low, $I_{(CLP)} = 20 \ mA$ 0.71.1VDESAT threshold voltage current $V_{(DESAT)} - GND2 = 2 \ V$ 0.420.50.58mA $I_{(CHG)}$ Blanking capacitor charge current $V_{(DESAT)} - GND2 = 6 \ V$ 914mA $V_{(DSTH)}$ DESAT threshold voltage with respect to GND28.399.5V $V_{(DSTH)}$ DESAT voltage with respect to GND2, when0.41.4V	I _(OUTL)	Low-level output peak current	IN+ = low, IN– = high,	3.4	5		А
I_{(CLP)}Low-level clamp currentV_{(CLAMP)} = V_{EE2} + 2.5 V1.62.5AV_{(CLTH)}Clamp threshold voltage1.62.12.5VSHORT CIRCUIT CLAMPING $V_{(CLP_OUT)}$ Clamping voltage (V_OUT - V_C2)IN+ = high, IN- = low, t_{CLP} = 10 µs, I_OUTH) = 500 mA0.81.3V $V_{(CLPCLAMP)}$ Clamping voltage (V_{CLP} - V_{CC2})IN+ = high, IN- = low, t_{CLP} = 10 µs, I_{(CLP)} = 500 mA1.3V $V_{(CLPCLAMP)}$ Clamping voltage at CLAMPIN+ = high, IN- = low, t_{CLP} = 10 µs, I_{(CLP)} = 500 mA1.3V $V_{(CLPCLAMP)}$ Clamping voltage at CLAMPIN+ = high, IN- = low, I_{(CLP)} = 20 mA0.71.1VDESAT PROTECTIONIlcHG)Blanking capacitor charge current $V_{(DESAT)} - GND2 = 2 V$ 0.420.50.58mA $I_{(DCHG)}$ Blanking capacitor discharge current $V_{(DESAT)} - GND2 = 6 V$ 914mA $V_{(DSTH)}$ DESAT threshold voltage with respect to GND28.399.5V $V_{(DCN)}$ DESAT voltage with respect to GND2, when0.41V	ACTIVE MILL	ER CLAMP	l I				
I_{(CLP)}Low-level clamp currentV_{(CLAMP)} = V_{EE2} + 2.5 V1.62.5AV_{(CLTH)}Clamp threshold voltage1.62.12.5VSHORT CIRCUIT CLAMPING $V_{(CLP_OUT)}$ Clamping voltage (V_OUT - V_C2)IN+ = high, IN- = low, t_{CLP} = 10 µs, I_OUTH) = 500 mA0.81.3V $V_{(CLPCLAMP)}$ Clamping voltage (V_{CLP} - V_{CC2})IN+ = high, IN- = low, t_{CLP} = 10 µs, I_{(CLP)} = 500 mA1.3V $V_{(CLPCLAMP)}$ Clamping voltage at CLAMPIN+ = high, IN- = low, t_{CLP} = 10 µs, I_{(CLP)} = 500 mA1.3V $V_{(CLPCLAMP)}$ Clamping voltage at CLAMPIN+ = high, IN- = low, I_{(CLP)} = 20 mA0.71.1VDESAT PROTECTIONIlcHG)Blanking capacitor charge current $V_{(DESAT)} - GND2 = 2 V$ 0.420.50.58mA $I_{(DCHG)}$ Blanking capacitor discharge current $V_{(DESAT)} - GND2 = 6 V$ 914mA $V_{(DSTH)}$ DESAT threshold voltage with respect to GND28.399.5V $V_{(DCN)}$ DESAT voltage with respect to GND2, when0.41V	V _(CLP)	Low-level clamp voltage	I _(CLP) = 20 mA		V _{EE2} + 0.015	V _{EE2} + 0.08	V
V _(CLTH) Clamp threshold voltage1.62.12.5VSHORT CIRCUIT CLAMPING $V_{(CLP_OUT)}$ Clamping voltage $(V_{OUT} - V_{CC2})$ IN+ = high, IN- = low, t _{CLP} = 10 µs, $I_{(OUTH)} = 500 \text{ mA}$ 0.81.3V $V_{(CLP_CLAMP)}$ Clamping voltage $(V_{CLP} - V_{CC2})$ IN+ = high, IN- = low, t _{CLP} = 10 µs, $I_{(CLP)} = 500 \text{ mA}$ 1.3V $V_{(CLP_CLAMP)}$ Clamping voltage $(V_{CLP} - V_{CC2})$ IN+ = high, IN- = low, t _{CLP} = 10 µs, $I_{(CLP)} = 500 \text{ mA}$ 1.3V $V_{(CLP_CLAMP)}$ Clamping voltage at CLAMPIN+ = High, IN- = Low, I _(CLP) = 20 mA0.71.1VDESAT PROTECTION $I_{(CHG)}$ Blanking capacitor charge current $V_{(DESAT)} - GND2 = 2 V$ 0.420.50.58mA $I_{(DCHG)}$ Blanking capacitor discharge current $V_{(DESAT)} - GND2 = 6 V$ 914mA $V_{(DSTH)}$ DESAT threshold voltage with respect to GND28.399.5V $V_{(CR)}$ DESAT voltage with respect to GND2, when0.41V	I _(CLP)	Low-level clamp current		1.6	2.5		Α
SHORT CIRCUIT CLAMPING $V_{(CLP_OUT)}$ $\begin{pmatrix} Clamping voltage \\ (V_{OUT} - V_{CC2}) \end{pmatrix}$ $\begin{pmatrix} IN+ = high, IN- = low, t_{CLP} = 10 \ \mu s, \\ I_{(OUTH)} = 500 \ mA \end{pmatrix}$ 0.8 1.3 V $V_{(CLP_CLAMP)}$ $\begin{pmatrix} Clamping voltage \\ (V_{CLP} - V_{CC2}) \end{pmatrix}$ $IN+ = high, IN- = low, t_{CLP} = 10 \ \mu s, \\ I_{(CLP)} = 500 \ mA \end{pmatrix}$ 1.3 V $V_{(CLP_CLAMP)}$ $Clamping voltage at CLAMP$ $IN+ = high, IN- = low, t_{CLP} = 10 \ \mu s, \\ I_{(CLP)} = 500 \ mA \end{pmatrix}$ 0.7 1.1 VDESAT PROTECTION $I_{(CLP_{CLAMP)}$ $IN+ = High, IN- = Low, I_{(CLP)} = 20 \ mA \end{pmatrix}$ 0.4 0.5 0.58 mA $I_{(CHG)}$ Blanking capacitor charge current $V_{(DESAT)} - GND2 = 2 \ V$ 0.42 0.5 0.58 mA $I_{(DCHG)}$ Blanking capacitor discharge current $V_{(DESAT)} - GND2 = 6 \ V$ 9 14 mA $V_{(DSTH)}$ $DESAT$ threshold voltage with respect to $GND2$, when 0.4 0.4 1 $V_{(DESAT)}$	· · ·	Clamp threshold voltage		1.6	2.1	2.5	V
$V(CLP_OUT)$ $(V_{OUT} - V_{CC2})$ $I_{(OUTH)} = 500 \text{ mA}$ 0.6 1.3 V $V_{(CLP_CLAMP)}$ Clamping voltage $(V_{CLP} - V_{CC2})$ $IN + = high, IN - = low, t_{CLP} = 10 \ \mu s, t_{CLP} = 500 \ mA$ 1.3 V $V_{(CLP_CLAMP)}$ Clamping voltage at CLAMP $IN + = High, IN - = Low, t_{(CLP)} = 20 \ mA$ 0.7 1.1 V DESAT PROTECTION $I_{(CHG)}$ Blanking capacitor charge current $V_{(DESAT)} - GND2 = 2 \ V$ 0.42 0.5 $0.58 \ mA$ $I_{(CHG)}$ Blanking capacitor discharge current $V_{(DESAT)} - GND2 = 6 \ V$ 9 14 mA $V_{(DSTH)}$ DESAT threshold voltage with respect to GND2, when 0.4 0.4 1		UIT CLAMPING					
V(CLP_CLAMP)(V_CLP + V_{CC2})IIIIIIIV(CLP_CLAMP)Clamping voltage at CLAMPIN+ = High, IN- = Low, I0.71.1VDESAT PROTECTIONIIV(DESAT) - GND2 = 2 V0.420.50.58mAIIQCHG)Blanking capacitor charge currentV(DESAT) - GND2 = 2 V0.420.50.58mAIIQCHG)Blanking capacitor discharge currentV(DESAT) - GND2 = 6 V914mAV(DSTH)DESAT threshold voltage with respect to GND28.399.5VV(col)DESAT voltage with respect to GND2, when0.41V	V _(CLP_OUT)				0.8	1.3	V
DESAT PROTECTION $I_{(CHG)}$ Blanking capacitor charge current $V_{(DESAT)}$ - GND2 = 2 V 0.42 0.5 0.58 mA $I_{(DCHG)}$ Blanking capacitor discharge current $V_{(DESAT)}$ - GND2 = 6 V 9 14 mA $V_{(DSTH)}$ DESAT threshold voltage with respect to GND2 8.3 9 9.5 V $V_{(DSTH)}$ DESAT voltage with respect to GND2, when 0.4 1 V	V _(CLP_CLAMP)		IN+ = high, IN- = low, t_{CLP} = 10 µs, I _(CLP) = 500 mA		1.3		V
DESAT PROTECTION $I_{(CHG)}$ Blanking capacitor charge current $V_{(DESAT)}$ - GND2 = 2 V 0.42 0.5 0.58 mA $I_{(DCHG)}$ Blanking capacitor discharge current $V_{(DESAT)}$ - GND2 = 6 V 9 14 mA $V_{(DSTH)}$ DESAT threshold voltage with respect to GND2 0.4 9	V _(CLP_CLAMP)	Clamping voltage at CLAMP	IN+ = High, IN– = Low, I _(CLP) = 20 mA		0.7	1.1	V
$I_{(CHG)}$ Blanking capacitor charge current $V_{(DESAT)} - GND2 = 2 V$ 0.42 0.5 0.58 mA $I_{(DCHG)}$ Blanking capacitor discharge current $V_{(DESAT)} - GND2 = 6 V$ 9 14 mA $V_{(DSTH)}$ DESAT threshold voltage with respect to GND2 8.3 9 9.5 V $V_{(acu)}$ DESAT voltage with respect to GND2, when 0.4 0.4 1 V		ECTION					
$I_{(DCHG)}$ Blanking capacitor discharge current $V_{(DESAT)}$ - GND2 = 6 V914mA $V_{(DSTH)}$ DESAT threshold voltage with respect to GND28.399.5V $V_{(res)}$ DESAT voltage with respect to GND2, when0.41V			V _(DESAT) - GND2 = 2 V	0.42	0.5	0.58	mA
DESAT threshold voltage with respect to GND2 DESAT threshold voltage with respect to DESAT voltage with respect to GND2, when						-	
DESAT voltage with respect to GND2, when 0.4 1 V	V _(DSTH)	DESAT threshold voltage with respect to				9.5	
	V _(DSL)	DESAT voltage with respect to GND2, when		0.4		1	V

