

SN65DSI85-Q1

SLLSEJ4B -JULY 2016-REVISED JUNE 2018

SN65DSI85-Q1 Automotive Dual-Channel MIPI® DSI to Dual-Link LVDS Bridge

Features

- **Qualified for Automotive Applications**
- AEC-Q100 Qualified With the Following Results:
 - Device Temperature Grade 2: -40°C to 105°C **Ambient Operating Temperature**
 - Device HBM ESD Classification Level 3A
 - Device CDM ESD Classification Level C6
- Implements MIPI D-PHY Version 1.00.00 Physical Layer Front-End and Display Serial Interface (DSI) Version 1.02.00
- Dual-Channel DSI Receiver Configurable for One, Two, Three, or Four D-PHY Data Lanes Per Channel Operating up to 1 Gbps Per Lane
- Supports 18-bpp and 24-bpp DSI Video Packets with RGB666 and RGB888 Formats
- Suitable for 60-fps WQXGA 2560 x 1600 Resolution at 18-bpp and 24-bpp Color, and 60 fps (120 fps Equivalent) WUXGA 1920 x 1200 Resolution With 3D Graphics at 24-bpp Color
- MIPI Front-End Configurable for Single-Channel or Dual-Channel DSI Configurations
- Output Configurable for Single-Link or Dual-Link **LVDS**
- Supports Dual-Channel DSI ODD or EVEN and **LEFT or RIGHT Operating Modes**
- Supports Two Single-Channel DSI to Two Single-Link LVDS Operating Mode
- LVDS Output-Clock Range of 25 MHz to 154 MHz in Dual-Link or Single-Link Mode
- LVDS Pixel Clock May be Sourced from Free-Running Continuous D-PHY Clock or External Reference Clock (REFCLK)
- 1.8-V Main V_{CC} Power Supply
- Low Power Features Include SHUTDOWN Mode, Reduced LVDS Output Voltage Swing, Common Mode, and MIPI Ultra-Low Power State (ULPS) Support
- LVDS Channel SWAP, LVDS PIN Order Reverse Feature for Ease of PCB Routing
- Packaged in 64-pin 10 mm x 10 mm HTQFP (PAP) PowerPAD™ IC Package

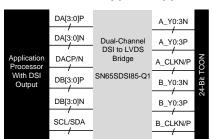
2 Applications

- Infotainment Head Unit With Integrated Display
- Infotainment Head Unit With Remote Display
- Infotainment Rear-Seat Entertainment
- Hybrid Automotive Cluster
- Portable Navigation Device
- Navigation
- Industrial Human Machine Interface (HMI) and Displays

3 Description

The SN65DSI85-Q1 DSI-to-LVDS bridge features a dual-channel MIPI D-PHY receiver front-end configuration with four lanes per channel operating at 1 Gbps per lane and a maximum input bandwidth of 8 Gbps. The bridge decodes MIPI DSI 18-bpp RGB666 and 24-bpp RGB888 packets and converts the formatted video data-stream to an LVDS output operating at pixel clocks operating from 25 MHz to 154 MHz, offering a dual-link LVDS, single-link LVDS, or two Single-Link LVDS interfaces with four data lanes per link.

The SN65DSI85-Q1 device is well suited for WQXGA (2560×1600) at 60 frames per second (fps), as well as 3D Graphics at WUXGA and True HD (1920 x 1080) resolutions at an equivalent 120 fps with up to 24 bits-per-pixel (bpp). Partial line buffering is implemented to accommodate the data stream mismatch between the DSI and LVDS interfaces.


The SN65DSI85-Q1 device is implemented in a small outline 10 mm x 10 mm HTQFP package with a 0.5-mm pitch, and operates across a temperature range from -40°C to 105°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN65DSI85-Q1	HTQFP (64)	10.00 mm × 10.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

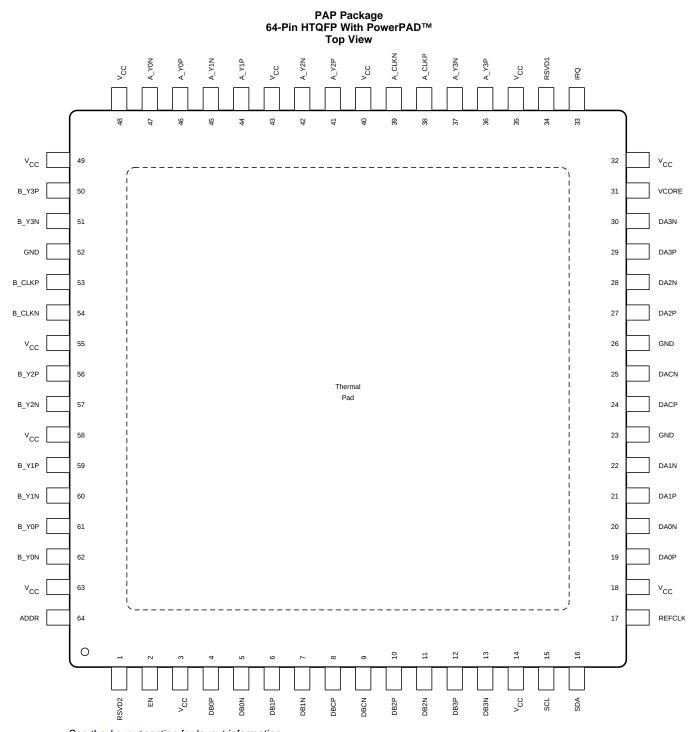
Typical Application

Copyright @ 2016, Texas Instruments Incorporated

Table of Contents

1	Features 1		8.6 Register Maps	25
2	Applications 1	9	Application and Implementation	. 53
3	Description 1		9.1 Application Information	. 53
4	Revision History2		9.2 Typical Applications	. 54
5	Pin Configuration and Functions3	10		
6	Specifications5		10.1 V _{CC} Power Supply	
	6.1 Absolute Maximum Ratings 5		10.2 VCORE Power Supply	60
	6.2 ESD Ratings	11	Layout	. 60
	6.3 Recommended Operating Conditions		11.1 Layout Guidelines	. 60
	6.4 Thermal Information		11.2 Layout Example	. 61
	6.5 Electrical Characteristics	12	Device and Documentation Support	. 62
	6.6 Switching Characteristics9		12.1 Documentation Support	. 62
7	Parameter Measurement Information 10		12.2 Receiving Notification of Documentation Updates	s <mark>62</mark>
8	Detailed Description		12.3 Community Resource	62
•	8.1 Overview		12.4 Trademarks	. 62
	8.2 Functional Block Diagram		12.5 Electrostatic Discharge Caution	62
	8.3 Feature Description		12.6 Glossary	. 62
	8.4 Device Functional Modes	13	Mechanical, Packaging, and Orderable Information	62
	8.5 Programming		IIIOIIIIauoii	. 02

4 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (December 2016) to Revision B	Page
Deleted figure RESET and Initialization Timing Definition While V _{CC} is High	12
Changed the paragraph following Figure 8	14
Changed Table 1	15
Changes from Original (July 2016) to Revision A	Page
Changed device to Production Data.	1

Submit Documentation Feedback

5 Pin Configuration and Functions

See the *Layout* section for layout information.

Pin Functions

Р	PIN		FIII FUNCTIONS		
NAME	NO.	TYPE	DESCRIPTION		
ADDR	64	I/O	Local I ² C interface target address select. See Table 6. In normal operation this pin is an input. When the ADDR pin is programmed high, it must be tied to the same 1.8-V power rails where the SN65DSI85-Q1 VCC 1.8-V power rail is connected.		
A_Y0P	46	0	LVDC about A LVDC data cutaut C		
A_Y0N	47	0	LVDS channel A, LVDS data output 0		
A_Y1P	44	0	LVDS abannal A LVDS data autaut 1		
A_Y1N	45	0	LVDS channel A, LVDS data output 1		
A_Y2P	41	0	LVDS channel A, LVDS data output 2		
A_Y2N	42	0	EVDS Charmer A, EVDS data output 2		
A_Y3P	36	0	LVDS channel A, LVDS data output 3. A_Y3P and A_Y3N must be left not connected		
A_Y3N	37	0	(NC) for 18-bpp panels.		
A_CLKP	38	0	LVDS channel A, LVDS clock output		
A_CLKN	39	0	EVDS Charmer A, EVDS Clock output		
B_Y0P	61	0	LVDS channel B, LVDS data output 0		
B_Y0N	62	0	EVDS Granner B, EVDS data output o		
B_Y1P	59	0	LVDS channel B, LVDS data output 1		
B_Y1N	60	0	EVDO GIAITIEI D, EVDO data output 1		
B_Y2P	56	0	LVDS channel B, LVDS data output 2		
B_Y2N	57	0	EVD3 Granner B, EVD3 data output 2		
B_Y3P	50	0	LVDS channel B, LVDS data output 3. B_Y3P and B_Y3N must be left NC for 18-bpp		
B_Y3N	51	0	panels.		
B_CLKP	53	0	LVDS channel B, LVDS clock output		
B_CLKN	54	0	LVDS channel B, LVDS clock output		
DA0P	19	I	MIPI D-PHY channel A, data lane 0; data rate up to 1 Gbps.		
DA0N	20	I	Will 1 b 1 111 chamilet A, data lane o, data late up to 1 obps.		
DA1P	21	I	MIPI D-PHY channel A, data lane 1; data rate up to 1 Gbps		
DA1N	22	I	Will 1 b 1 111 chamile 14, data rate up to 1 obpo		
DA2P	27	I	MIPI D-PHY channel A, data lane 2; data rate up to 1 Gbps.		
DA2N	28	I	This is a first of the first of		
DA3P	29	I.	MIPI D-PHY channel A, data lane 3; data rate up to 1 Gbps.		
DA3N	30	I	This is a first of a contract of the first o		
DACP	24	I	MIPI D-PHY channel A, clock lane; data rate up to 1 Gbps.		
DACN	25	I	This is a first of the first of		
DB0P	4	I	MIPI D-PHY channel B, data lane 0; data rate up to 1 Gbps.		
DB0N	5	ļ	This is a first by data ratio of data ratio up to 1 coppo.		
DB1P	6	I	MIPI D-PHY channel B, data lane 1; data rate up to 1 Gbps.		
DB1N	7	I	The state of the s		
DB2P	10	I	MIPI D-PHY channel B, data lane 2; data rate up to 1 Gbps.		
DB2N	11	I	Time 15 1 111 shalling 5, data rate 2, data rate up to 1 espe.		
DB3P	12	I	MIPI D-PHY channel B, data lane 3; data rate up to 1 Gbps.		
DB3N	13	I	2		
DBCP	8	1	MIPI D-PHY channel B, clock lane; operates up to 1 Gbps.		
DBCN	9	I			
EN	2	I	Chip enable and reset. The device is reset (shutdown) when the EN pin is low.		
	23	G			
GND	26	G	Reference ground		
	52	G	G		

Pin Functions (continued)

PIN		TVDE	DECODIDATION				
NAME	NO.	TYPE	DESCRIPTION Interrupt signal				
IRQ	33	0	Interrupt signal				
REFCLK	17	I	This pin is an optional external reference clock for the LVDS pixel clock. If an external reference clock is not used, this pin must be pulled to ground with an external resistor. The source of the reference clock must be placed as close as possible with a series resistor near the source to reduce EMI.				
RSVD1	34	I/O	Reserved. This pin must be left unconnected for normal operation.				
RSVD2	1	1	Reserved. This pin must be left unconnected for normal operation.				
SCL	15	I	Local I ² C interface clock.				
SDA	16	I/O	Local I ² C interface data				
	3	_					
	14	_					
	18	_					
	32	_					
	35	_					
	40	_	4.0 V november over the				
V _{CC}	43	_	1.8-V power supply				
	48	_					
	49	_					
	55	_					
	58	_					
	63	_					
VCORE	31	Р	1.1-V output from the voltage regulator. This pin must have a 1-µF external capacitor to ground.				
PowerPAD		_	Reference ground				

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V_{CC}	Supply voltage	pply voltage		2.175	V
	Input voltage	CMOS input pins	-0.5	2.175	V
		DSI input pins (DAxP, DAxN, DBxP, and DBxN)	-0.4	1.4	V
T _A	Operating free-air temperature		-40	105	°C
TJ	Junction temperature		-40	115	°C
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	±4000	\/
V _(ESD)	discharge	Charged-device model (CDM), per AEC Q100-011	±1000	V

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{CC}	V _{CC} power supply	1.65	1.8	1.95	V
V _{PSN}	Supply noise on any V _{CC} pin	f _(noise) > 1 MHz		0.05	V
V _(DSI)	DSI input pin voltage	-50		1350	mV
$f_{(I2C)}$	Local I ² C input frequency			400	kHz
$f_{HS(CLK)}$	DSI high-speed (HS) clock input frequency	40		500	MHz
t _{su}	DSI HS data to clock setup time; see Figure 1	0.15			UI ⁽¹⁾
t _h	DSI HS data to clock hold time; see Figure 1	0.15			UI ⁽¹⁾
Z _{OD(LVDS)}	LVDS output differential impedance	90		132	Ω
T _C	Case temperature			92.2	°C

⁽¹⁾ The unit interval (UI) is one half of the period of the HS clock; at 500 MHz the minimum setup and hold time is 150 ps.