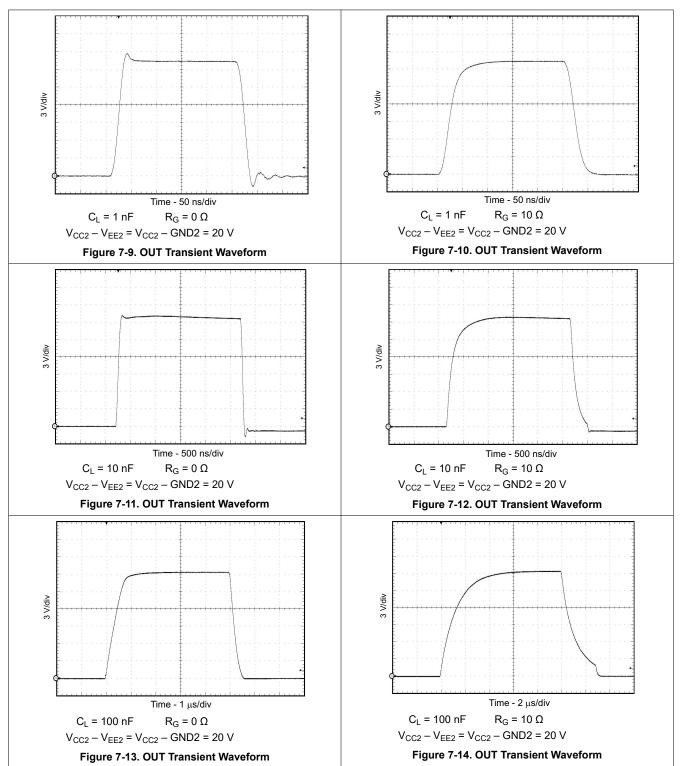

7.10 Switching Characteristics

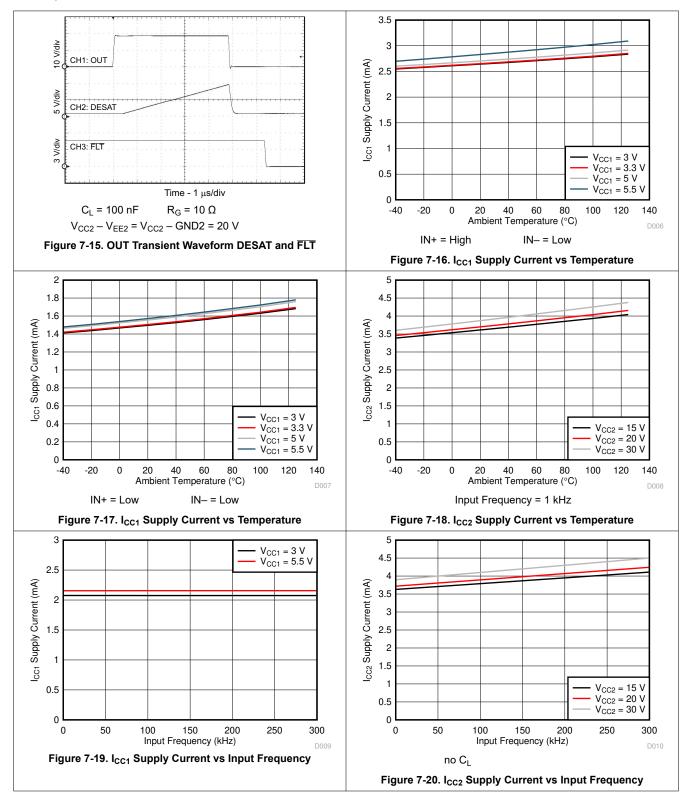
Over recommended operating conditions unless otherwise noted. All typical values are at $T_A = 25^{\circ}C$, $V_{CC1} = 5 V$, $V_{CC2} - GND2 = 15 V$, $GND2 - V_{EE2} = 8 V$