6.4 Thermal Information

		SN65DSI85-Q1	
	THERMAL METRIC ⁽¹⁾	PAP (HTQFP)	UNIT
		64 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	36.1	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	18.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	20.6	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.8	°C/W
ΨЈВ	Junction-to-board characterization parameter	20.5	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	2.2	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V_{IL}	Low-level control signal input voltage				$0.3 \times V_{CC}$	V
V_{IH}	High-level control signal input voltage		0.7 × V _{CC}			V
V_{OH}	High-level output voltage	$I_{OH} = -4 \text{ mA}$	1.25			V
V _{OL}	Low-level output voltage	I _{OL} = 4 mA			0.4	V
I _{LKG}	Input failsafe leakage current	V _{CC} = 0; V _{CC(PIN)} = 1.8 V			±30	μΑ
I _{IH}	High level input current	Any input terminal			±30	μΑ
I _{IL}	Low level input current	Any input terminal			±30	μΑ
I _{OZ}	High-impedance output current	CMOS output terminals			±10	μΑ
Ios	Short-circuit output current	Any output driving GND short			±50	mA
I _{CC}	Device active current	See (2)		127	232	mA
I _{ULPS}	Device standby current	All data and clock lanes are in ultra-low power state (ULPS)		7.7	14	mA
I _{RST}	Shutdown current	EN = 0		0.04	130	μA
R _{EN}	EN control input resistor			200		kΩ

Product Folder Links: SN65DSI85-Q1

Submit Documentation Feedback

All typical values are at V_{CC} = 1.8V and T_A = 25°C SN65DSI85-Q1: DUAL Channel DSI to DUAL Channel LVDS, 1920 x 1200 (a) number of LVDS lanes = 2 x (3 data lanes + 1 CLK lane)

⁽b) number of DSI lanes = 2 x (4 data lanes + 1 CLK lane

⁽c) LVDS CLK OUT = 81.6 M

⁽d) DSI CLK = 490 M

⁽e) RGB888, LVDS18bpp

Maximum values are at V_{CC} = 1.95 V and T_A = 105°C

Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
MIPI DSI IN	TERFACE					
V _{IH-LP}	LP receiver input high threshold	See Figure 2	880			mV
V _{IL-LP}	LP receiver input low threshold	See Figure 2			550	mV
V _{ID}	HS differential input voltage		100		270	mV
V _{IDT}	HS differential input voltage threshold				50	mV
V _{IL-ULPS}	LP receiver input low threshold; ultra-low power state (ULPS)				300	mV
V _{CM-HS}	HS common mode voltage; steady-state		70		330	mV
ΔV _{CM-HS}	HS common mode peak-to-peak variation including symbol delta and interference				100	mV
$V_{\text{IH-HS}}$	HS single-ended input high voltage	See Figure 2			460	mV
V _{IL-HS}	HS single-ended input low voltage	See Figure 2	-40			mV
V _{TERM-EN}	HS termination enable; single-ended input voltage (both Dp AND Dn apply to enable)	Termination is switched simultaneous for Dn and Dp			450	mV
R _{DIFF-HS}	HS mode differential input impedance		80		125	Ω
LVDS OUT	PUT					
	Steady-state differential output voltage for	CSR 0x19.3:2=00 and, or CSR 0x19.1:0=00 100 Ω near end termination	180	245	330	
		CSR 0x19.3:2=01 and, or CSR 0x19.1:0=01 100 Ω near end termination	215	293	392	
		CSR 0x19.3:2=10 and, or CSR 0x19.1:0=10 100 Ω near end termination	250	341	455	
10/		CSR 0x19.3:2=11 and, or CSR 0x19.1:0=11 100 Ω near end termination	290	389	515	mV
V _{OD}	A_Yx P/N and B_Yx P/N	CSR 0x19.3:2=00 and, or CSR 0x19.1:0=00 200 Ω near end termination	150	204	275	mv
		CSR 0x19.3:2=01 and, or CSR 0x19.1:0=01 200 Ω near end termination	200	271	365	
		CSR 0x19.3:2=10 and, or CSR 0x19.1:0=10 200 Ω near end termination	250	337	450	
		CSR 0x19.3:2=11 and, or CSR 0x19.1:0=11 200 Ω near end termination	300	402	535	

Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
		CSR 0x19.3:2=00 and, or CSR 0x19.1:0=00 100 Ω near end termination	140	191	262	
		CSR 0x19.3:2=01 and, or CSR 0x19.1:0=01 100 Ω near end termination	168	229	315	
		CSR 0x19.3:2=10 and, or CSR 0x19.1:0=10 100 Ω near end termination	195	266	365	
DV 1	Steady-state differential output voltage for	CSR 0x19.3:2=11 and, or CSR 0x19.1:0=11 100 Ω near end termination	226	303	415	
IVobl	A_CLKP/N and B_CLKP/N	CSR 0x19.3:2=00 and, or CSR 0x19.1:0=00 200 Ω near end termination	117	159	220	mV
		CSR 0x19.3:2=01 and, or CSR 0x19.1:0=01 200 Ω near end termination	156	211	295	
		CSR 0x19.3:2=10 and, or CSR 0x19.1:0=10 200 Ω near end termination	195	263	362	
		CSR 0x19.3:2=11 and, or CSR 0x19.1:0=11 200 Ω near end termination	234	314	435	
$\Delta V_{OD} $	Change in steady-state differential output voltage between opposite binary states	RL = 100 Ω			35	mV
$V_{OC(SS)}$	Stoody state common mode output	CSR 0x19.6 = 1 and CSR 0x1B.6 = 1; and, or CSR 0x19.4 = 1 and CSR 0x1B.4 = 1; see Figure 3	0.75	0.9	1.13	V
00(33)		CSR 0x19.6 = 0 and, or CSR 0x19.4 = 0; see Figure 3	1	1.25	1.5	-
V _{OC(PP)}	Peak-to-peak common-mode output voltage	see Figure 3			35	mV
R _{LVDS_DIS}	Pulldown resistance for disabled LVDS outputs			1		kΩ

⁽³⁾ Tested at V_{CC} = 1.8V , T_A = -40°C for MIN, T_A = 25°C for TYP, T_A = 105°C for MAX.

Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

6.6 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
DSI		,	•			
t _{GS}	DSI LP glitch suppression pulse width				300	ps
LVDS					"	
t _c	Output clock period		6.49		40	ns
t _w	High-level output clock (CLK) pulse duration			4/7 t _c		ns
t ₀	Delay time, CLK↑ to 1st serial bit position		-0.15		0.15	ns
t ₁	Delay time, CLK↑ to 2nd serial bit position		1/7 t _c - 0.15	1	/7 t _c + 0.15	ns
t ₂	Delay time, CLK↑ to 3rd serial bit position	$t_c = 6.49 \text{ ns};$	2/7 t _c - 0.15	2	2/7 t _c + 0.15	ns
t ₃	Delay time, CLK↑ to 4th serial bit position	Input clock jitter < 25 ps (REFCLK)	3/7 t _c - 0.15	3	3/7 t _c + 0.15	ns
t ₄	Delay time, CLK↑ to 5th serial bit position	See Figure 4	4/7 t _c - 0.15	4	/7 t _c + 0.15	ns
t ₅	Delay time, CLK↑ to 6th serial bit position		5/7 t _c - 0.15	5	5/7 t _c + 0.15	ns
t ₆	Delay time, CLK↑ to 7th serial bit position		6/7 t _c - 0.15	6	6/7 t _c + 0.15	ns
t _r	Differential output rise-time	2 5 4	400		500	
t _f	Differential output fall-time	See Figure 4	180		500	ps
	LVDS CLK A to CLK B skew		-10		10	ps
EN, ULPS, R	ESET					
t _{en}	Enable time from EN or ULPS; see	$t_{c(0)} = 12.9 \text{ ns}$			1	ms
t _{dis}	Disable time to standby	$t_{c(o)} = 12.9 \text{ ns}$			0.1	ms
t _{reset}	Reset Time		10			ms
REFCLK						
F _{REFCLK}	REFCLK Frequency. Supported frequencies: 25 MHz - 15 4MHz		25		154	MHz
t _r , t _f	REFCLK rise and fall time		100ps		1ns	s
t _{pj}	REFCLK Peak-to-Peak Phase Jitter				50	ps
Duty	REFCLK Duty Cycle		40%	50%	60%	
REFCLK or I	DSI CLK (DACP/N, DBCP/N)	·	•		•	
CCC CLIVIN	SSC enabled Input CLK center spread depth ⁽²⁾		0.5%	1%	2%	
SSC_CLKIN	Modulation Frequency Range		30		60	kHz

 ⁽¹⁾ All typical values are at V_{CC} = 1.8 V and T_A = 25°C
 (2) For EMI reduction purpose, SN65DSI85-Q1 supports the center spreading of the LVDS CLK output through the REFCLK or DSI CLK input. The center spread CLK input to the REFCLK or DSI CLK is passed through to the LVDS CLK output A_CLKP/N and/or B_CLKP/N.

7 Parameter Measurement Information

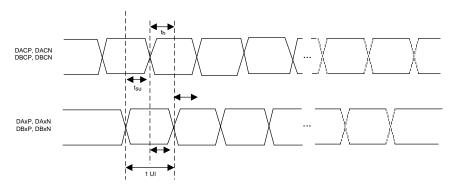


Figure 1. DSI HS Mode Receiver Timing Definitions

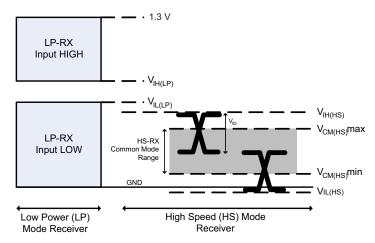


Figure 2. DSI Receiver Voltage Definitions

Submit Documentation Feedback

Parameter Measurement Information (continued)

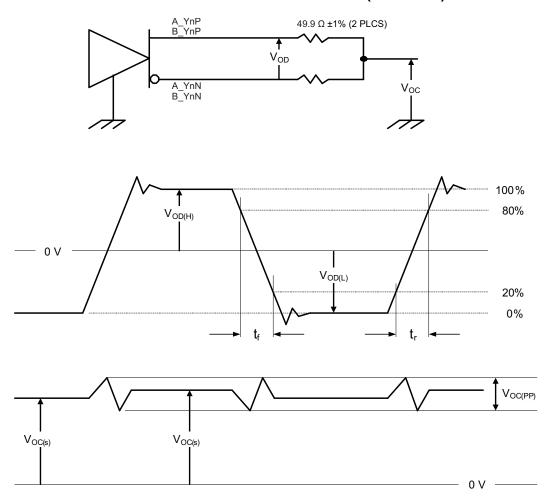


Figure 3. Test Load and Voltage Definitions for LVDS Outputs

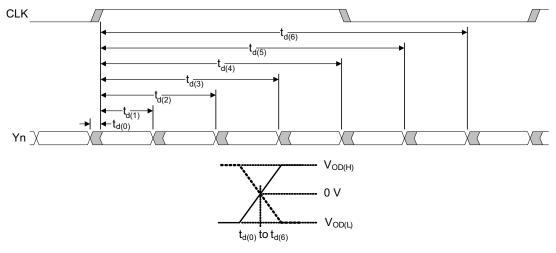
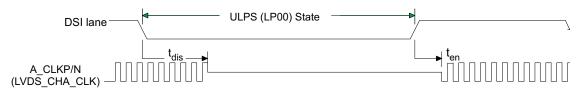



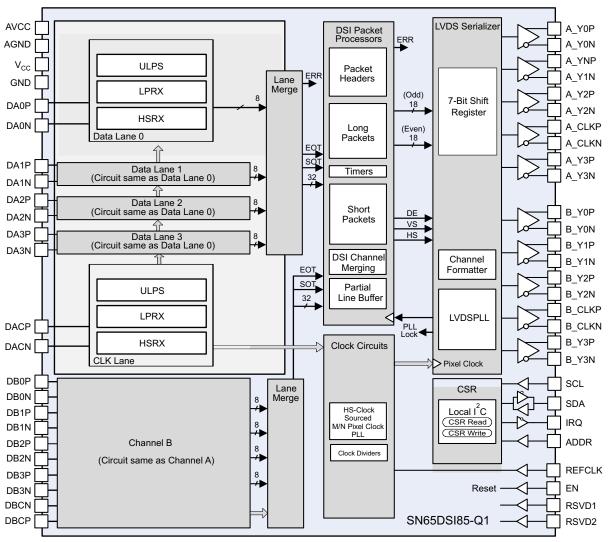
Figure 4. SN65DSI85-Q1 LVDS Timing Definitions

Parameter Measurement Information (continued)

- (1) See the ULPS section of the data sheet for the ULPS entry and exit sequence.
- (2) ULPS entry and exit protocol and timing requirements must be met according to the MIPI DPHY specification.

Figure 5. ULPS Timing Definition

Submit Documentation Feedback



8 Detailed Description

8.1 Overview

The SN65DSI85-Q1 device is an AEC-Q100 qualified, 2-channel MIPI DSI to dual-link LVDS transmitter. The device features a dual-channel MIPI D-PHY receiver front-end configurable for 1 to 4 data lanes per channel operating at 1 Gbps/lane for a maximum input bandwidth of 8 Gbps. This device decodes MIPI DSI 18-bpp RGB866 and 24-bpp RGB888 data stream and converts it to an LVDS output operating at pixel-clock frequencies of 25 MHz to 154 MHz. The LVDS output can be configured as a dual-link LVDS, two single-link LVDS, or a single-link LVDS output interface with four data lanes per link.

8.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

8.3 Feature Description

8.3.1 Reset Implementation

When the EN pin is deasserted (low), the SN65DSI85-Q1 device is in SHUTDOWN or RESET state. In this state, CMOS inputs are ignored, the MIPI D-PHY inputs are disabled and outputs are high impedance. Transitioning the EN input from a low to a high level after the V_{CC} supply has reached the minimum operating voltage as shown in Figure 6 is critical. This transition is achieved by a control signal to the EN input, or by an external capacitor connected between EN and GND.

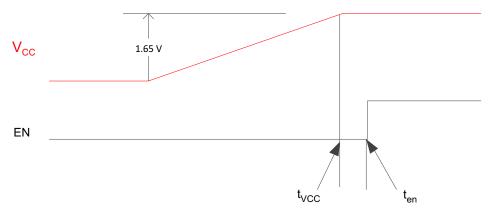
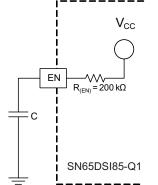
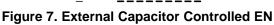




Figure 6. Cold-Start V_{CC} Ramp Up to EN

When implementing the external capacitor, the size of the external capacitor depends on the power up ramp of the V_{CC} supply, where a slower ramp-up results in a larger value external capacitor. See the latest reference schematic for the SN65DSI85-Q1 device and, or consider an approximately 200-nF capacitor as a reasonable first estimate for the size of the external capacitor.

Figure 7 and Figure 8 show both EN implementations.

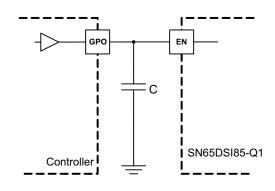


Figure 8. EN Input from Active Controller

When the SN65DSl85-Q1 is reset while V_{CC} is high, the EN pin must be held low for at least 10 ms before being asserted high as described in Table 1 to be sure that the device is properly reset. The DSI CLK lane MUST be in HS and the DSI data lanes MUST be driven to LP11 while the device is in reset before the EN pin is asserted per the timing described in Table 1.

8.3.2 Initialization Setup

Use the following initialization sequence to setup the SN65DSI85-Q1. This sequence is required for proper operation of the device. Steps 9 through 11 in the sequence are optional.

For additional information see Figure 6.

Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Feature Description (continued)

Table 1. Initialization Sequence

INITIALIZATION SEQUENCE NUMBER	INITIALIZATION SEQUENCE DESCRIPTION			
Init seq 1	Power on			
Init seq 2	After power is applied and stable, the DSI CLK lanes MUST be in HS state and the DSI data lanes MUST be driven to LP11 state			
Init seq 3	Set EN pin to Low			
Wait 10 ms (1)				
Init seq 4	Tie EN pin to High			
Wait 10 ms (1)				
Init seq 5	Initialize all CSR registers to their appropriate values based on the implementation (The SN65DSI8x is not functional until the CSR registers are initialized)			
Init seq 6	eq 6 Set the PLL_EN bit (CSR 0x0D.0)			
Wait 10 ms (1)				
Init seq 7	Set the SOFT_RESET bit (CSR 0x09.0)			
Wait 10 ms (1)				
Init seq 8	Change DSI data lanes to HS state and start DSI video stream			
Wait 5 ms (1)				
Init seq 9	Read back all resisters and confirm they were correctly written			
Init seq 10	Write 0xFF to CSR 0xE5 to clear the error registers			
Wait 1 ms (1)				
Init seq 11	Read CSR 0xE5. If CSR 0xE5!= 0x00, then go back to step #2 and re-initialize			

⁽¹⁾ Minimum recommended delay. This value can be exceeded.

8.3.3 LVDS Output Formats

The SN65DSI85-Q1 device processes DSI packets and produces video data driven to the LVDS interface in an industry standard format. Single-Link LVDS and Dual-Link LVDS are supported by the SN65DSI85-Q1 device. When the LVDS output is implemented in a Dual-Link configuration, channel A carries the odd pixel data, and channel B carries the even pixel data. During conditions such as the default condition, and some video synchronization periods, where no video stream data is passing from the DSI input to the LVDS output, the SN65DSI85-Q1 device transmits zero value pixel data on the LVDS outputs while maintaining transmission of the vertical sync and horizontal sync status.

Figure 9 shows a Single-Link LVDS 18-bpp application.

Figure 10 shows a Dual-Link 24-bpp application using Format 2, controlled by CHA_24BPP_FORMAT1 (CSR 0x18.1) and CHB_24BPP_FORMAT1 (CSR 0x18.0). In data Format 2, the two MSB per color are transferred on the Y3P/N LVDS lane.

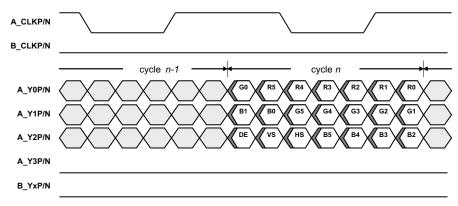
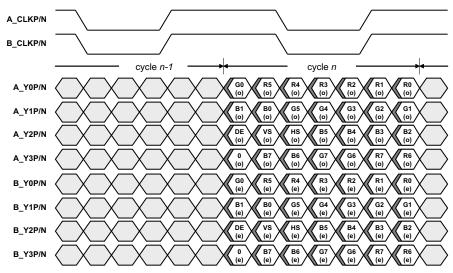

Figure 11 shows a 24 bpp Single-Link application using Format 1. In data Format 1, the two LSB per color are transferred on the Y3P/N LVDS lane.

Figure 12 shows a Single-Link LVDS application where 24 bpp data is received from DSI and converted to 18 bpp data for transmission to an 18 bpp panel. This application is configured by setting CHA_24BPP_FORMAT1 (CSR 0x18.1) to 1 and CHA_24BPP_MODE (CSR 0x18.3) to 0. In this configuration, the SN65DSI85-Q1 will not transmit the 2 LSB per color since the Y3P/N LVDS lane is disabled.

NOTE


Note: Figure 9, Figure 10, Figure 11, and Figure 12 only illustrate a few example applications for the SN65DSI85-Q1. Other applications are also supported.

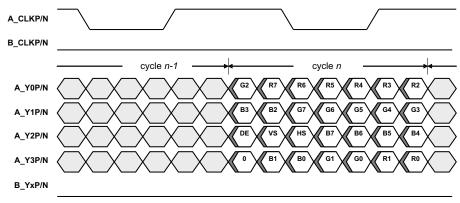
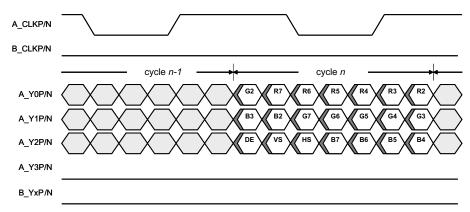

DE = Data Enable; Channel B Clock, Channel B Data, and A_Y3P/N are Output Low

Figure 9. LVDS Output Data Single-Link 18 bpp

DE = Data Enable; (o) = Odd Pixels; (e) = Even Pixels

Figure 10. LVDS Output Data (Format 2)
Dual-Link 24 bpp



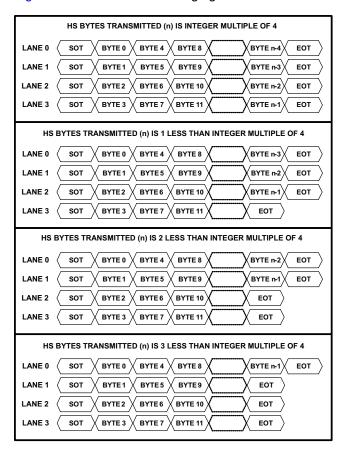
DE = Data Enable; Channel B Clock and Data are Output Low

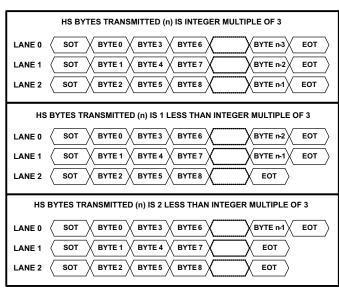
Figure 11. LVDS Output Data (Format 1) Single-Link 24 bpp

Submit Documentation Feedback

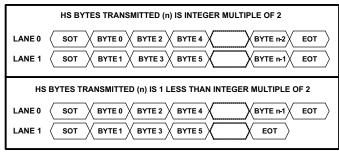
DE = Data Enable; Channel B Clock, Channel B Data, and A_Y3P/N are Output Low; Channel B Clock, Channel B Data, and A_Y3P/N are Output Low

Figure 12. LVDS Output Data (Format 1) 24 bpp to Single-Link 18 bpp Conversion


Copyright © 2016–2018, Texas Instruments Incorporated


8.3.4 DSI Lane Merging

The SN65DSI85-Q1 supports four DSI data lanes per input channel, and may be configured to support one, two, or three DSI data lanes per channel. Unused DSI input pins on the SN65DSI85-Q1 should be left unconnected or driven to LP11 state. The bytes received from the data lanes are merged in HS mode to form packets that carry the video stream. DSI data lanes are bit and byte aligned.


Figure 13 shows the lane merging function for each channel; 4-Lane, 3-Lane, and 2-Lane modes are illustrated

⁴ DSI Data Lane Configuration (default)

3 DSI Data Lane Configuration

2 DSI Data Lane Configuration

Figure 13. SN65DSI85-Q1 DSI Lane Merging Illustration

8.3.5 DSI Pixel Stream Packets

The SN65DSI85-Q1 processes 18-bpp (RGB666) and 24-bpp (RGB888) DSI packets on each channel as shown in Figure 14, Figure 15, and Figure 16.

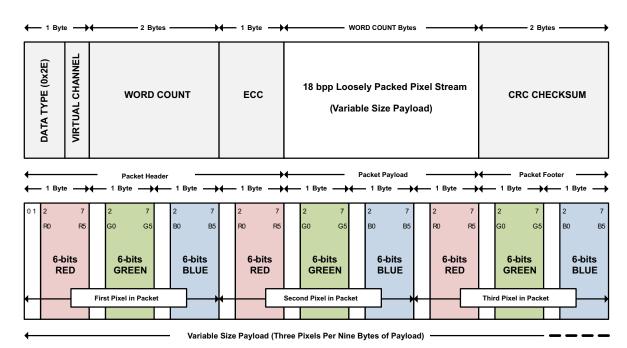


Figure 14. 18-bpp (Loosely Packed) DSI Packet Structure

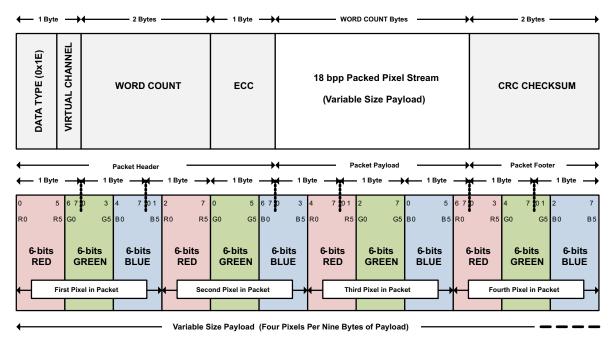


Figure 15. 18-bpp (Tightly Packed) DSI Packet Structure

Submit Documentation Feedback

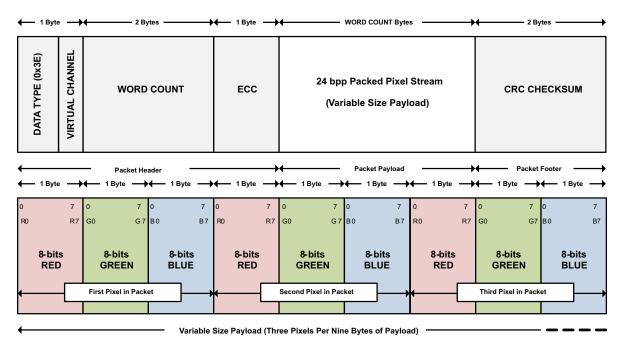


Figure 16. 24-bpp DSI Packet Structure

8.3.6 DSI Video Transmission Specifications

The SN65DSI85-Q1 supports burst video mode and non-burst video mode with sync events or with sync pulses packet transmission as described in the DSI specification. The burst mode supports time-compressed pixel stream packets that leave added time per scan line for power savings LP mode. The SN65DSI85-Q1 requires a transition to LP mode once per frame to enable PHY synchronization with the DSI host processor; however, for a robust and low-power implementation, the transition to LP mode is recommended on every video line.

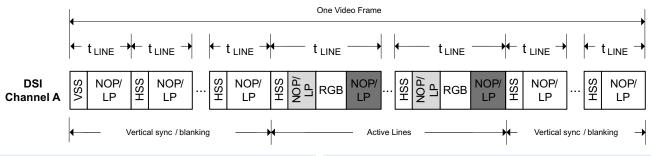
Figure 17 shows the DSI video transmission applied to SN65DSI85-Q1 applications. In all applications, the LVDS output rate must be less than or equal to the DSI input rate. The first line of a video frame shall start with a VSS packet, and all other lines start with VSE or HSS. The position of the synchronization packets in time is of utmost importance since this has a direct impact on the visual performance of the display panel; that is, these packets generate the HS and VS (horizontal and vertical sync) signals on the LVDS interface after the delay programmed into CHA_SYNC_DELAY_LOW/HIGH (CSR 0x28.7:0 and 0x29.3:0) and/or CHB_SYNC_DELAY_LOW/HIGH (CSR 0x2A.7:0 and 0x2B.3:0). When configured for dual DSI channels, the SN65DSI85-Q1 uses the VSS, VSE, and HSS packets from channel A to generate the HS and VS (horizontal and vertical sync) signals on the LVDS interface, and the VSS, VSE, and HSS packets from channel B are ignored.

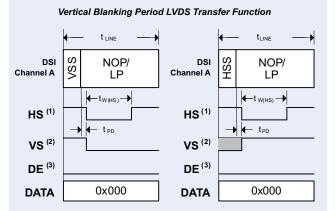
As required in the DSI specification, the SN65DSI85-Q1 requires that pixel stream packets contain an integer number of pixels (i.e. end on a pixel boundary); it is recommended to transmit an entire scan line on one pixel stream packet. When a scan line is broken in to multiple packets, inter-packet latency shall be considered such that the video pipeline (ie. pixel queue or partial line buffer) does not run empty (i.e. under-run); during scan line processing, if the pixel queue runs empty, the SN65DSI85-Q1 transmits zero data (18'b0 or 24'b0) on the LVDS interface.

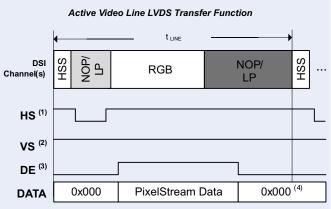
When configured for dual DSI channels, the SN65DSI85-Q1 supports ODD/EVEN configurations and LEFT/RIGHT configurations. In the ODD/EVEN configuration, the odd pixels for each scan line are received on channel A, and the even pixels are received on channel B. In LEFT/RIGHT mode, the LEFT portion of the line is received on channel A, and the right portion of the line is received on channel B. Neither the channel A LEFT portion input or the channel B RIGHT portion input per line shall exceed 1408 pixels, which is defined as ½ of the maximum line size (2560 pixels in WQXGA 2560x1600 mode) plus 10% headroom. The pixels received on channel B in LEFT/RIGHT mode are buffered during the LEFT side transmission to LVDS, and begin transmission to LVDS when the LEFT-side input buffer runs empty.

When configured for two single DSI channels, the SN65DSI85-Q1 requires that the LVDS output clocks for both video data streams be the same.

Submit Documentation Feedback


Copyright © 2016–2018, Texas Instruments Incorporated




NOTE

When the HS clock is used as a source for the LVDS pixel clock, the LP mode transitions apply only to the data lanes, and the DSI clock lane remains in the HS mode during the entire video transmission.

The DSI85 does not support the DSI Virtual Channel capability or reverse direction (peripheral to processor) transmissions.

- (1) The assertion of HS is delayed (t_{PD}) by a programmable number of pixel clocks from the last bit of VSS/HSS packet received on DSI. The HS pulse width $(t_{W(HS)})$ is also programmable. The illustration shows HS active low.
- (2) VS is signaled for a programmable number of lines (t_{LINE}) and is asserted when HS is asserted for the first line of the frame . VS is de -asserted when HS is asserted after the number of lines programmed has been reached. The illustration shows VS active low
- (3) DE is asserted when active pixel data is transmitted on LVDS , and polarity is set independent to HS/VS . The illustration shows DE active high
- (4) After the last pixel in an active line is output to LVDS, the LVDS data is output zero

LEGEND	
vss	DSI Sync Event Packet: V Sync Start
HSS	DSI Sync Event Packet: H Sync Start
RGB	A sequence of DSI Pixel Stream Packets and Null Packets
NOP/LP	DSI Null Packet,Blanking Packet,or a transition to LP Mode

Figure 17. DSI Channel Transmission and Transfer Function

8.3.7 ULPS

The SN65DSI85-Q1 supports the MIPI defined ultra-low power state (ULPS). While the device is in the ULPS, the CSR registers are accessible via I2C interface. ULPS sequence should be issued to all active DSI CLK and/or DSI data lanes of the enabled DSI Channels for the SN65DSI85-Q1 enter the ULPS. The Following sequence should be followed to enter and exit the ULPS.

- 1. Host issues a ULPS entry sequence to all DSI CLK and data lanes enabled.
- 2. When host is ready to exit the ULPS mode, host issues a ULPS exit sequence to all DSI CLK and data lanes that need to be active in normal operation.
- 3. Wait for the PLL_LOCK bit (CSR 0x0A.7) to be set.
- 4. Set the SOFT RESET bit (CSR 0x09.0).
- 5. Device resumes normal operation.(i.e video streaming resumes on the panel).

8.3.8 LVDS Pattern Generation

The SN65DSI85-Q1 supports a pattern generation feature on LVDS Channels. This feature can be used to test the LVDS output path and LVDS panels in a system platform. The pattern generation feature can be enabled by setting the CHA_TEST_PATTERN bit at address 0x3C. No DSI data is received while the pattern generation feature is enabled.

There are three modes available for LVDS test pattern generation. The mode of test pattern generation is determined by register configuration as shown in the tables below.

Table 2. Test Pattern Generation

Register configurations

Test pattern generation mode	Register configurations
Single LVDS configuration mode	LVDS_LINK_CFG(CSR 0x18.4) = 1b DSI_CH_MODE(CSR 0x10.6:5) = XXb CHA_TEST_PATTERN(CSR 0x3C.4) = 1b CHB_TEST_PATTERN(CSR 0x3C.0) = 0b
Dual LVDS configuration mode	LVDS_LINK_CFG(CSR 0x18.4) = 0b DSI_CH_MODE(CSR 0x10.6:5) = 0Xb CHA_TEST_PATTERN(CSR 0x3C.4) = 1b CHB_TEST_PATTERN(CSR 0x3C.0) = 0b
Two independent LVDS configuration mode	LVDS_LINK_CFG(CSR 0x18.4) = 0b DSI_CH_MODE(CSR 0x10.6:5) = 10b CHA_TEST_PATTERN(CSR 0x3C.4) = 1b CHB_TEST_PATTERN(CSR 0x3C.0) = 1b

The Table 3 and Table 4 list video registers that must be configured for test pattern generation video parameters.