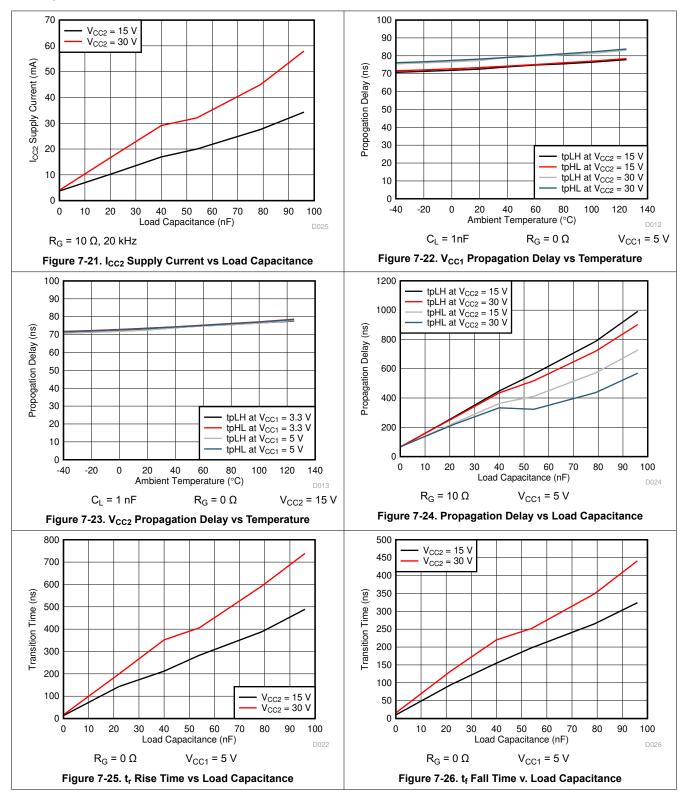
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _r	Output signal rise time		12	20	35	ns
t _f	Output signal fall time		12	20	37	ns
t _{PLH} , t _{PHL}	Propagation Delay			76	110	ns
t _{sk-p}	Pulse Skew t _{PHL} – t _{PLH}	C _{LOAD} = 1 nF, see Figure 8-1, Figure 8-2, and Figure 8-3			20	ns
t _{sk-pp}	Part-to-part skew	gui e e 2, ui e i gui e e e			30 ⁽¹⁾	ns
t _{GF}	Glitch filter on IN+, IN–, RST		20	30	40	ns
t _{DESAT (10%)}	DESAT sense to 10% OUT delay		300	415	500	ns
t _{DESAT (GF)}	DESAT glitch filter delay			330		ns
t _{DESAT} (FLT)	DESAT sense to FLT-low delay	see Figure 8-3		2000	2420	ns
t _{LEB}	Leading edge blanking time	see Figure 8-1 and Figure 8-2	330	400	500	ns
t _{GF(RSTFLT)}	Glitch filter on RST for resetting FLT		300		800	ns
CI	Input capacitance ⁽²⁾	V _I = V _{CC1} /2 + 0.4 x sin (2πft), f = 1 MHz, V _{CC1} = 5 V		2		pF
CMTI	Common-mode transient immunity	V _{CM} = 1500 V, see Figure 8-4	100	120		kV/μs

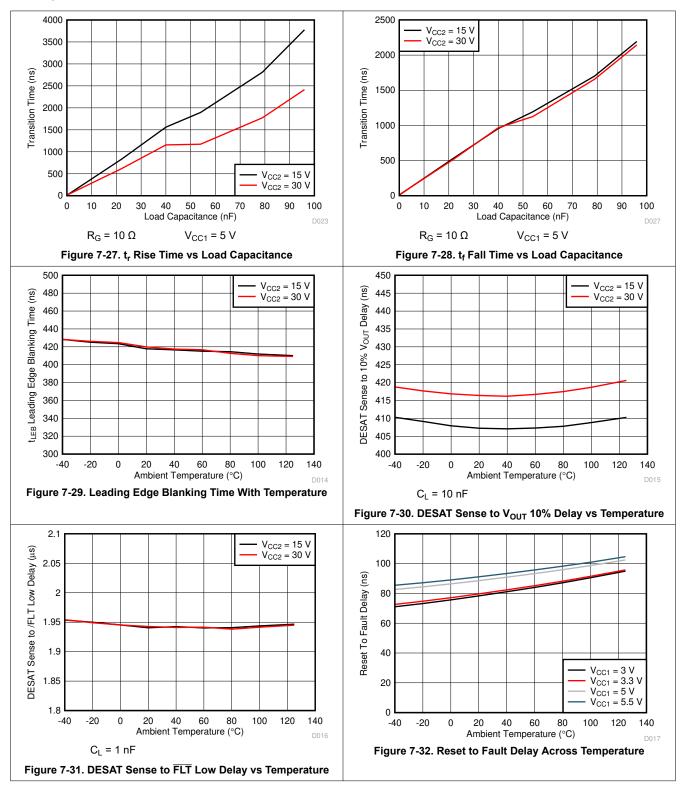
(1) Measured at same supply voltage and temperature condition

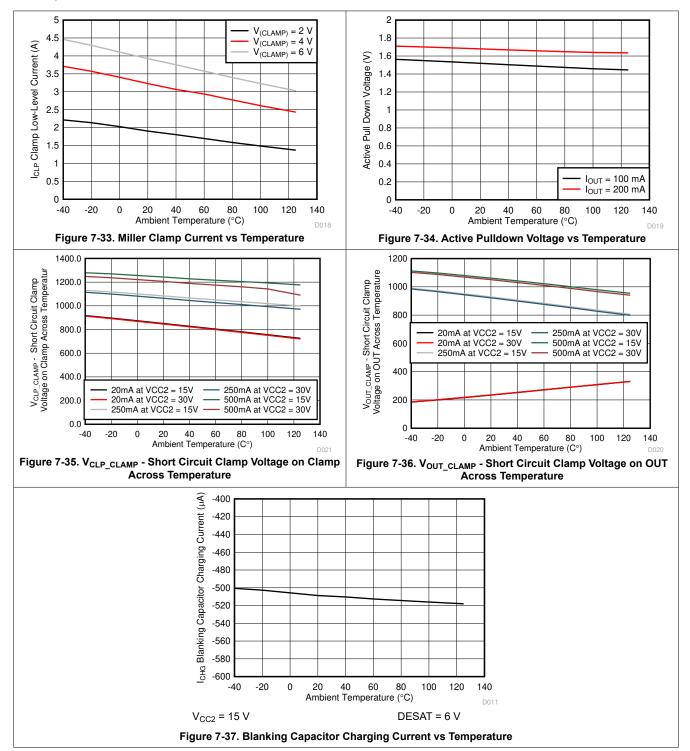

(2) Measured from input pin to ground.