1. Single LVDS configuration

Table 3. Video Registers

ADDRESS BIT	REGISTER NAME	SECTION
0x20.7:0	CHA_ACTIVE_LINE_LENGTH_LOW	
0x21.3:0	CHA_ACTIVE_LINE_LENGTH_HIGH	
0x24.7:0	CHA_VERTICAL_DISPLAY_SIZE_LOW	
0x25.3:0	CHA_VERTICAL_DISPLAY_SIZE_HIGH	
0x2C.7:0	CHA_HSYNC_PULSE_WIDTH_LOW	
0x2D.1:0	CHA_HSYNC_PULSE_WIDTH_HIGH	Video Registers
0x30.7:0	CHA_VSYNC_PULSE_WIDTH_LOW	video Registers
0x31.1:0	CHA_VSYNC_PULSE_WIDTH_HIGH	
0x34.7:0	CHA_HORIZONTAL_BACK_PORCH	
0x36.7:0	CHA_VERTICAL_BACK_PORCH	
0x38.7:0	CHA_HORIZONTAL_FRONT_PORCH	
0x3A.7:0	CHA_VERTICAL_FRONT_PORCH	

- 2. Dual LVDS configuration
 - Same set of video registers are used as in single LVDS configuration.
- 3. Two independent LVDS configuration mode.

Both Channel A and Channel B register parameters need to be configured.

Table 4. Channel A and B Registers

ADDRESS BIT	REGISTER NAME	SECTION
Channel A		
0x20.7:0	CHA_ACTIVE_LINE_LENGTH_LOW	
0x21.3:0	CHA_ACTIVE_LINE_LENGTH_HIGH	
0x24.7:0	CHA_VERTICAL_DISPLAY_SIZE_LOW	
0x25.3:0	CHA_VERTICAL_DISPLAY_SIZE_HIGH	
0x2C.7:0	CHA_HSYNC_PULSE_WIDTH_LOW	
0x2D.1:0	CHA_HSYNC_PULSE_WIDTH_HIGH	Video Registers
0x30.7:0	CHA_VSYNC_PULSE_WIDTH_LOW	video Registers
0x31.1:0	CHA_VSYNC_PULSE_WIDTH_HIGH	
0x34.7:0	CHA_HORIZONTAL_BACK_PORCH	
0x36.7:0	CHA_VERTICAL_BACK_PORCH	
0x38.7:0	CHA_HORIZONTAL_FRONT_PORCH	
0x3A.7:0	CHA_VERTICAL_FRONT_PORCH	
Channel B		
0x22.7:0	CHB_ACTIVE_LINE_LENGTH_LOW	
0x23.3:0	CHB_ACTIVE_LINE_LENGTH_HIGH	
0x26.7:0	CHB_VERTICAL_DISPLAY_SIZE_LOW	
0x27.3:0	CHB_VERTICAL_DISPLAY_SIZE_HIGH	
0x2E.7:0	CHB_HSYNC_PULSE_WIDTH_LOW	
0x2F.1:0	CHB_HSYNC_PULSE_WIDTH_HIGH	Video Periotore
0x32.7:0	CHB_VSYNC_PULSE_WIDTH_LOW	Video Registers
0x33.1:0	CHB_VSYNC_PULSE_WIDTH_HIGH	
0x35.7:0	CHB_HORIZONTAL_BACK_PORCH	
0x37.7:0	CHB_VERTICAL_BACK_PORCH	
0x39.7:0	CHB_HORIZONTAL_FRONT_PORCH	
0x3B.7:0	CHB_VERTICAL_FRONT_PORCH	

8.4 Device Functional Modes

8.4.1 Operating Modes

The SN65DSI85-Q1 can be configured for several different operating modes via LVDS_LINK_CFG (CSR 0x18.4), LEFT_RIGHT_PIXELS (CSR 0x10.7), and DSI_CHANNEL_MODE (CSR 0x10.6:5). These modes are summarized in Table 5. In each of the modes, video data can be 18 bpp or 24 bpp.

Table 5. SN65DSI85-Q1 Operating Modes

MODE	CSR 0x18.4	CSR 0x10.7	CSR 0x10.6:5	DESCRIPTION		
WODE	LVDS_LINK_CFG	LEFT_RIGHT_PIXES	DSI_CH_MODE	DESCINII TION		
Single DSI Input to Single-Link LVDS	1	N/A	01	Single DSI Input on Channel A to Single-Link LVDS output on Channel A.		
Single DSI Input to Dual-Link LVDS	0	N/A	01	Single DSI Input on Channel A to Dual-Link LVDS output with Odd pixels on Channel A and Even pixels on Channel B.		
Dual DSI Input (Odd/Even) to Single- Link LVDS ⁽¹⁾	1	0	00	Dual DSI Input with Odd pixels received on Channel A and Even pixels received on Channel B. Data is output to Single-Link LVDS on Channel A.		
Dual DSI Input (Odd/Even) to Dual-Link LVDS ⁽¹⁾	0	0	00	Dual DSI Input with Odd pixels received on Channel A and Even pixels received on Channel B. Data is output to Dual-Link LVDS with Odd pixels on Channel A and Even pixels on Channel B.		
Dual DSI Input (Left/Right) to Single- Link LVDS ⁽²⁾	1	1	00	Dual DSI Input with Left pixels received on Channel A and Right pixels received on Channel B. Data is output to Single-Link LVDS on Channel A.		
Dual DSI Input (Left/Right) to Dual-Link LVDS ⁽²⁾	0	1	00	Dual DSI Input with Left pixels received on Channel A and Right pixels received on Channel B. Data is output to Dual-Link LVDS with Odd pixels on Channel A and Even pixels on Channel B.		
Dual DSI Inputs (two streams) to two Single-Link LVDS ⁽³⁾	0	N/A	10	One video stream input on DSI Channel A and output to Single-Link LVDS on Channel A. Another video stream input on DSI Channel B and output to Single-Link LVDS on Channel B.		

⁽¹⁾ In these modes, DSI Channel A and DSI Channel B must be set to have the same number of data lanes enabled and the data format must be the same for both lanes.

8.5 Programming

8.5.1 Clock Configurations and Multipliers

The LVDS clock may be derived from the DSI channel A clock, or from an external reference clock source. When the MIPI D-PHY channel A HS clock is used as the LVDS clock source, the D-PHY clock lane must operate in HS free-running (continuous) mode; this feature eliminates the need for an external reference clock reducing system costs

The reference clock source is selected by HS_CLK_SRC (CSR 0x0A.0) programmed through the local I²C interface. If an external reference clock is selected, it is multiplied by the factor in REFCLK_MULTIPLIER (CSR 0x0B.1:0) to generate the LVDS output clock. When an external reference clock is selected, it must be between 25 MHz and 154 MHz. If the DSI channel A clock is selected, it is divided by the factor in DSI_CLK_DIVIDER (CSR 0x0B.7:3) to generate the LVDS output clock. Additionally, LVDS_CLK_RANGE (CSR 0x0A.3:1) and CH_DSI_CLK_RANGE(CSR 0x12) must be set to the frequency range of the LVDS output clock and DSI Channel A input clock respectively for the internal PLL to operate correctly. After these settings are programmed, PLL_EN (CSR 0x0D.0) must be set to enable the internal PLL.

⁽²⁾ In these modes, DSI Channel A and DSI Channel B can each have a different number of data lanes enabled, but the data format must be the same for both lanes.

⁽³⁾ In this mode, DSI Channel A and DSI Channel B can each have a different number of data lanes enabled, and the data format for each Channel can be different.

8.6 Register Maps

8.6.1 Local I²C Interface Overview

The SN65DSI85-Q1 local I²C interface is enabled when EN is input high, access to the CSR registers is supported during ultra-low power state (ULPS). The SCL and SDA pins are used for I²C clock and I²C data respectively. The SN65DSI85-Q1 I²C interface conforms to the two-wire serial interface defined by the I²C Bus Specification, Version 2.1 (January 2000), and supports fast mode transfers up to 400 kbps.

The device address byte is the first byte received following the START condition from the master device. The 7 bit device address for SN65DSI85-Q1 device is factory preset to 010110X with the least significant bit being determined by the ADDR control input. Table 6 clarifies the SN65DSI85-Q1 target address.

Table 6. SN65DSI85-Q1 I²C Target Address Description (1)(2)

	SN65DSI85 I ² C TARGET ADDRESS								
BIT 7 (MSB)	BIT 7 (MSB) BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1								
0	1	0	1	1	0	ADDR	0/1		

- (1) When ADDR=1, Address Cycle is 0x5A (Write) and 0x5B (Read)
- (2) When ADDR=0, Address Cycle is 0x58 (Write) and 0x59 (Read)

8.6.1.1 Write Procedure

The following procedure is followed to write to the SN65DSI85-Q1 I²C registers.

- 1. The master initiates a write operation by generating a start condition (S), followed by the SN65DSI85-Q1 7-bit address and a zero-value "W/R" bit to indicate a write cycle.
- 2. The SN65DSI85-Q1 device acknowledges the address cycle.
- The master presents the sub-address (I²C register within the SN65DSI85-Q1 device) to be written, consisting
 of one byte of data, MSB-first.
- 4. The SN65DSI85-Q1 device acknowledges the sub-address cycle.
- 5. The master presents the first byte of data to be written to the I²C register.
- 6. The SN65DSI85-Q1 device acknowledges the byte transfer.
- The master may continue presenting additional bytes of data to be written, with each byte transfer completing with an acknowledge from the SN65DSI85-Q1 device.
- 8. The master terminates the write operation by generating a stop condition (P).

8.6.1.2 Read Procedure

The following procedure is followed to read the SN65DSI85-Q1 I²C registers:

- 1. The master initiates a read operation by generating a start condition (S), followed by the SN65DSl85-Q1 7-bit address and a one-value *W/R* bit to indicate a read cycle.
- 2. The SN65DSI85-Q1 device acknowledges the address cycle.
- 3. The SN65DSI85-Q1 device transmits the contents of the memory registers MSB-first starting at register 00h. If a write to the SN65DSI85-Q1 I2C register occurred prior to the read, then the SN65DSI85-Q1 will start at the sub-address specified in the write.
- 4. The SN65DSI85-Q1 device waits for either an acknowledge (ACK) or a not-acknowledge (NACK) from the master after each byte transfer; the I2C master acknowledges reception of each data byte transfer.
- 5. If an ACK is received, the SN65DSI85-Q1 device transmits the next byte of data.
- 6. The master terminates the read operation by generating a stop condition (P).

8.6.1.3 Setting a Starting Sub-Address Procedure

The following procedure is followed for setting a starting sub-address for I²C reads:

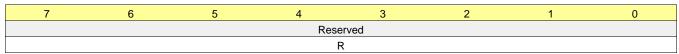
- 1. The master initiates a write operation by generating a start condition (S), followed by the SN65DSI85-Q1 7-bit address and a zero-value *W/R* bit to indicate a write cycle
- 2. The SN65DSI85-Q1 device acknowledges the address cycle.
- 3. The master presents the sub-address (I²C register within the SN65DSI85-Q1 device) to be written, consisting

of one byte of data, MSB-first.

- 4. The SN65DSI85-Q1 device acknowledges the sub-address cycle.
- 5. The master terminates the write operation by generating a stop condition (P).

8.6.2 Control and Status Registers Overview

Many of the SN65DSI85-Q1 functions are controlled by the Control and Status Registers (CSR). All CSR registers are accessible through the local I²C interface.


See the following tables for the SN65DSI85-Q1 CSR descriptions. Reserved or undefined bit fields should not be modified. Otherwise, the device may operate incorrectly.

8.6.3 CSR Bit

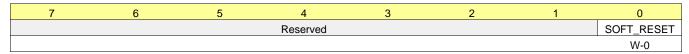
8.6.3.1 ID Registers (address = 0x00 to 0x08)

The ID registers are shown in Figure 18 and described in Table 7.

Figure 18. ID Registers

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 7. ID Register Field Descriptions


BIT	FIELD	TYPE	RESET	DESCRIPTION
7-0	Reserved	R		Addresses 0x08 - 0x00 = {0x01, 0x20, 0x20, 0x20, 0x44, 0x53, 0x49, 0x38, 0x35}

8.6.3.2 Reset and Clock Registers

8.6.3.2.1 Address 0x09

Address 0x09 is shown in Figure 19 and described in Table 8.

Figure 19. Address 0x09

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 8. Address 0x09 Definitions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-1	Reserved			Reserved
0	SOFT_RESET	W	This bit automatically clears when set to 1 and returns zeros when read. This bit must be set the CSRs are updated. This bit must also be set after making any changes to the DSI clock reafter changing between DSI burst and non-burst modes.	
				0: No action (default)
				1: Reset device to default condition excluding the CSR bits.

8.6.3.2.2 Address 0x0A

Address 0x0A is shown in Figure 20 and described in Table 9.

Figure 20. Address 0x0A

7	6	5	4	3	2	1	0
PLL_EN_STAT		Reserved			LVDS_CLK_RANG	SE .	HS_CLK_SRC
R-0					R/W-101		R/W-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 9. Address 0x0A Field Descriptions

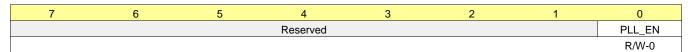
BIT	FIELD	TYPE	RESET	DESCRIPTION	
7	PLL_EN_STAT	R	0	Note: After PLL_EN_STAT = 1, wait at least 3 ms for PLL to lock.	
				0: PLL not enabled (default)	
				1: PLL enabled	
6–4	Reserved			Reserved	
3-1	LVDS_CLK_RANGE	R/W	101	This field selects the frequency range of the LVDS output clock.	
				000: 25 MHz ≤ LVDS_CLK < 37.5 MHz	
				001: 37.5 MHz ≤ LVDS_CLK < 62.5 MHz	
				010: 62.5 MHz ≤ LVDS_CLK < 87.5 MHz	
				011: 87.5 MHz ≤ LVDS_CLK < 112.5 MHz	
				100: 112.5 MHz ≤ LVDS_CLK < 137.5 MHz	
				101: 137.5 MHz ≤ LVDS_CLK ≤ 154 MHz (default)	
				110: Reserved	
				111: Reserved	
0	HS_CLK_SRC	R/W	0	0: LVDS pixel clock derived from input REFCLK (default)	
				1: LVDS pixel clock derived from MIPI D-PHY channel A HS continuous clock	

8.6.3.2.3 Address 0x0B

Address 0x0B is shown in Figure 21 and described in Table 10.

Figure 21. Address 0x0B

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear


Table 10. Address 0x0B Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-3	DSI_CLK_DIVIDER	R/W	0000	When CSR 0x0A.0 = 1, this field controls the divider used to generate the LVDS output clock from the MIPI D-PHY Channel A HS continuous clock. When CSR 0x0A.0 = 0, this field must be programmed to 00000.
				00000: LVDS clock = source clock (default)
				00001: Divide by 2
				00010: Divide by 3
				00011: Divide by 4
				10111: Divide by 24
				11000: Divide by 25
				11001–11111: Reserved
2	Reserved			Reserved
1-0	REFCLK_MULTIPLIER	R/W	00	When CSR 0x0A.0 = 0, this field controls the multiplier used to generate the LVDS output clock from the input REFCLK. When CSR 0x0A.0 = 1, this field must be programmed to 00.
				00: LVDS clock = source clock (default)
				01: Multiply by 2
				10: Multiply by 3
				11: Multiply by 4

8.6.3.2.4 Address 0x0D

Address 0x0D is shown in Figure 22 and described in Table 11.

Figure 22. Address 0x0D

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 11. Address 0x0D Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-1	Reserved			Reserved
0	PLL_EN	R/W	0	When this bit is set, the PLL is enabled with the settings programmed into CSR 0x0A and CSR 0x0B. The PLL should be disabled before changing any of the settings in CSR 0x0A and CSR 0x0B. The input clock source must be active and stable before the PLL is enabled.
				0: PLL disabled (default)
				1: PLL enabled

8.6.3.3 DSI Registers

8.6.3.3.1 Address 0x10

Address 0x10 is shown in Figure 23 and described in Table 12.