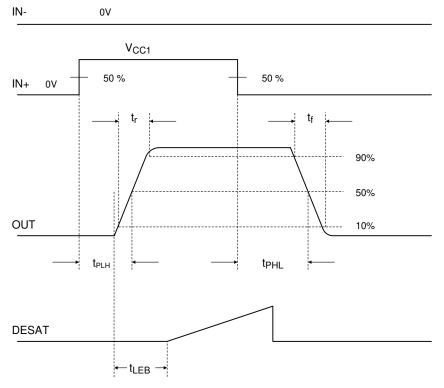

7.11 Insulation Characteristics Curves

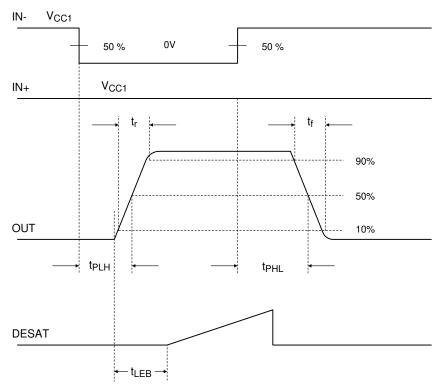

7.12 Typical Characteristics



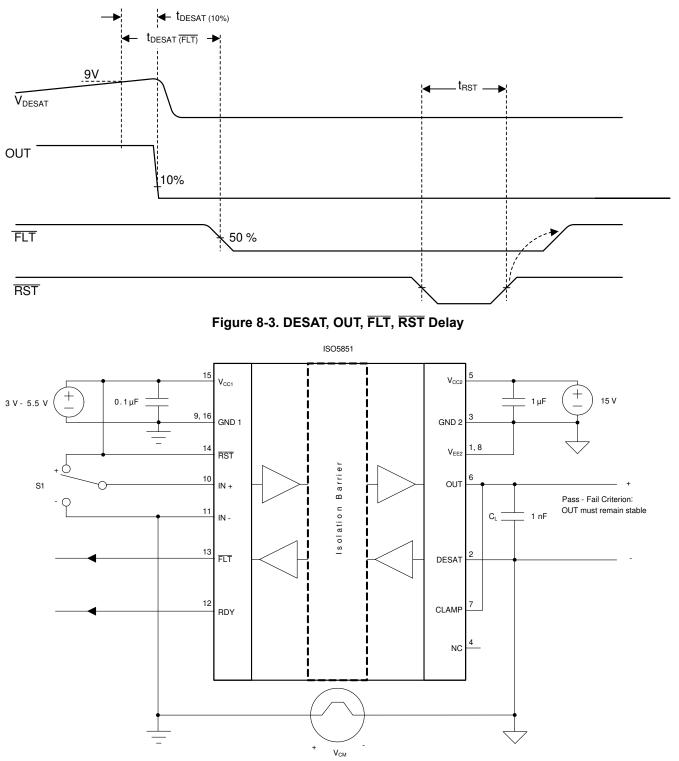






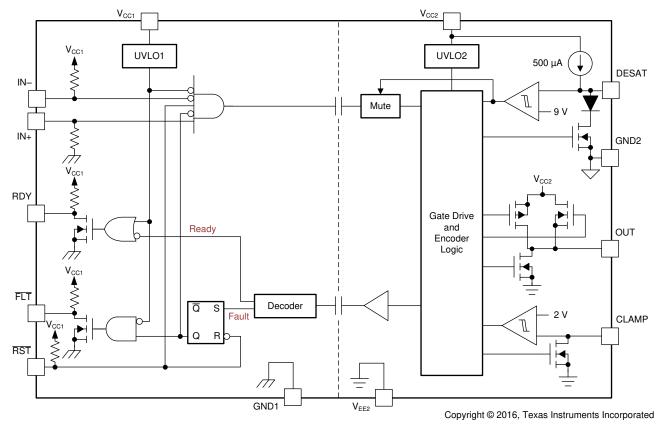


8 Parameter Measurement Information



Copyright © 2016, Texas Instruments Incorporated

Figure 8-4. Common-Mode Transient Immunity Test Circuit


9 Detailed Description

9.1 Overview

The ISO5851 is an isolated gate driver for IGBTs and MOSFETs. Input CMOS logic and output power stage are separated by a capacitive, silicon dioxide (SiO₂), isolation barrier.

The IO circuitry on the input side interfaces with a micro controller and consists of gate drive control and RESET (RST) inputs, READY (RDY) and FAULT (FLT) alarm outputs. The power stage consists of power transistors to supply 2.5-A pullup and 5-A pulldown currents to drive the capacitive load of the external power transistors, as well as DESAT detection circuitry to monitor IGBT collector-emitter overvoltage under short circuit events. The capacitive isolation core consists of transmit circuitry to couple signals across the capacitive isolation barrier, and receive circuitry to convert the resulting low-swing signals into CMOS levels. The ISO5851 also contains under voltage lockout circuitry to prevent insufficient gate drive to the external IGBT, and active output pulldown feature which ensures that the gate-driver output is held low, if the output supply voltage is absent. TheISO5851 also has an active Miller clamp function which can be used to prevent parasitic turn-on of the external power transistor, due to Miller effect, for unipolar supply operation.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 Supply and Active Miller Clamp

The ISO5851 supports both bipolar and unipolar power supply with active Miller clamp.

For operation with bipolar supplies, the IGBT is turned off with a negative voltage on its gate with respect to its emitter. This prevents the IGBT from unintentionally turning on because of current induced from its collector to its gate due to Miller effect. In this condition it is not necessary to connect CLAMP output of the gate driver to the IGBT gate, but connecting CLAMP output of the gate driver to the IGBT gate is also not an issue. Typical values of V_{CC2} and V_{EE2} for bipolar operation are 15 V and -8 V with respect to GND2.

For operation with unipolar supply, typically, V_{CC2} is connected to 15-V with respect to GND2, and V_{EE2} is connected to GND2. In this use case, the IGBT can turn-on due to additional charge from IGBT Miller capacitance caused by a high voltage slew rate transition on the IGBT collector. To prevent IGBT to turn on, the CLAMP pin is connected to IGBT gate and Miller current is sinked through a low impedance CLAMP transistor.

Miller CLAMP is designed for Miller current up to 2 A. When the IGBT is turned-off and the gate voltage transitions below 2 V the CLAMP current output is activated.

9.3.2 Active Output Pulldown

The active output pulldown feature ensures that the IGBT gate OUT is clamped to V_{EE2} to ensure safe IGBT off-state when the output side is not connected to the power supply.

9.3.3 Undervoltage Lockout (UVLO) With Ready (RDY) Pin Indication Output

Undervoltage lockout (UVLO) ensures correct switching of IGBT. The IGBT is turned-off, if the supply V_{CC1} drops below $V_{IT-(UVLO1)}$, irrespective of IN+, IN– and RST input till V_{CC1} goes above $V_{IT+(UVLO1)}$.

In similar manner, the IGBT is turned-off, if the supply V_{CC2} drops below $V_{IT-(UVLO2)}$, irrespective of IN+, IN– and RST input till V_{CC2} goes above $V_{IT+(UVLO2)}$.