Figure 23. Address 0x10

7	6	5	4	3	2	1	0
LEFT_RIGHT_ PIXELS	DSI_CHANNE	EL_MODE	CHA_DS	I_LANES	CHB_DS	SI_LANES	SOT_ERR_T L_DIS
R/W-0	R/W-0	01	R/W	/-11	RΛ	V-11	R/W-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 12. Address 0x10 Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7	LEFT RIGHT PIXELS	R/W	0	This bit selects the pixel arrangement in dual channel DSI implementations.
/	LEFT_RIGHT_PIXELS	R/VV	U	·
				0: DSI channel A receives ODD pixels and channel B receives EVEN (default)
				1: DSI channel A receives LEFT image pixels and channel B receives RIGHT image pixels
6-5	DSI_CHANNEL_MODE	R/W	01	00: Dual-channel DSI receiver
				01: Single channel DSI receiver (default)
				10: Two single channel DSI receivers
				11: Reserved
4-3	CHA_DSI_LANES	R/W	11	This field controls the number of lanes that are enabled for DSI Channel A. Note: Unused DSI input pins on the SN65DSI85-Q1 device must be left unconnected.
				00: Four lanes are enabled
				01: Three lanes are enabled
				10: Two lanes are enabled
				11: One lane is enabled (default)
2-1	CHB_DSI_LANES	R/W	11	This field controls the number of lanes that are enabled for DSI Channel B. Note: Unused DSI input pins on the SN65DSI85-Q1 must be left unconnected.
				00: Four lanes are enabled
				01: Three lanes are enabled
				10: Two lanes are enabled
				11: One lane is enabled (default)
0	SOT_ERR_TOL_DIS	R/W	0	0: Single bit errors are tolerated for the start of transaction SoT leader sequence (default)
				1: No SoT bit errors are tolerated

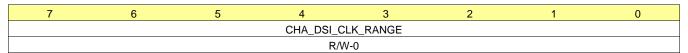
8.6.3.3.2 Address 0x11

Address 0x11 is shown in Figure 24 and described in Table 13.

Figure 24. Address 0x11

7	6	5	4	3	2	1	0
CHA_DSI_	DATA_EQ	CHB_DSI_	DATA_EQ	CHA_DSI	_CLK_EQ	CHB_DSI	_CLK_EQ
R/W	R/W-00 R/W-00		/-00	R/W	V-00	R/W	/-00

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear


Table 13. Address 0x11 Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-6	CHA_DSI_DATA_EQ	R/W	00	This field controls the equalization for the DSI Channel A Data Lanes
				00: No equalization (default)
				01: 1-dB equalization
				10: Reserved
				11: 2-dB equalization
5–4	CHB_DSI_DATA_EQ	R/W	00	This field controls the equalization for the DSI Channel B Data Lanes
				00: No equalization (default)
				01: 1-dB equalization
				10: Reserved
				11: 2-dB equalization
3-2	CHA_DSI_CLK_EQ	R/W	00	This field controls the equalization for the DSI Channel A Clock
				00: No equalization (default)
				01: 1-dB equalization
				10: Reserved
				11: 2-dB equalization
1-0	CHB_DSI_CLK_EQ	R/W	00	This field controls the equalization for the DSI Channel A Clock
				00: No equalization (default)
				01: 1-dB equalization
				10: Reserved
				11: 2-dB equalization

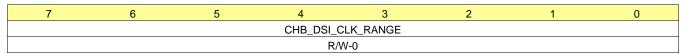
8.6.3.3.3 Address 0x12

Address 0x12 is shown in Figure 25 and described in Table 14.

Figure 25. Address 0x12

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 14. Address 0x12 Field Descriptions


BIT	FIELD	TYPE	RESET	DESCRIPTION
7-0	CHA_DSI_CLK_RANGE	R/W	0	This field specifies the DSI Clock frequency range in 5 MHz increments for the DSI Channel A Clock
				0x00–0x07: Reserved
				0x08: 40 ≤ frequency < 45 MHz
				0x09: 45 ≤ frequency < 50 MHz
				0x63: 495 ≤ frequency < 500 MHz
				0x64: 500 MHz
				0x65–0xFF: Reserved

8.6.3.3.4 Address 0x13

Address 0x13 is shown in Figure 26 and described in Table 15.

Figure 26. Address 0x13

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 15. Address 0x13 Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-0	CHB_DSI_CLK_RANGE	R/W	0 This field specifies the DSI Clock frequency range in 5 MHz increments for the DSI Cha	
				0x00–0x07: Reserved
				0x08: 40 ≤ frequency < 45 MHz
				0x09: 45 ≤ frequency < 50 MHz
				0x63: 495 ≤ frequency < 500 MHz
				0x64: 500 MHz
				0x65–0xFF: Reserved

8.6.3.4 LVDS Registers

8.6.3.4.1 Address 0x18

Address 0x18 is shown in Figure 27 and described in Table 16.

Figure 27. Address 0x18

7	6	5	4	3	2	1	0
DE_NEG_POL ARITY	HS_NEG_POL ARITY	VS_NEG_POL ARITY	LVDS_LINK_C FG	CHA_24BPP_ MODE	CHB_24BPP_ MODE	CHA_24BPP_F ORMAT1	CHB_24BPP_F ORMAT1
R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 16. Address 0x18 Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION	
7	DE_NEG_POLARITY	R/W	0	0: DE is positive polarity driven 1 during active pixel transmission on LVDS (default) 1: DE is negative polarity driven 0 during active pixel transmission on LVDS	
6	HS_NEG_POLARITY	R/W	1	0: HS is positive polarity driven 1 during corresponding sync conditions 1: HS is negative polarity driven 0 during corresponding sync (default)	
5	VS_NEG_POLARITY	R/W	1	O: VS is positive polarity driven 1 during corresponding sync conditions 1: VS is negative polarity driven 0 during corresponding sync (default)	
4	LVDS_LINK_CFG	R/W	1	0: LVDS Channel A and Channel B outputs enabled When CSR 0x10.6:5 = 00 or 01, the LVDS is in Dual-Link configuration When CSR 0x10.6:5 = 10, the LVDS is in two Single-Link configuration 1: LVDS Single-Link configuration; Channel A output enabled and Channel B output disabled (default)	
3	CHA_24BPP_MODE	R/W	0	0: Force 18 bpp; LVDS channel A lane 4 (A_Y3P or A_Y3N) is disabled (default) 1: Force 24 bpp; LVDS channel A lane 4 (B_Y3P or B_Y3N) is enabled	
2	CHB_24BPP_MODE	R/W	0	0: Force 18bpp; LVDS channel B lane 4 (A_Y3P or A_Y3N) is disabled (default) 1: Force 24bpp; LVDS channel B lane 4 (B_Y3P or B_Y3N) is enabled	
1	CHA_24BPP_FORMAT1	R/W	0	This field selects the 24-bpp data format Note 1: This field must be 0 when 18-bpp data is received from DSI. Note 2: If this field is set to 1 and CHA_24BPP_MODE is 0, the SN65DSI85-Q1 device converts 24-bpp data to 18-bpp data for transmission to an 18-bpp panel. In this configuration, the SN65DSI85-Q1 device does not transmit the two LSB per color on LVDS channel A, because LVDS channel A lane A_Y3P or A_Y3N is disabled.	
				0: LVDS channel A lane A_Y3P or A_Y3N transmits the two most significant bits (MSB) per color; Format 2 (default)	
				1: LVDS channel A lane A_Y3P or A_Y3N transmits the two least significant bits (LSB) per color; Format 1	
0	CHB_24BPP_FORMAT1	R/W	0	This field selects the 24-bpp data format Note 1: This field must be 0 when 18-bpp data is received from DSI. Note 2: If this field is set to 1 and CHB_24BPP_MODE is 0, the SN65DSI85-Q1 device converts 24-bpp data to 18-bpp data for transmission to an 18-bpp panel. In this configuration, the SN65DSI85-Q1 device does not transmit the two LSB per color on LVDS channel B, because LVDS channel B lane B_Y3P or B_Y3N is disabled.	
				0: LVDS channel B lane B_Y3P or B_Y3N transmits the two most significant bits (MSB) per color; Format 2 (default)	
				1: LVDS channel B lane B_Y3P or B_Y3N transmits the two least significant bits (LSB) per color; Format 1	

8.6.3.4.2 Address 0x19

Address 0x19 is shown in Figure 28 and described in Table 17.

Figure 28. Address 0x19

7	6	5	4	3	2	1	0
Reserved	CHA_LVDS_V OCM	Reserved	CHB_LVDS_V OCM	CHA_LVDS_	VOD_SWING	CHB_LVDS_\	OD_SWING
	R/W-0		R/W-0	R/V	V-01	R/W	'-01

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 17. Address 0x19 Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7	Reserved			Reserved
6	CHA_LVDS_VOCM	R/W	0	This field controls the common mode output voltage for LVDS channel A
				0: 1.2 V (default)
				1: 0.9 V (CSR 0x1B.5:4 CHA_LVDS_CM_ADJUST must be set to 01b)
5	Reserved			Reserved
4	CHB_LVDS_VOCM	R/W	0	This field controls the common mode output voltage for LVDS Channel B
				0: 1.2 V (default)
				1: 0.9 V (CSR 0x1B.1:0 CHB_LVDS_CM_ADJUST must be set to 01b)
3-2	CHA_LVDS_VOD_SWING	R/W	01	This field controls the differential output voltage for LVDS channel A. See the Electrical Characteristics table for V _{OD} for each setting:
				00, 01 (default), 10, 11
1-0	CHB_LVDS_VOD_SWING	R/W	01	This field controls the differential output voltage for LVDS channel B. See the Electrical Characteristics table for V _{OD} for each setting:
				00, 01 (default), 10, 11

8.6.3.4.3 Address 0x1A

Address 0x1A is shown in Figure 29 and described in Table 18.

Figure 29. Address 0x1A

7	6	5	4	3	2	1	0
Reserved	EVEN_ODD_S WAP	CHA_REVERS E_LVDS	CHB_REVERS E_LVDS	Rese	rved	CHA_LVDS_TE RM	CHB_LVDS_TE RM
	R/W-0	R/W-0	R/W-0			R/W-1	R/W-1

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 18. Address 0x1A Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION	
7	Reserved			Reserved	
6	EVEN_ODD_SWAP	R/W	0	Note: When the SN65DSI85-Q1 device is in two stream mode (CSR 0x10.6:5 = 10), setting this bit to 1 causes the video stream from DSI Channel A to be routed to LVDS channel B and the video stream from DSI Channel B to be routed to LVDS channel A.	
				0: Odd pixels routed to LVDS Channel A and Even pixels routed to LVDS channel B (default)	
				1: Odd pixels routed to LVDS Channel B and Even pixels routed to LVDS channel A	
5	CHA_REVERSE_LVDS	R/W	0	This bit controls the order of the LVDS pins for channel A.	
				0: Normal LVDS Channel A pin order. LVDS channel A pin order is the same as listed in the Pin Configuration and Functions section. (default)	
				1: Reversed LVDS Channel A pin order. LVDS channel A pin order is remapped as follows:	
				$A_Y0P \rightarrow A_Y3P$	
				$A_Y0N \rightarrow A_Y3N$	
				$A_{Y1P} \rightarrow A_{CLKP}$ $A_{Y1N} \rightarrow A_{CLKN}$	
				$A_1Y2P \rightarrow A_2Y2P$	
				$A_{Y2N} \rightarrow A_{Y2N}$	
				$A_CLKP \rightarrow A_Y1P$	
				$A_CLKN \rightarrow A_Y1N$	
				$A_Y3P \rightarrow A_Y0P$	
_	CUD DEVEDOE LVDO	R/W	0	$A_Y3N \rightarrow A_Y0N$ This bit and the order of the LVDC size for above LD	
4	CHB_REVERSE_LVDS	K/VV	0	This bit controls the order of the LVDS pins for channel B.	
				0: Normal LVDS channel B pin order. LVDS channel B pin order is the same as listed in the Pin Configuration and Functions section. (default)	
				1: Reversed LVDS channel B pin order. LVDS channel B pin order is remapped as follows:	
				B_Y0P → B_Y3P	
				$B_{-}Y0N \rightarrow B_{-}Y3N$	
				$B_Y1P \rightarrow B_CLKP$ $B_Y1N \rightarrow B_CLKN$	
				$B_Y2P \rightarrow B_Y2P$	
				$B_{Y2N} \rightarrow B_{Y2N}$	
				$B_CLKP \rightarrow B_Y1P$	
				$B_CLKN \to B_Y1N$	
				B_Y3P → B_Y0P	
3-2	Reserved			B_Y3N → B_Y0N Reserved	
1	CHA_LVDS_TERM	R/W	1	This bit controls the near end differential termination for LVDS channel A. This bit also affects the output voltage for LVDS channel A.	
				0: 100-Ω differential termination	
				1: 200-Ω differential termination (default)	
0	CHB_LVDS_TERM	R/W	1	This bit controls the near end differential termination for LVDS channel B. This bit also affects the output voltage for LVDS channel B.	
				0: 100-Ω differential termination	
				1: 200- Ω differential termination (default)	

8.6.3.4.4 Address 0x1B

Address 0x1B is shown in Figure 30 and described in Table 19.

Figure 30. Address 0x1B

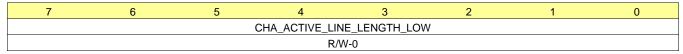
7	6	5	4	3	2	1	0
Res	erved	CHA_LVDS_	_CM_ADJUST	Rese	erved	CHB_LVDS_	CM_ADJUST
		R/V	V-00			R/V	V-00

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 19. Address 0x1B Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION	
7-6	Reserved			Reserved	
5–4	CHA_LVDS_CM_ADJUST	R/W	00	This field can be used to adjust the common mode output voltage for LVDS channel A.	
				00: No change to common mode voltage (default)	
				01: Adjust common mode voltage down 3%	
				10: Adjust common mode voltage up 3%	
				11: Adjust common mode voltage up 6%	
3-2	Reserved			Reserved	
1-0	CHB_LVDS_CM_ADJUST	R/W	00	This field can be used to adjust the common mode output voltage for LVDS channel B.	
				00: No change to common mode voltage (default)	
				01: Adjust common mode voltage down 3%	
				10: Adjust common mode voltage up 3%	
				11: Adjust common mode voltage up 6%	

8.6.3.5 Video Registers


Notes:

- 1. TEST PATTERN GENERATION PURPOSE ONLY registers are for test pattern generation use only. Others are for normal operation unless the test pattern generation feature is enabled. CHB* registers are used only when the device is configured for two stream mode -both LVDS output channels are enabled (CSR 0x18.4 = 0) and DSI channel mode configured as two stream (CSR 0x10.6:5 = 0X10b). CH*_SYNC_DELAY_HIGH/LOW registers are not used for test pattern generation. In all other configurations, CHA* registers are used for test pattern generation.
- 2. The CHB* register fields with a note *This field is only applicable when CSR 0x10.6:5* = 10. are used only when the device is configured as two stream mode with CSR 0x18.4 = 0 and CSR 0x10.6:5 = 10.

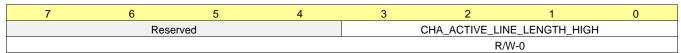
8.6.3.5.1 Address 0x20

Address 0x20 is shown in Figure 31 and described in Table 20.

Figure 31. Address 0x20

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 20. Address 0x20 Field Descriptions

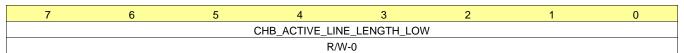

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-0	CHA_ACTIVE_LINE_LENGTH_LOW	R/W	0	When the SN65DSI85-Q1 is configured for a single DSI input, this field controls the length in pixels of the active horizontal line. When configured for Dual DSI inputs in Odd/Even mode, this field controls the number of odd pixels in the active horizontal line that are received on DSI Channel A and output to LVDS Channel A in single LVDS Channel mode(CSR 0x18.4 = 1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4 = 0) with DSI_CHANNEL_MODE set to 01 or 00(CSR 0x10.6:5). When configured for Dual DSI inputs in Left/Right mode, this field controls the number of left pixels in the active horizontal line that are received on DSI Channel A and output to LVDS Channel A. When configured for Dual DSI inputs in two stream mode, this field controls the number of pixels in the active horizontal line for the video stream received on DSI Channel A and output to LVDS Channel A. The value in this field is the lower 8 bits of the 12-bit value for the horizontal line length. Note: When the SN65DSI85-Q1 is configured for dual DSI inputs in Left/Right mode and LEFT_CROP field is programmed to a value other than 0x00, the CHA_ACTIVE_LINE_LENGTH_LOW/HIGH registers must be programmed to the number of active pixels in the Left portion of the line after LEFT_CROP has been applied.

8.6.3.5.2 Address 0x21

Address 0x21 is shown in Figure 32 and described in Table 21.

Figure 32. Address 0x21

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear


Table 21. Address 0x21 Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7–4	Reserved			Reserved
3-0	CHA_ACTIVE_LINE_LENGTH_HIGH	R/W	0	When the SN65DSI85-Q1 is configured for a single DSI input, this field controls the length in pixels of the active horizontal line.
				When configured for Dual DSI inputs in Odd/Even mode, this field controls the number of odd pixels in the active horizontal line that are received on DSI Channel A and output to LVDS Channel A in single LVDS Channel mode(CSR 0x18.4 = 1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4 = 0) with DSI_CHANNEL_MODE set to 01 or 00(CSR 0x10.6:5).
				When configured for Dual DSI inputs in Left/Right mode, this field controls the number of left pixels in the active horizontal line that are received on DSI Channel A and output to LVDS Channel A.
				When configured for Dual DSI inputs in two stream mode, this field controls the number of pixels in the active horizontal line for the video stream received on DSI Channel A and output to LVDS Channel A. The value in this field is the upper 4 bits of the 12-bit value for the horizontal line length.
				Note: When the SN65DSI85-Q1 is configured for dual DSI inputs in Left/Right mode and LEFT_CROP field is programmed to a value other than 0x00, the CHA_ACTIVE_LINE_LENGTH_LOW/HIGH registers must be programmed to the number of active pixels in the Left portion of the line after LEFT_CROP has been applied.

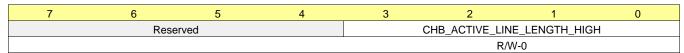
8.6.3.5.3 Address 0x22

Address 0x22 is shown in Figure 33 and described in Table 22.

Figure 33. Address 0x22

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 22. Address 0x22 Field Descriptions

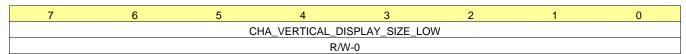

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-0	CHB_ACTIVE_LINE_LENGTH_LOW	R/W	0	When the SN65DSI85-Q1 is configured for a single DSI input, this field is not applicable. When configured for Dual DSI inputs in Odd/Even mode, this field controls the number of even pixels in the active horizontal line that are received on DSI Channel B. When configured for Dual DSI inputs in Left/Right mode, this field controls the number of right pixels in the active horizontal line that are received on DSI Channel B and output to LVDS Channel B. When configured for Dual DSI inputs in two stream mode, this field controls the number of
				pixels in the active horizontal line for the video stream received on DSI Channel B and output to LVDS Channel B. The value in this field is the lower 8 bits of the 12-bit value for the horizontal line length. Note: When the SN65DSI85-Q1 is configured for dual DSI inputs in Left/Right mode and RIGHT_CROP field is programmed to a value other than 0x00, the CHB_ACTIVE_LINE_LENGTH_LOW/HIGH registers must be programmed to the number of active pixels in the Right portion of the line after RIGHT_CROP has been applied.

8.6.3.5.4 Address 0x23

Address 0x23 is shown in Figure 34 and described in Table 23.

Figure 34. Address 0x23

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear


Table 23. Address 0x23 Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7–4	Reserved			Reserved
3-0	CHB_ACTIVE_LINE_LENGTH_HIGH	R/W	0	When the SN65DSI85-Q1 is configured for a single DSI input, this field is not applicable. When configured for Dual DSI inputs in Odd/Even mode, this field controls the number of even pixels in the active horizontal line that are received on DSI Channel B. When configured for Dual DSI inputs in Left/Right mode, this field controls the number of right pixels in the active horizontal line that are received on DSI Channel B and output to LVDS Channel B. When configured for Dual DSI inputs in two stream mode, this field controls the number of pixels in the active horizontal line for the video stream received on DSI Channel B and output to LVDS Channel B. The value in this field is the upper 4 bits of the 12-bit value for the horizontal line length. Note: When the SN65DSI85-Q1 is configured for dual DSI inputs in Left/Right mode and RIGHT_CROP field is programmed to a value other than 0x00, the CHB_ACTIVE_LINE_LENGTH_LOW/HIGH registers must be programmed to the number of active pixels in the Right portion of the line after RIGHT_CROP has been applied.

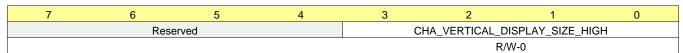
8.6.3.5.5 Address 0x24

Address 0x24 is shown in Figure 35 and described in Table 24.

Figure 35. Address 0x24

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 24. Address 0x24 Field Descriptions

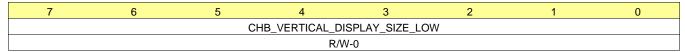

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-0	CHA_VERTICAL_DISPLAY_SIZE_LOW	R/W	0	TEST PATTERN GENERATION PURPOSE ONLY This field controls the vertical display size in lines for LVDS Channel A/B test pattern generation. The value in this field is the lower 8 bits of the 12-bit value for the vertical display size.

8.6.3.5.6 Address 0x25

Address 0x25 is shown in Figure 36 and described in Table 25.

Figure 36. Address 0x25

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear


Table 25. Address 0x25 Field Descriptions

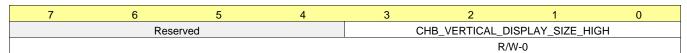
BIT	FIELD	TYPE	RESET	DESCRIPTION
7–4	Reserved			Reserved
3-0	CHA_VERTICAL_DISPLAY_SIZE_HIGH	R/W	0	TEST PATTERN GENERATION PURPOSE ONLY. This field controls the vertical display size in lines for LVDS Channel A/B test pattern generation. The value in this field is the upper 4 bits of the 12-bit value for the vertical display size

8.6.3.5.7 Address 0x26

Address 0x26 is shown in Figure 37 and described in Table 26.

Figure 37. Address 0x26

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear


Table 26. Address 0x26 Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-0	CHB_VERTICAL_DISPLAY_SIZE_LOW	R/W	0	TEST PATTERN GENERATION PURPOSE ONLY.
				This field controls the vertical display size in lines for LVDS Channel B test pattern generation. The value in this field is the lower 8 bits of the 12-bit value for the vertical display size. This field is only applicable when CSR 0x10.6:5 = 10

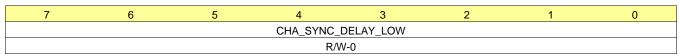
8.6.3.5.8 Address 0x27

Address 0x27 is shown in Figure 38 and described in Table 27.

Figure 38. Address 0x27

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 27. Address 0x27 Field Descriptions

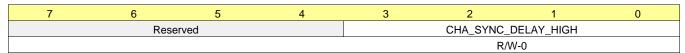

BIT	FIELD	TYPE	RESET	DESCRIPTION
7–4	Reserved			Reserved
3-0	CHB_VERTICAL_DISPLAY_SIZE_HIGH	R/W	0	TEST PATTERN GENERATION PURPOSE ONLY. This field controls the vertical display size in lines for LVDS Channel B test pattern generation. The value in this field is the upper 4 bits of the 12-bit value for the vertical display size. This field is only applicable when CSR 0x10.6:5 = 10.

8.6.3.5.9 Address 0x28

Address 0x28 is shown in Figure 39 and described in Table 28.

Figure 39. Address 0x28

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear


Table 28. Address 0x28 Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-0	CHA_SYNC_DELAY_LOW	R/W	0	This field controls the delay in pixel clocks from when an HSync or VSync is received on the DSI to when it is transmitted on the LVDS interface for Channel A in single LVDS Channel mode(CSR 0x18.4 = 1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4 = 0) with DSI_CHANNEL_MODE set to 01 or 00(CSR 0x10.6:5). The delay specified by this field is in addition to the pipeline and synchronization delays in the SN65DSI85-Q1. The additional delay is approximately 10 pixel clocks. The Sync delay must be programmed to at least 32 pixel clocks to ensure proper operation. The value in this field is the lower 8 bits of the 12-bit value for the Sync delay.

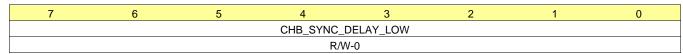
8.6.3.5.10 Address 0x29

Address 0x29 is shown in Figure 40 and described in Table 29.

Figure 40. Address 0x29

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 29. Address 0x29 Field Descriptions

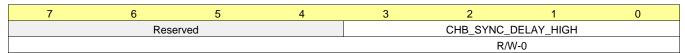

BIT	FIELD	TYPE	RESET	DESCRIPTION
7–4	Reserved			Reserved
3-0	CHA_SYNC_DELAY_HIGH	R/W	0	This field controls the delay in pixel clocks from when an HSync or VSync is received on the DSI to when it is transmitted on the LVDS interface for Channel A in single LVDS Channel mode(CSR 0x18.4 = 1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4 = 0) with DSI_CHANNEL_MODE set to 01 or 00(CSR 0x10.6:5). The delay specified by this field is in addition to the pipeline and synchronization delays in the SN65DSI85-Q1. The additional delay is approximately 10 pixel clocks. The Sync delay must be programmed to at least 32 pixel clocks to ensure proper operation. The value in this field is the upper 4 bits of the 12-bit value for the Sync delay.

8.6.3.5.11 Address 0x2A

Address 0x2A is shown in Figure 41 and described in Table 30.

Figure 41. Address 0x2A

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear


Table 30. Address 0x2A Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-0	CHB_SYNC_DELAY_LOW	R/W	0	This field controls the delay in pixel clocks from when an HSync or VSync is received on the DSI to when it is transmitted on the LVDS interface for Channel B when the SN65DSI85-Q1 is configured as two single stream mode with CSR 0x18.4 = 0 and CSR 0x10.6:5 = 10. The delay specified by this field is in addition to the pipeline and synchronization delays in the SN65DSI85-Q1. The additional delay is approximately 10 pixel clocks. The Sync delay must be programmed to at least 32 pixel clocks to ensure proper operation. The value in this field is the lower 8 bits of the 12-bit value for the Sync delay.

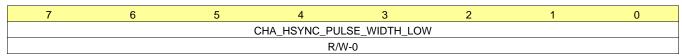
8.6.3.5.12 Address 0x2B

Address 0x2B is shown in Figure 42 and described in Table 31.

Figure 42. Address 0x2B

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 31. Address 0x2B Field Descriptions

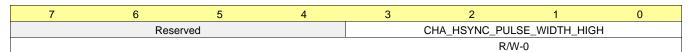

BIT	FIELD	TYPE	RESET	DESCRIPTION
7–4	Reserved			Reserved
3-0	CHB_SYNC_DELAY_HIGH	R/W	0	This field controls the delay in pixel clocks from when an HSync or VSync is received on the DSI to when it is transmitted on the LVDS interface for Channel B when the SN65DSI85-Q1 is configured as two single stream mode with CSR 0x18.4 = 0 and CSR 0x10.6:5 = 10. The delay specified by this field is in addition to the pipeline and synchronization delays in the SN65DSI85-Q1. The additional delay is approximately 10 pixel clocks. The Sync delay must be programmed to at least 32 pixel clocks to ensure proper operation. The value in this field is the upper 4 bits of the 12-bit value for the Sync delay.

8.6.3.5.13 Address 0x2C

Address 0x2C is shown in Figure 43 and described in Table 32.

Figure 43. Address 0x2C

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear


Table 32. Address 0x2C Field Descriptions

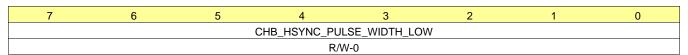
Е	BIT	FIELD	TYPE	RESET	DESCRIPTION
7	7-0	CHA_HSYNC_PULSE_WIDTH_LOW	R/W	0	This field controls the width in pixel clocks of the HSync Pulse Width for LVDS Channel A in single LVDS Channel mode(CSR 0x18.4 = 1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4 = 0) with DSI_CHANNEL_MODE set to 01 or 00(CSR 0x10.6:5). The value in this field is the lower 8 bits of the 10-bit value for the HSync Pulse Width.

8.6.3.5.14 Address 0x2D

Address 0x2D is shown in Figure 44 and described in Table 33.

Figure 44. Address 0x2D

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear


Table 33. Address 0x2D Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7–4	Reserved			Reserved
3-0	CHA_HSYNC_PULSE_WIDTH_HIGH	R/W	0	This field controls the width in pixel clocks of the HSync Pulse Width for LVDS Channel A in single LVDS Channel mode(CSR 0x18.4 = 1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4 = 0) with DSI_CHANNEL_MODE set to 01 or 00(CSR 0x10.6:5). The value in this field is the upper 2 bits of the 10-bit value for the HSync Pulse Width.

8.6.3.5.15 Address 0x2E

Address 0x2E is shown in Figure 45 and described in Table 34.

Figure 45. Address 0x2E

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 34. Address 0x2E Field Descriptions

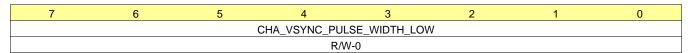
BIT	FIELD	TYPE	RESET	DESCRIPTION
7-0	CHB_HSYNC_PULSE_WIDTH_LOW	R/W	0	This field controls the width in pixel clocks of the HSync Pulse Width for LVDS Channel B. The value in this field is the lower 8 bits of the 10-bit value for the HSync Pulse Width. This field is only applicable when CSR 0x10.6:5 = 10.

8.6.3.5.16 Address 0x2F

Address 0x2F is shown in Figure 46 and described in Table 35.

Figure 46. Address 0x2F

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear


Table 35. Address 0x2F Field Descriptions

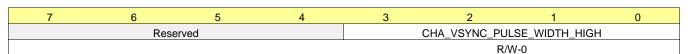
BIT	FIELD	TYPE	RESET	DESCRIPTION
7–4	Reserved			Reserved
3-0	CHB_HSYNC_PULSE_WIDTH_HIGH	R/W	0	This field controls the width in pixel clocks of the HSync Pulse Width for LVDS Channel B. The value in this field is the upper 2 bits of the 10-bit value for the HSync Pulse Width. This field is only applicable when CSR 0x10.6:5 = 10.

8.6.3.5.17 Address 0x30

Address 0x30 is shown in Figure 47 and described in Table 36.