Ready (RDY) pin indicates status of input and output side Under Voltage Lock-Out (UVLO) internal protection feature. If either side of device have insufficient supply (V_{CC1} or V_{CC2}), the RDY pin output goes low; otherwise, RDY pin output is high. RDY pin also serves as an indication to the micro-controller that the device is ready for operation.

9.3.4 Fault (FLT) and Reset (RST)

During IGBT overload condition, to report desaturation error \overline{FLT} goes low. If \overline{RST} is held low for the specified duration, \overline{FLT} is cleared at rising edge of \overline{RST} . \overline{RST} has an internal filter to reject noise and glitches. By asserting \overline{RST} for at-least the specified minimum duration, device input logic can be enabled or disabled.

9.3.5 Short Circuit Clamp

Under short circuit events it is possible that currents are induced back into the gate-driver OUT and CLAMP pins due to parasitic Miller capacitance between the IGBT collector and gate terminals. Internal protection diodes on OUT and CLAMP help to sink these currents while clamping the voltages on these pins to values slightly higher than the output side supply.

9.4 Device Functional Modes

Table 9-1 lists the functional modes for the ISO5851 device.

InISO5851 OUT to follow IN+ in normal functional mode, FLT must be in high state.

V _{CC1}	V _{CC2}	IN+	IN–	RST	RDY	OUT		
PU	PD	Х	Х	Х	Low	Low		
PD	PU	Х	Х	Х	Low	Low		
PU	PU	Х	Х	Low	High	Low		
PU	Open	Х	Х	Х	Low	Low		
PU	PU	Low	Х	Х	High	Low		
PU	PU	Х	High	Х	High	Low		
PU	PU	High	Low	High	High	High		

Table 9-1. Function Table⁽¹⁾

(1) PU: Power Up ($V_{CC1} \ge 2.25$ -V, $V_{CC2} \ge 13$ -V), PD: Power Down ($V_{CC1} \le 1.7$ -V, $V_{CC2} \le 9.5$ -V), X: Irrelevant

10 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

10.1 Application Information

The ISO5851 is an isolated gate driver for power semiconductor devices such as IGBTs and MOSFETs. It is intended for use in applications such as motor control, industrial inverters and switched mode power supplies. In these applications, sophisticated PWM control signals are required to turn the power devices on and off, which at the system level eventually may determine, for example, the speed, position, and torque of the motor or the output voltage, frequency and phase of the inverter. These control signals are usually the outputs of a micro controller, and are at low voltage levels such as 3.3 V or 5 V. The gate controls required by the MOSFETs and IGBTs, on the other hand, are in the range of 30 V (using a unipolar output supply) to 15 V (using bipolar output supply), and need high current capability to be able to drive the large capacitive loads offered by those power transistors. Not only that, the gate drive needs to be applied with reference to the Emitter of the IGBT (Source for MOSFET), and by construction, the emitter node in a gate drive system may swing between 0 to the DC bus voltage, that can be several hundreds of volts in magnitude.

The ISO5851 is thus used to level shift the incoming 3.3-V and 5-V control signals from the microcontroller to the 30 V (using a unipolar output supply) to 15 V (using bipolar output supply) drive required by the power transistors while ensuring high-voltage isolation between the driver side and the microcontroller side.

10.2 Typical Applications

Figure 10-1 shows the typical application of a three-phase inverter using six ISO5851 isolated gate drivers. Three-phase inverters are used for variable-frequency drives to control the operating speed and torque of AC motors and for high power applications such as high-voltage DC (HVDC) power transmission.

The basic three-phase inverter consists of six power switches, and each switch is driven by one SO5851. The switches are driven on and off at high switching frequency with specific patterns that to converter dc bus voltage to three-phase AC voltages.

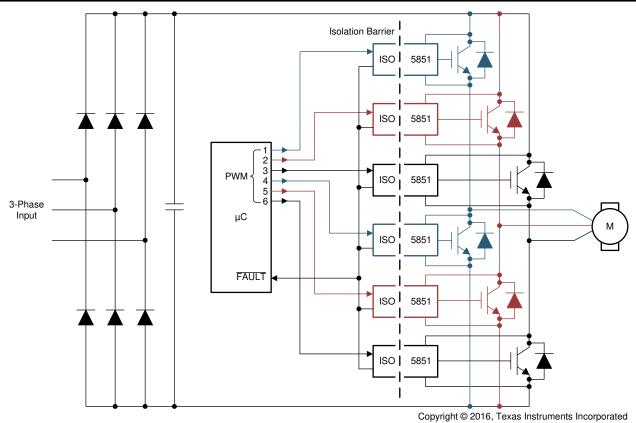


Figure 10-1. Typical Motor Drive Application

10.2.1 Design Requirements

Unlike optocoupler based gate drivers which need external current drivers and biasing circuitry to provide the input control signals, the input control to the ISO5851 is CMOS and can be directly driven by the microcontroller. Other design requirements include decoupling capacitors on the input and output supplies, a pullup resistor on the common drain \overline{FLT} output signal and \overline{RST} input signal, and a high-voltage protection diode between the IGBT collector and the DESAT input. Further details are explained in the subsequent sections. Table 10-1 shows the allowed range for Input and Output supply voltage, and the typical current output available from the gate-driver.

PARAMETER	VALUE
Input supply voltage	3 V to 5.5 V
Unipolar output supply voltage ($V_{CC2} - GND2 = V_{CC2} - V_{EE2}$)	15 V to 30 V
Bipolar output supply voltage (V _{CC2} – V _{EE2})	15 V to 30 V
Bipolar output supply voltage (GND2 – V _{EE2})	0 V to 15 V
Output current	2.5 A

Table	10-1.	Design	Parameters
-------	-------	--------	------------

10.2.2 Detailed Design Procedure

10.2.2.1 Recommended ISO5851 Application Circuit

The ISO5851 has both, inverting and non-inverting gate control inputs, an active low reset input, and an open drain fault output suitable for wired-OR applications. The recommended application circuit in Figure 10-2 shows a typical gate driver implementation with unipolar output supply and Figure 10-3 shows a typical gate driver implementation with bipolar output supply using the ISO5851.

A 0.1- μ F bypass capacitor, recommended at input supply pin V_{CC1} and 1- μ F bypass capacitor, recommended at output supply pin V_{CC2}, provide the large transient currents necessary during a switching transition to ensure reliable operation. The 220 pF blanking capacitor disables DESAT detection during the off-to-on transition of the power device. The DESAT diode (D_{DST}) and its 1-k Ω series resistor are external protection components. The R_G gate resistor limits the gate charge current and indirectly controls the IGBT collector voltage rise and fall times. The open-drain FLT output and RDY output has a passive 10-k Ω pullup resistor. In this application, the IGBT gate driver is disabled when a fault is detected and will not resume switching until the microcontroller applies a reset signal.