Figure 47. Address 0x30

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear


Table 36. Address 0x30 Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-0	CHA_VSYNC_PULSE_WIDTH_LOW	R/W	0	This field controls the length in lines of the VSync Pulse Width for LVDS Channel A in single LVDS Channel mode(CSR 0x18.4 = 1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4 = 0) with DSI_CHANNEL_MODE set to 01 or 00(CSR 0x10.6:5). The value in this field is the lower 8 bits of the 10-bit value for the VSync Pulse Width.

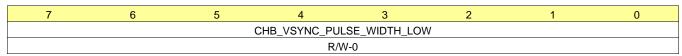
8.6.3.5.18 Address 0x31

Address 0x31 is shown in Figure 48 and described in Table 37.

Figure 48. Address 0x31

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 37. Address 0x31 Field Descriptions


BIT	FIELD	TYPE	RESET	DESCRIPTION
7–4	Reserved			Reserved
3-0	CHA_VSYNC_PULSE_WIDTH_HIGH	R/W	0	This field controls the length in lines of the VSync Pulse Width for LVDS Channel A in single LVDS Channel mode(CSR 0x18.4 = 1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4 = 0) with DSI_CHANNEL_MODE set to 01 or 00(CSR 0x10.6:5). The value in this field is the upper 2 bits of the 10-bit value for the VSync Pulse Width.

8.6.3.5.19 Address 0x32

Address 0x32 is shown in Figure 49 and described in Table 38.

Figure 49. Address 0x32

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear


Table 38. Address 0x32 Field Descriptions

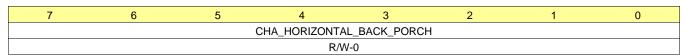
ВП	FIELD	TYPE	RESET	DESCRIPTION
7-0	CHB_VSYNC_PULSE_WIDTH_LOW	R/W	0	This field controls the length in lines of the VSync Pulse Width for LVDS Channel B. The value in this field is the lower 8 bits of the 10-bit value for the VSync Pulse Width. This field is only applicable when CSR 0x10.6:5 = 10.

8.6.3.5.20 Address 0x33

Address 0x33 is shown in Figure 50 and described in Table 39.

Figure 50. Address 0x33

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear


Table 39. Address 0x33 Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7–4	Reserved			Reserved
3-0	CHB_VSYNC_PULSE_WIDTH_HIGH	R/W	0	This field controls the length in lines of the VSync Pulse Width for LVDS Channel B. The value in this field is the upper 2 bits of the 10-bit value for the VSync Pulse Width. This field is only applicable when CSR 0x10.6:5 = 10.

8.6.3.5.21 Address 0x34

Address 0x34 is shown in Figure 51 and described in Table 40.

Figure 51. Address 0x34

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 40. Address 0x34 Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-0	CHA_HORIZONTAL_BACK_PORCH	R/W	0	This field controls the time in pixel clocks between the end of the HSync Pulse and the start of the active video data for LVDS Channel A in single LVDS Channel mode (CSR 0x18.4 = 1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4 = 0) with DSI_CHANNEL_MODE set to 01 or 00(CSR 0x10.6:5).

8.6.3.5.22 Address 0x35

Address 0x35 is shown in Figure 52 and described in Table 41.

Figure 52. Address 0x35

7	6	5	4	3	2	1	0			
	CHB_HORIZONTAL_BACK_PORCH									
			R/V	V-0						

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 41. Address 0x35 Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-0	CHB_HORIZONTAL_BACK_PORCH	R/W	0	This field controls the time in pixel clocks between the end of the HSync Pulse and the start of the active video data for LVDS Channel B. This field is only applicable when CSR 0x10.6:5 = 10.

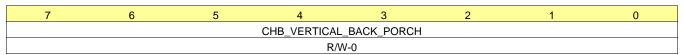
8.6.3.5.23 Address 0x36

Address 0x36 is shown in Figure 53 and described in Table 42.

Figure 53. Address 0x36

7	6	5	4	3	2	1	0			
	CHA_VERTICAL_BACK_PORCH									
	R/W-0									

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear


Table 42. Address 0x36 Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-0	CHA_VERTICAL_BACK_PORCH	R/W	0	TEST PATTERN GENERATION PURPOSE ONLY. This field controls the number of lines between the end of the VSync Pulse and the start of the active video data for Channel A/B.

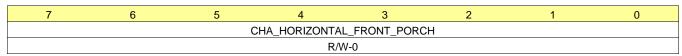
8.6.3.5.24 Address 0x37

Address 0x37 is shown in Figure 54 and described in Table 43.

Figure 54. Address 0x37

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 43. Address 0x37 Field Descriptions


ВІТ	FIELD	TYPE	RESET	DESCRIPTION
7-0	CHB_VERTICAL_BACK_PORCH	R/W	0	TEST PATTERN GENERATION PURPOSE ONLY. This field controls the number of lines between the end of the VSync Pulse and the start of the active video data for Channel B. This field is only applicable when CSR 0x10.6:5 = 10.

8.6.3.5.25 Address 0x38

Address 0x38 is shown in Figure 55 and described in Table 44.

Figure 55. Address 0x38

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 44. Address 0x38 Field Descriptions

ВІТ	FIELD	TYPE	RESET DESCRIPTION	
7-0	CHA_HORIZONTAL_FRONT_PORCH	R/W	0	TEST PATTERN GENERATION PURPOSE ONLY. This field controls the time in pixel clocks between the end of the active video data and the start of the HSync Pulse for Channel A/B.

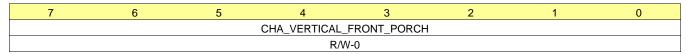
8.6.3.5.26 Address 0x39

Address 0x39 is shown in Figure 56 and described in Table 45.

Figure 56. Address 0x39

7	6	5	4	3	2	1	0		
	CHB_HORIZONTAL_FRONT_PORCH								
	R/W-0								

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear


Table 45. Address 0x39 Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-0	CHB_HORIZONTAL_FRONT_PORCH	R/W	0	TEST PATTERN GENERATION PURPOSE ONLY. This field controls the time in pixel clocks between the end of the active video data and the start of the HSync Pulse for Channel B. This field is only applicable when CSR 0x10.6:5 = 10.

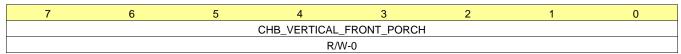
8.6.3.5.27 Address 0x3A

Address 0x3A is shown in Figure 57 and described in Table 46.

Figure 57. Address 0x3A

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 46. Address 0x3A Field Descriptions

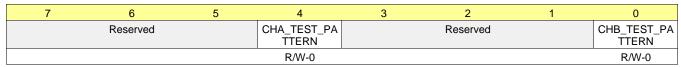

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-0	CHA_VERTICAL_FRONT_PORCH	R/W	0	TEST PATTERN GENERATION PURPOSE ONLY. This field controls the number of lines between the end of the active video data and the start of the VSync Pulse for Channel A/B.

8.6.3.5.28 Address 0x3B

Address 0x3B is shown in Figure 58 and described in Table 47.

Figure 58. Address 0x3B

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear


Table 47. Address 0x3B Field Descriptions

В	IT FIELD	TYPE	RESET	DESCRIPTION
7	-0 CHB_VERTICAL_FRONT_PORCH	R/W	0	TEST PATTERN GENERATION PURPOSE ONLY. This field controls the number of lines between the end of the active video data and the start of the VSync Pulse for Channel B. This field is only applicable when CSR 0x10.6:5 = 10.

8.6.3.5.29 Address 0x3C

Address 0x3C is shown in Figure 59 and described in Table 48.

Figure 59. Address 0x3C

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 48. Address 0x3C Field Descriptions

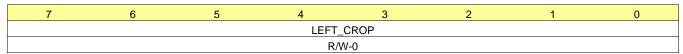
BIT	FIELD	TYPE	RESET	DESCRIPTION
7-5	Reserved			Reserved
4	CHA_TEST_PATTERN	R/W	0 TEST PATTERN GENERATION PURPOSE ONLY. When this bit is set, the SN65DSI85-Q1 will generate a video test pattern for Chan A based on the values programmed into the Video Registers for Channel A	
3-1	Reserved			Reserved
0	CHB_TEST_PATTERN	R/W	0	TEST PATTERN GENERATION PURPOSE ONLY. When this bit is set, the SN65DSI85-Q1 will generate a video test pattern for Channel B based on the values programmed into the Video Registers for Channel B. This field is only applicable when CSR 0x10.6:5 = 10

8.6.3.5.30 Address 0x3D

Address 0x3D is shown in Figure 60 and described in Table 49.

Figure 60. Address 0x3D

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear


Table 49. Address 0x3D Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-0	RIGHT_CROP	R/W	0	This field controls the number of pixels removed from the beginning of the active video line for DSI Channel B. This field only has meaning if LEFT_RIGHT_PIXELS = 1. This field defaults to 0x00. Note: When the SN65DS85-Q1 device is configured for dual DSI inputs in Left/Right mode and this field is programmed to a value other than 0x00, the CHB_ACTIVE_LINE_LENGTH_LOW/HIGH registers must be programmed to the number of active pixels in the Right portion of the line after RIGHT_CROP has been applied.

8.6.3.5.31 Address 0x3E

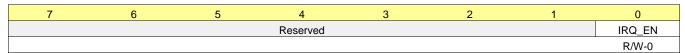
Address 0x3E is shown in Figure 61 and described in Table 50.

Figure 61. Address 0x3E

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 50. Address 0x3E Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-0	LEFT_CROP	R/W	0	This field controls the number of pixels removed from the end of the active video line for DSI Channel A. This field only has meaning if LEFT_RIGHT_PIXELS = 1. This field defaults to 0x00. Note: When the SN65DSI85-Q1 is configured for dual DSI inputs in Left/Right mode and this field is programmed to a value other than 0x00, the CHA_ACTIVE_LINE_LENGTH_LOW/HIGH registers must be programmed to the number of active pixels in the Left portion of the line after LEFT_CROP has been applied.



8.6.3.6 IRQ Registers

8.6.3.6.1 Address 0xE0

Address 0xE0 is shown in Figure 62 and described in Table 51.

Figure 62. Address 0xE0

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 51. Address 0xE0 Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7-1	Reserved			Reserved
0	IRQ_EN	R/W	0	When enabled by this field, the IRQ output is driven high to communicate IRQ events.
				0: IRQ output is high-impedance (default)
				1: IRQ output is driven high when a bit is set in registers 0xE5 or 0xE6 that also has the corresponding IRQ_EN bit set to enable the interrupt condition

8.6.3.6.2 Address 0xE1

Address 0xE1 is shown in Figure 63 and described in Table 52.

Figure 63. Address 0xE1

7	6	5	4	3	2	1	0
CHA_SYNCH_ ERR_EN	CHA_CRC_ER R_EN	CHA_UNC_EC C_ERR_EN	CHA_COR_EC C_ERR_EN	CHA_LLP_ERR _EN	CHA_SOT_BIT _ERR_EN	Reserved	PLL_UNLOCK_ EN
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		R/W-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 52. Address 0xE1 Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7	CHA_SYNCH_ERR_EN	R/W	0	0: CHA_SYNCH_ERR is masked
				1: CHA_SYNCH_ERR is enabled to generate IRQ events
6	CHA_CRC_ERR_EN	R/W	0	0: CHA_CRC_ERR is masked
				1: CHA_CRC_ERR is enabled to generate IRQ events
5	CHA_UNC_ECC_ERR_EN	R/W	0	0: CHA_UNC_ECC_ERR is masked
				1: CHA_UNC_ECC_ERR is enabled to generate IRQ events
4	CHA_COR_ECC_ERR_EN	R/W	0	0: CHA_COR_ECC_ERR is masked
				1: CHA_COR_ECC_ERR is enabled to generate IRQ events
3	CHA_LLP_ERR_EN	R/W	0	0: CHA_LLP_ERR is masked
				1: CHA_ LLP_ERR is enabled to generate IRQ events
2	CHA_SOT_BIT_ERR_EN	R/W	0	0: CHA_SOT_BIT_ERR is masked
				1: CHA_SOT_BIT_ERR is enabled to generate IRQ events
1	Reserved			Reserved
0	PLL_UNLOCK_EN	R/W	0	0: PLL_UNLOCK is masked
				1: PLL_UNLOCK is enabled to generate IRQ events

8.6.3.6.3 Address 0xE2

Address 0xE2 is shown in Figure 64 and described in Table 53.

Figure 64. Address 0xE2

7	6	5	4	3	2	1 0
CHB_SYNCH_ ERR EN	CHB_CRC_ER R EN	CHB_UNC_EC C ERR EN	CHB_COR_EC C ERR EN	CHB_LLP_ERR EN	CHB_SOT_BIT ERR EN	Reserved
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 53. Address 0xE2 Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7	CHB_SYNCH_ERR_EN	R/W	0	0: CHB_SYNCH_ERR is masked
				1: CHB_SYNCH_ERR is enabled to generate IRQ events
6	CHB_CRC_ERR_EN	R/W	0	0: CHB_CRC_ERR is masked
				1: CHB_CRC_ERR is enabled to generate IRQ events
5	CHB_UNC_ECC_ERR_EN	R/W	0	0: CHB_UNC_ECC_ERR is masked
				1: CHB_UNC_ECC_ERR is enabled to generate IRQ events
4	CHB_COR_ECC_ERR_EN	R/W	0	0: CHB_COR_ECC_ERR is masked
				1: CHB_COR_ECC_ERR is enabled to generate IRQ events
3	CHB_LLP_ERR_EN	R/W	0	0: CHB_LLP_ERR is masked
				1: CHB_ LLP_ERR is enabled to generate IRQ events
2	CHB_SOT_BIT_ERR_EN	R/W	0	0: CHB_SOT_BIT_ERR is masked
				1: CHB_SOT_BIT_ERR is enabled to generate IRQ events
1-0	Reserved			Reserved

8.6.3.6.4 Address 0xE5

Address 0xE5 is shown in Figure 65 and described in Table 54.

Figure 65. Address 0xE5

7	6	5 4		3	2	1	0	
CHA_SYNCH_ ERR	CHA_CRC_ER R	CHA_UNC_EC C ERR	CHA_COR_EC C ERR	CHA_LLP_ERR	CHA_SOT_BIT ERR	Reserved	PLL_UNLOCK	
R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0		R/W1C-1	

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 54. Address 0xE5 Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7	CHA_SYNCH_ERR	R/W1C	0	This bit is set when the DSI channel A packet processor detects an HS or VS synchronization error, that is, an unexpected sync packet). This bit is cleared by writing a 1 value.
6	CHA_CRC_ERR	R/W1C	0	This bit is set when the DSI channel A packet processor detects a data stream CRC error. This bit is cleared by writing a 1 value.
5	CHA_UNC_ECC_ERR	R/W1C	0	This bit is set when the DSI channel A packet processor detects an uncorrectable ECC error. This bit is cleared by writing a 1 value.
4	CHA_COR_ECC_ERR	R/W1C	0	This bit is set when the DSI channel A packet processor detects a correctable ECC error. This bit is cleared by writing a 1 value.
3	CHA_LLP_ERR	R/W1C	0	This bit is set when the DSI channel A packet processor detects a low level protocol error. This bit is cleared by writing a 1 value. Low level protocol errors include SoT and EoT sync errors, Escape Mode entry command errors, LP transmission sync errors, and false control errors. Lane merge errors are reported by this status condition.
2	CHA_SOT_BIT_ERR	R/W1C	0	This bit is set when the DSI channel A packet processor detects an SoT leader sequence bit error. This bit is cleared by writing a 1 value.
1	Reserved			Reserved
0	PLL_UNLOCK	R/W1C	1	This bit is set whenever the PLL Lock status transitions from LOCK to UNLOCK.