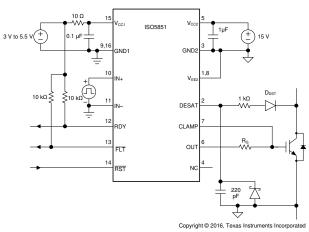


Figure 10-2. Unipolar Output Supply

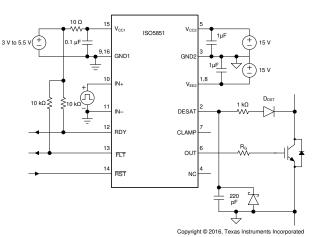


Figure 10-3. Bipolar Output Supply

10.2.2.2 FLT and RDY Pin Circuitry

There is 50k pullup resistor internally on \overline{FLT} and RDY pins. The \overline{FLT} and RDY pin is an open-drain output. A 10-k Ω pullup resistor can be used to make it faster rise and to provide logic high when \overline{FLT} and RDY is inactive, as shown in Figure 10-4

Fast common mode transients can inject noise and glitches on \overline{FLT} and RDY pins due to parasitic coupling. This is dependent on board layout. If required, additional capacitance (100 pF to 300 pF) can be included on the \overline{FLT} and RDY pins.

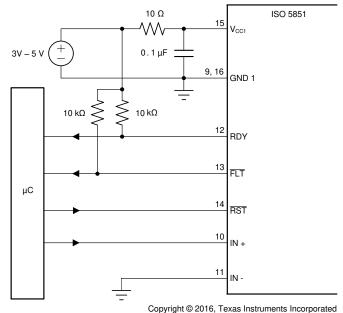
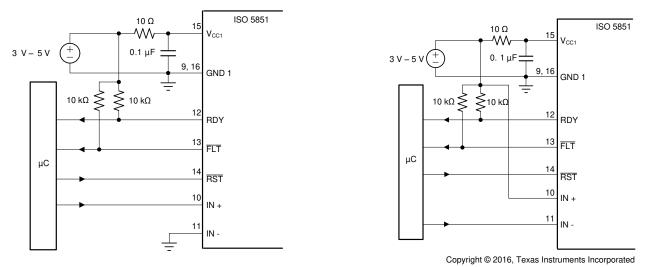
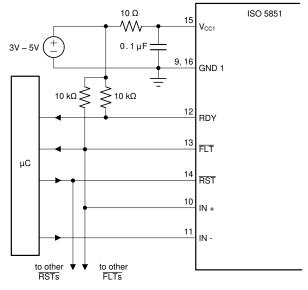


Figure 10-4. FLT and RDY Pin Circuitry for High CMTI


10.2.2.3 Driving the Control Inputs

The amount of common-mode transient immunity (CMTI) can be curtailed by the capacitive coupling from the high-voltage output circuit to the low-voltage input side of the ISO5851. For maximum CMTI performance, the digital control inputs, IN+ and IN-, must be actively driven by standard CMOS, push-pull drive circuits. This type of low-impedance signal source provides active drive signals that prevent unwanted switching of the ISO5851 output under extreme common-mode transient conditions. Passive drive circuits, such as open-drain configurations using pullup resistors, must be avoided. There is a 20 ns glitch filter which can filter a glitch up to 20 ns on IN+ or IN-.

10.2.2.4 Local Shutdown and Reset


In applications with local shutdown and reset, the \overline{FLT} output of each gate driver is polled separately, and the individual reset lines are asserted low independently to reset the motor controller after a fault condition.

10.2.2.5 Global-Shutdown and Reset

When configured for inverting operation, the ISO5851 can be configured to shutdown automatically in the event of a fault condition by tying the \overline{FLT} output to IN+. For high reliability drives, the open drain \overline{FLT} outputs of multiple ISO5851 devices can be wired together forming a single, common fault bus for interfacing directly to the micro-controller. When any of the six gate drivers of a three-phase inverter detects a fault, the active low \overline{FLT} output disables all six gate drivers simultaneously.

Copyright © 2016, Texas Instruments Incorporated

Figure 10-6. Global Shutdown with Inverting Input Configuration

10.2.2.6 Auto-Reset

In this case, the gate control signal at IN+ is also applied to the \overline{RST} input to reset the fault latch every switching cycle. Incorrect \overline{RST} makes output go low. A fault condition, however, the gate driver remains in the latched fault state until the gate control signal changes to the 'gate low' state and resets the fault latch.

If the gate control signal is a continuous PWM signal, the fault latch will always be reset before IN+ goes high again. This configuration protects the IGBT on a cycle by cycle basis and automatically resets before the next 'on' cycle.

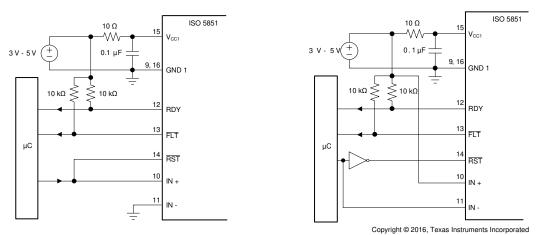


Figure 10-7. Auto Reset for Non-inverting and Inverting Input Configuration

10.2.2.7 DESAT Pin Protection

Switching inductive loads causes large instantaneous forward voltage transients across the freewheeling diodes of IGBTs. These transients result in large negative voltage spikes on the DESAT pin which draw substantial current out of the device. To limit this current below damaging levels, a $100-\Omega$ to $1-k\Omega$ resistor is connected in series with the DESAT diode.

Further protection is possible through an optional Schottky diode, whose low forward voltage assures clamping of the DESAT input to GND2 potential at low voltage levels.

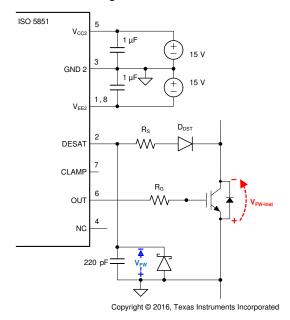


Figure 10-8. DESAT Pin Protection With Series Resistor and Schottky Diode

10.2.2.8 DESAT Diode and DESAT Threshold

The DESAT diode's function is to conduct forward current, allowing sensing of the IGBT's saturated collector-toemitter voltage, $V_{(CESAT)}$, (when the IGBT is *on*) and to block high voltages (when the IGBT is *off*). During the short transition time when the IGBT is switching, there is commonly a high dV_{CE}/dt voltage ramp rate across the IGBT. This results in a charging current $I_{(CHARGE)} = C_{(D-DESAT)} \times d_{VCE}/dt$, charging the blanking capacitor. $C_{(D-DESAT)}$ is the diode capacitance at DESAT.

To minimize this current and avoid false DESAT triggering, fast switching diodes with low capacitance are recommended. As the diode capacitance builds a voltage divider with the blanking capacitor, large collector voltage transients appear at DESAT attenuated by the ratio of $1 + C_{(BLANK)} / C_{(D-DESAT)}$.

Because the sum of the DESAT diode forward-voltage and the IGBT collector-emitter voltage make up the voltage at the DESAT-pin, $V_F + V_{CE} = V_{(DESAT)}$, the V_{CE} level, which triggers a fault condition, can be modified by adding multiple DESAT diodes in series: $V_{CE-FAULT(TH)} = 9 V - n x VF$ (where n is the number of DESAT diodes).

When using two diodes instead of one, diodes with half the required maximum reverse-voltage rating may be chosen.