8.6.3.6.5 Address 0xE6

Address 0xE6 is shown in Figure 66 and described in Table 55.

Figure 66. Address 0xE6

7	6	5	4	3	2	1	0
CHB_SYNCH_ ERR	CHB_CRC_ER R	CHB_UNC_EC C_ERR	CHB_COR_EC C_ERR	CHB_LLP_ERR	CHB_SOT_BIT _ERR	Reserved	
R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0		

LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear

Table 55. Address 0xE6 Field Descriptions

BIT	FIELD	TYPE	RESET	DESCRIPTION
7	CHB_SYNCH_ERR	R/W1C	0	This bit is set when the DSI channel B packet processor detects an HS or VS synchronization error, that is, an unexpected sync packet. This bit is cleared by writing a 1 value.
6	CHB_CRC_ERR	R/W1C	0	This bit is set when the DSI channel B packet processor detects a data stream CRC error. This bit is cleared by writing a 1 value.
5	CHB_UNC_ECC_ERR	R/W1C	0	This bit is set when the DSI channel B packet processor detects an uncorrectable ECC error. This bit is cleared by writing a 1 value.
4	CHB_COR_ECC_ERR	R/W1C	0	This bit is set when the DSI channel B packet processor detects a correctable ECC error. This bit is cleared by writing a 1 value.
3	CHB_LLP_ERR	R/W1C	0	This bit is set when the DSI channel B packet processor detects a low level protocol error. This bit is cleared by writing a 1 value.
				Low level protocol errors include SoT and EoT sync errors, Escape Mode entry command errors, LP transmission sync errors, and false control errors. Lane merge errors are reported by this status condition.
2	CHB_SOT_BIT_ERR	R/W1C	0	This bit is set when the DSI channel B packet processor detects an SoT leader sequence bit error. This bit is cleared by writing a 1 value.
1-0	Reserved			Reserved

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

9.1.1 Video STOP and Restart Sequence

When the system requires to stop outputting video to the display, using the following sequence for the SN65DSI85-Q1 device is recommended:

- 1. Clear the PLL_EN bit to 0(CSR 0x0D.0).
- 2. Stop video streaming on DSI inputs.
- 3. Drive all DSI input lanes including DSI CLK lane to LP11.

When the system is ready to restart the video streaming.

- 1. Start video streaming on DSI inputs.
- 2. Set the PLL_EN bit to 1 (CSR 0x0D.0).
- 3. Wait for a minimum of 3 ms.
- 4. Set the SOFT_RESET bit (0x09.0).

9.1.2 Reverse LVDS Pin Order Option

For ease of PCB routing, the SN65DSI85-Q1 supports swapping, or reversing, the channel or pin order through configuration register programming. The order of the LVDS pin for LVDS Channel A or Channel B can be reversed by setting the address 0x1A bit 5 CHA_REVERSE_LVDS or bit 4 CHB_REVERSE_LVDS. The LVDS Channel A and Channel B can be swapped by setting the 0x1A.6 EVEN_ODD_SWAP bit. See the corresponding register bit definition in the Register Maps section for details.

9.1.3 IRQ Usage

The SN65DSI85-Q1 device provides an IRQ pin that can indicate when certain errors occur on DSI. The IRQ output is enabled through the IRQ_EN bit (CSR 0xE0.0). Individual error conditions for DSI Channel A are enabled through the Channel A Error Enable bits (CSR 0xE1.7-2). Individual error conditions for DSI Channel B are enabled through the Channel B Error Enable bits (CSR 0xE2.7-2). The IRQ pin is asserted when an error occurs on DSI, the corresponding error enable bit is set, and the IRQ_EN bit is set. An error is cleared by writing a 1 to the corresponding error status bit.

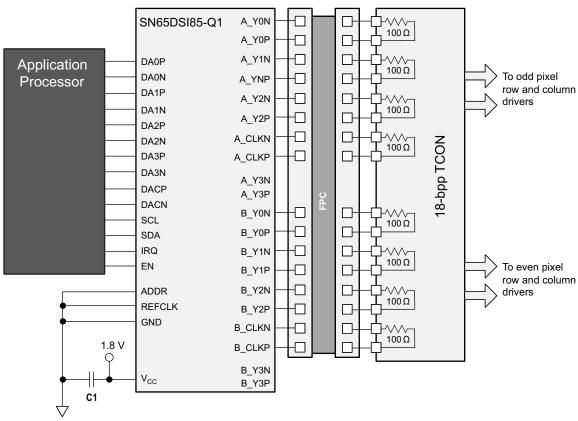
NOTE

If the SOFT_RESET bit is set while the DSI video stream is active, some of the error status bits may be set.

NOTE

If the DSI video stream is stopped, some of the error status bits may be set. These error status bits should be cleared before restarting the video stream.

NOTE


If the DSI video stream starts before the device is configured, some of the error status bits may be set. TI recommends to start streaming after the device is correctly configured as recommended in the initialization sequence in the Initialization Setup section.

9.2 Typical Applications

9.2.1 Typical WUXGA 18-bpp Application

Figure 67 shows a typical application using the SN65DSI85-Q1 configured for a single channel DSI receiver to interface a single-channel DSI application processor to an LVDS Dual-Link 18 bit-per-pixel panel supporting 1920 x 1200 WUXGA resolutions at 60 frames per second.

Copyright © 2016, Texas Instruments Incorporated

Figure 67. Typical WUXGA 18-bpp Panel Application

9.2.1.1 Design Requirements

Table 56 lists the design parameters for SN65DSI85-Q1.

Table 56. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Vcc	1.8 V (±5%)
CLOCK	DSIA_CLK
REFCKL Frequency	N/A
DSIA Clock Frequency	490 MHz
PANEL INFORMATION	
LVDS Output Clock Frequency	81 MHz
Resolution	1920 × 1200
Horizontal Active (pixels)	960
Horizontal Blanking (pixels)	144
Vertical Active (Lines)	1200
Vertical Blanking (lines)	20
Horizontal Sync Offset (pixels)	50

Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Typical Applications (continued)

Table 56. Design Parameters (continued)

DESIGN PARAMETER	EXAMPLE VALUE				
Horizontal Sync Pulse Width (pixels)	50				
Vertical Sync Offset (lines)	1				
Vertical Sync Pulse Width (lines)	5				
Horizontal Sync Pulse Polarity	Negative				
Vertical Sync Pulse Polarity	Negative				
Color Bit Depth (6 bpc or 8 bpc)	6-bit				
Number of LVDS Lanes	2 x [3 Data lanes + 1 Clock lane]				
DSI INFORMATION					
Number of DSI Lanes	1 x [4 Data Lanes + 1 Clock Lane]				
DSI Input Clock Frequency	490 MHz				
Dual DSI Configuration (Odd/Even or Left/Right)	N/A				

9.2.1.2 Detailed Design Procedure

The video resolution parameters required by the panel must be programmed into the SN65DSI85-Q1. For this example, the parameters programmed should be the following:

Horizontal active = 1920 or 0x780

CHA_ACTIVE_LINE_LENGTH_LOW = 0X80

CHA_ACTIVE_LINE_LENGTH_HIGH = 0x07

Horizontal pulse Width = 50 or 0x32

CHA HSYNC PULSE WIDTH LOW = 0x32

CHA_HSYNC_PULSE_WIDTH_HIGH= 0x00

Horizontal back porch = Horizontal blanking - (Horizontal sync offset + Horizontal sync pulse width)

Horizontal back porch = 144-(50 + 50)

Horizontal back porch = 44 or 0x2C

CHA_HORIZONTAL_BACK_PORCH = 0x2C

Vertical pulse width = 5

CHA_VSYNC_PULSE_WIDTH_LOW = 0x05

CHA_VSYNC_PULSE_WIDTH_HIGH= 0x00

The pattern generation feature can be enabled by setting the CHA_TEST_PATTERN bit at address 0x3C and configuring the following TEST PATTERN GENERATION PURPOSE ONLY registers.

Vertical active = 1200 or 0x4B0

CHA VERTICAL DISPLAY SIZE LOW = 0xB0

CHA_VERTICAL_DISPLAY_SIZE_HIGH = 0x04

Vertical back porch = Vertical blanking – (Vertical sync offset +Vertical sync pulse width)

Vertical back porch = 20: (1 + 5)

Vertical back porch = 14 or 0x0E

 $CHA_VERTICAL_BACK_PORCH = 0x0E$

Horizontal front porch = Horizontal sync offset

Horizontal front porch = 50 or 0x32

 $CHA_HORIZONTAL_FRONT_PORCH = 0x32$

Submit Documentation Feedback

Vertical front porch = Vertical sync offset Vertical front porch =1 CHA VERTICAL FRONT PORCH = 0x01

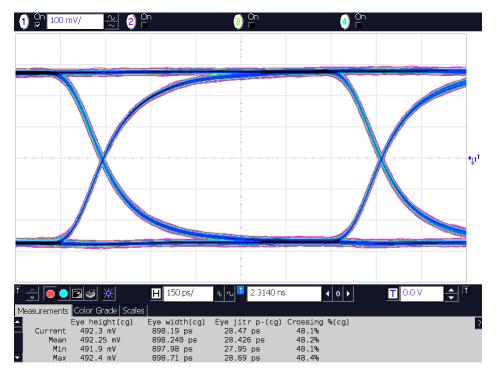
In this example, the clock source for the SN65DSI85-Q1 is the DSI clock. When the MIPI D-PHY clock is used as the LVDS clock source, it is divided by the factor in DSI_CLK_DIVIDER (CSR 0x0B.7:3) to generate the LVDS output clock. Additionally, LVDS_CLK_RANGE (CSR 0x0A.3:1) and CH_DSI_CLK_RANGE(CSR 0x12) must be set to the frequency range of the LVDS output clock and DSI Channel A input clock respectively for the internal PLL to operate correctly. After these settings are programmed, PLL_EN (CSR 0x0D.0) should be set to enable the internal PLL.

```
LVDS_CLK)RANGE = 010b - 62.5 MHz \leq LVDS_CLK < 87.5 MHz
HS_CLK_SRC = 1: LVDS pixel clock derived from MIPI D-PHY channel A HS continuous clock
DSI_CLK_DIVIDER = 00101b - Divide by 6
CHA_DSI_LANES = 00: Four lanes are enabled
CHA_DSI_CLK_RANGE = 0x62 - 490 MHz \leq frequency < 495 MHz
```

9.2.1.2.1 Example Script

```
<aardvark>
 <configure i2c="1" spi="1" gpio="0" tpower="1" pullups="1" />
 <i2c_bitrate khz="100" />
=====SOFTRESET======
 <i2c_write addr="0x2D" count="1" radix="16">09 01</i2c_write>
 <sleep ms="10" />
=====ADDR OD====== ====PLL_EN(bit 0) - Enable LAST after addr 0A and 0B configured=====
 <i2c_write addr="0x2D" count="1" radix="16">0D 00</i2c_write>
 <sleep ms="10" />
=====ADDR 0A====== =====HS CLK SRC bit0=== =====LVDS CLK Range bit 3:1=====
 <i2c_write addr="0x2D" count="1" radix="16">0A 05</i2c_write>
 <sleep ms="10" />
=====ADDR 0B====== ====DSI_CLK_DIVIDER bit7:3==== ====RefCLK multiplier(bit1:0)===== =====00 -
LVDSclk=source clk, 01 - x2, 10 -x3, 11 - x4=====
 <i2c_write addr="0x2D" count="1" radix="16">0B 28</i2c_write>
 <sleep ms="10" />
=====ADDR 10====== ====DSI Ch Confg Left_Right Pixels(bit7 -
0 for A ODD, B EVEN, 1 for the other config) ===== ====DSI Ch Mode(bit6:5) 00 - Dual, 01 -
 single, 10 - two single ====== =====CHA_DSI_Lanes(bit4:3), CHB_DSI_Lanes(bit2:1), 00 - 4, 01 -
 3, 10 - 2, 11 - 1 ======SOT_ERR_TOL_DIS(bit0)=======
 <i2c_write addr="0x2D" count="1" radix="16">10 26</i2c_write>
 <sleep ms="10" />
=====ADDR 12=====
 <i2c_write addr="0x2D" count="1" radix="16">12 62</i2c_write>
 <sleep ms="10" />
=====ADDR 18====== =====bit7: DE_Pol, bit6:HS_Pol, bit5:VS_Pol, bit4: LVDS Link Cfg, bit3:CHA
24bpp, bit2: CHB 24bpp, bit1: CHA 24bpp fmt1, bit0: CHB 24bpp fmt1======
 <i2c_write addr="0x2D" count="1" radix="16">18 63</i2c_write>
 <sleep ms="10" />
=====ADDR 19=====
 <i2c_write addr="0x2D" count="1" radix="16">19 00</i2c_write>
 <sleep ms="10" />
=====ADDR 1A=====
 <i2c_write addr="0x2D" count="1" radix="16">1A 03</i2c_write>
 <sleep ms="10" />
<i2c_write addr="0x2D" count="1" radix="16">20 80</i2c_write>
 <sleep ms="10" />
=====ADDR 21====== ====CHA_LINE_LENGTH_HIGH=======
 <i2c_write addr="0x2D" count="1" radix="16">21 07</i2c_write>
 <sleep ms="10" />
<i2c_write addr="0x2D" count="1" radix="16">22 00</i2c_write>
 <sleep ms="10" />
=====ADDR 23====== ====CHB_LINE_LENGTH_HIGH======
 <i2c_write addr="0x2D" count="1" radix="16">23 00</i2c_write>
 <sleep ms="10" />
=====ADDR 24===== ====CHA_VERTICAL_DISPLAY_SIZE_LOW=======
```

Submit Documentation Feedback


Copyright © 2016–2018, Texas Instruments Incorporated


```
<i2c_write addr="0x2D" count="1" radix="16">24 00</i2c_write>
 <sleep ms="10" />
=====ADDR 25====== ====CHA_VERTICAL_DISPLAY_SIZE_HIGH=======
 <i2c_write addr="0x2D" count="1" radix="16">25 00</i2c_write>
 <sleep ms="10" />
=====ADDR 26===== ====CHB_VERTICAL_DISPLAY_SIZE_LOW======
 <i2c_write addr="0x2D" count="1" radix="16">26 00</i2c_write>
 <sleep ms="10" />
=====ADDR 27====== ====CHB_VERTICAL_DISPLAY_SIZE_HIGH======
 <i2c_write addr="0x2D" count="1" radix="16">27 00</i2c_write>
 <sleep ms="10" />
<i2c_write addr="0x2D" count="1" radix="16">28 20</i2c_write>
 <sleep ms="10" />
<i2c_write addr="0x2D" count="1" radix="16">29 00</i2c_write>
 <sleep ms="10" />
<i2c_write addr="0x2D" count="1" radix="16">2A 00</i2c_write>
 <sleep ms="10" />
<i2c_write addr="0x2D" count="1" radix="16">2B 00</i2c_write>
 <sleep ms="10" />
=====ADDR 2C====== ====CHA_HSYNC_PULSE_WIDTH_LOW=======
 <i2c_write addr="0x2D" count="1" radix="16">2C 32</i2c_write>
 <sleep ms="10" />
=====ADDR 2D====== ====CHA_HSYNC_PULSE_WIDTH_HIGH=======
 <i2c_write addr="0x2D" count="1" radix="16">2D 00</i2c_write>
 <sleep ms="10" />
=====ADDR 2E====== ====CHB_HSYNC_PULSE_WIDTH_LOW=======
 <i2c_write addr="