10.2.2.9 Determining the Maximum Available, Dynamic Output Power, POD-max

The ISO5851 maximum allowed total power consumption of $P_D = 251$ mW consists of the total input power, P_{ID} , the total output power, P_{OD} , and the output power under load, P_{OL} :

$$P_{\rm D} = P_{\rm ID} + P_{\rm OD} + P_{\rm OL} \tag{1}$$

With:

$$P_{ID} = V_{CC1-max} \times I_{CC1-max} = 5.5 V \times 4.5 \text{ mA} = 24.75 \text{ mW}$$
(2)

and:

$$P_{OD} = (V_{CC2} - V_{EE2}) \times I_{CC2-max} = (15 \text{ V} - (-8 \text{ V})) \times 6 \text{ mA} = 138 \text{ mW}$$
(3)

then:

$$P_{OL} = P_D - P_{ID} - P_{OD} = 251 \text{ mW} - 24.75 \text{ mW} - 138 \text{ mW} = 88.25 \text{ mW}$$
 (4)

In comparison to P_{OL}, the actual dynamic output power under worst case condition, P_{OL-WC}, depends on a variety of parameters:

$$P_{OL-WC} = 0.5 \times f_{INP} \times Q_{G} \times (V_{CC2} - V_{EE2}) \times \left(\frac{r_{on-max}}{r_{on-max} + R_{G}} + \frac{r_{off-max}}{r_{off-max} + R_{G}}\right)$$
(5)

where

- f_{INP} = signal frequency at the control input IN+
- Q_G = power device gate charge
- V_{CC2} = positive output supply with respect to GND2
- V_{EE2} = negative output supply with respect to GND2
- r_{on-max} = worst case output resistance in the on-state: 4Ω
- r_{off-max} = worst case output resistance in the off-state: 2.5Ω
- R_G = gate resistor

Once R_G is determined, Equation 5 is to be used to verify whether $P_{OL-WC} < P_{OL}$. Figure 10-9 shows a simplified output stage model for calculating P_{OL-WC} .

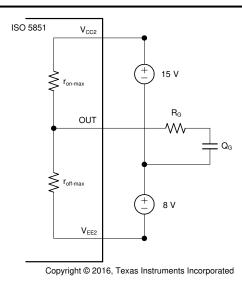


Figure 10-9. Simplified Output Model for Calculating POL-WC

10.2.2.10 Example

This examples considers an IGBT drive with the following parameters:

$$I_{ON-PK} = 2 \text{ A}, Q_G = 650 \text{ nC}, f_{INP} = 20 \text{ kHz}, V_{CC2} = 15 \text{ V}, V_{EE2} = -8 \text{ V}$$
 (6)

Applying the value of the gate resistor $R_G = 10 \Omega$.

Then, calculating the worst-case output power consumption as a function of R_G , using Equation 5 r_{on-max} = worst case output resistance in the on-state: 4 Ω , $r_{off-max}$ = worst case output resistance in the off-state: 2.5 Ω , R_G = gate resistor yields

$$P_{OL-WC} = 0.5 \times 20 \text{ kHz} \times 650 \text{ nC} \times (15 \text{ V} - (-8 \text{ V})) \times \left(\frac{4 \Omega}{4 \Omega + 10 \Omega} + \frac{2.5 \Omega}{2.5 \Omega + 10 \Omega}\right) = 72.61 \text{ mW}$$
(7)

Because P_{OL-WC} = 72.61 mW is below the calculated maximum of P_{OL} = 88.25 mW, the resistor value of R_G = 10 Ω is suitable for this application.

10.2.2.11 Higher Output Current Using an External Current Buffer

To increase the IGBT gate drive current, a non-inverting current buffer (such as the npn/pnp buffer shown in Figure 10-10) may be used. Inverting types are not compatible with the desaturation fault protection circuitry and must be avoided. The MJD44H11/MJD45H11 pair is appropriate for currents up to 8 A, the D44VH10/ D45VH10 pair for up to 15 A maximum.

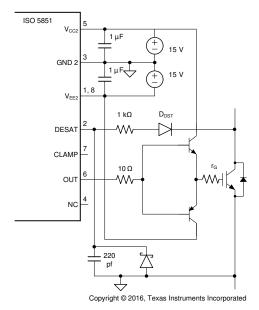
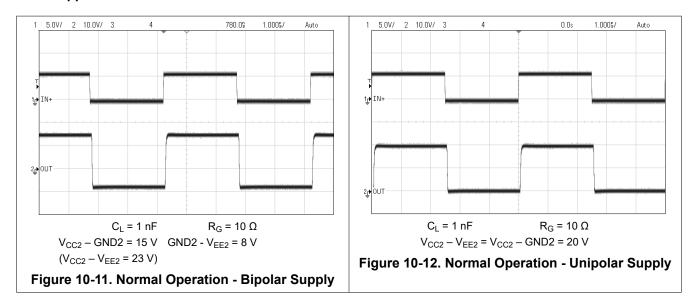



Figure 10-10. Current Buffer for Increased Drive Current

10.2.3 Application Curves

11 Power Supply Recommendations

To help ensure reliable operation at all data rates and supply voltages, a $0.1-\mu$ F bypass capacitor is recommended at input supply pin V_{CC1} and $1-\mu$ F bypass capacitor is recommended at output supply pin V_{CC2}. The capacitors should be placed as close to the supply pins as possible. The recommended placement of the capacitors is 2-mm maximum from the input and output power supply pin (V_{CC1} and V_{CC2}).

12 Layout

12.1 Layout Guidelines

A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 12-1). Layer stacking should be in the following order (top-to-bottom): high-current or sensitive signal layer, ground plane, power plane and low-frequency signal layer.

- Routing the high-current or sensitive traces on the top layer avoids the use of vias (and the introduction of their inductances) and allows for clean interconnects between the gate driver and the microcontroller and power transistors. Gate driver control input, Gate driver output OUT and DESAT should be routed in the top layer.
- Placing a solid ground plane next to the sensitive signal layer provides an excellent low-inductance path for the return current flow. On the driver side, use GND2 as the ground plane.
- Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100 pF/inch². On the gate-driver V_{EE2} and V_{CC2} can be used as power planes. They can share the same layer on the PCB as long as they are not connected together.
- Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links usually have margin to tolerate discontinuities such as vias.

For detailed layout recommendations, see the Digital Isolator Design Guide (SLLA284).

12.2 Layout Example

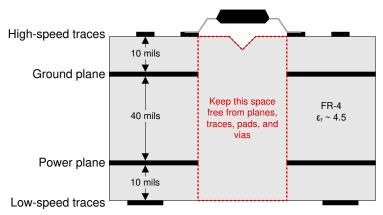


Figure 12-1. Recommended Layer Stack

12.3 PCB Material

For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and the self-extinguishing flammability-characteristics.

13 Device and Documentation Support

13.1 Device Support

13.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

13.2 Documentation Support

13.2.1 Related Documentation

For related documentation see the following:

- ISO5851 Evaluation Module (EVM) User's Guide
- Digital Isolator Design Guide
- Isolation Glossary

13.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

13.4 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

13.5 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

13.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

13.7 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
ISO5851DW	Obsolete	Production	SOIC (DW) 16	-	-	Call TI	Call TI	-40 to 125	ISO5851
ISO5851DWR	Active	Production	SOIC (DW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ISO5851
ISO5851DWR.A	Active	Production	SOIC (DW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ISO5851
ISO5851DWR.B	Active	Production	SOIC (DW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ISO5851

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

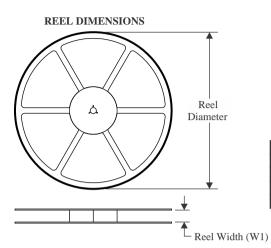
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF ISO5851 :

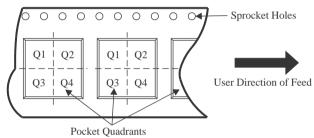
www.ti.com

23-May-2025

• Automotive : ISO5851-Q1


NOTE: Qualified Version Definitions:

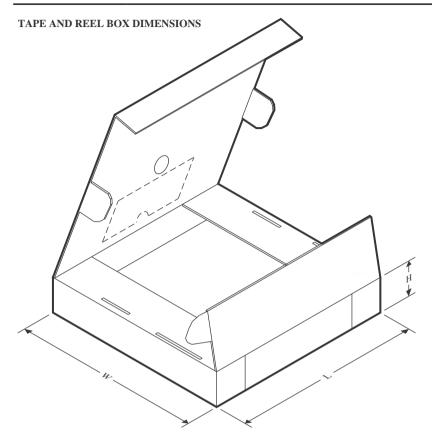

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions a	are nominal
-------------------	-------------


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO5851DWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

www.ti.com

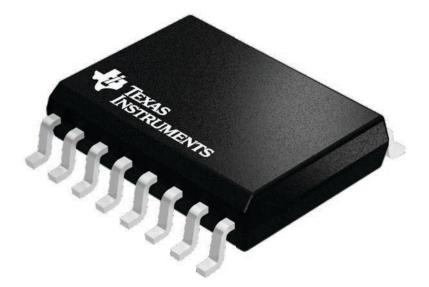
PACKAGE MATERIALS INFORMATION

4-Mar-2025

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ISO5851DWR	SOIC	DW	16	2000	356.0	356.0	35.0

DW 16

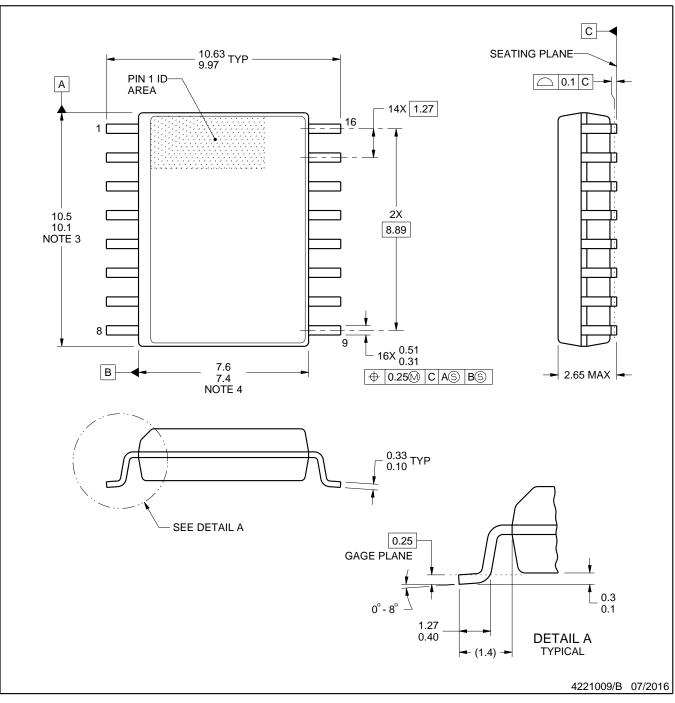

GENERIC PACKAGE VIEW

SOIC - 2.65 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

7.5 x 10.3, 1.27 mm pitch

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


DW0016B

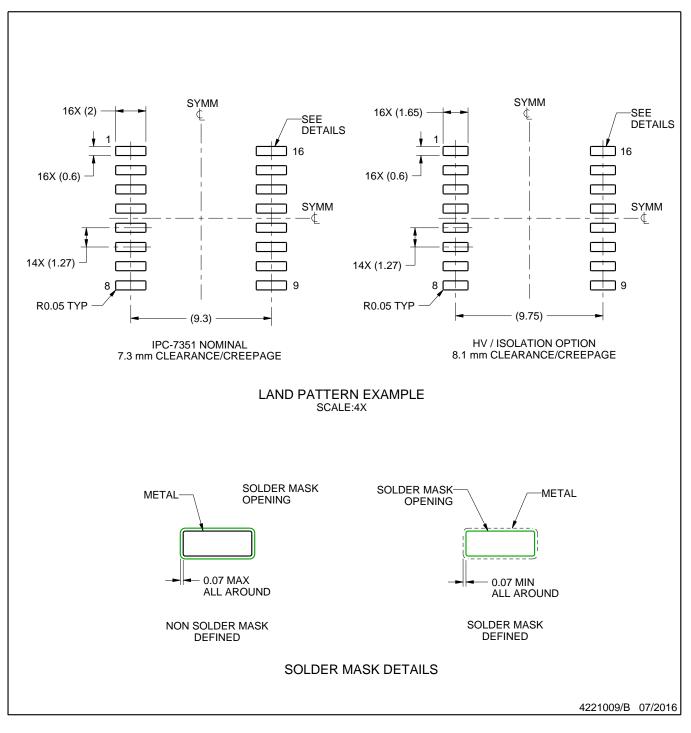
PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- Per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MS-013.



DW0016B

EXAMPLE BOARD LAYOUT

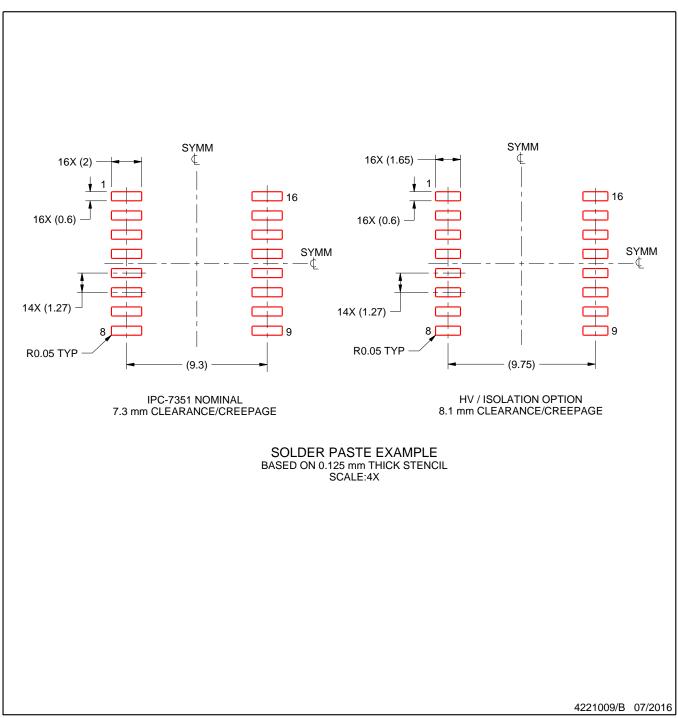
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DW0016B

EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated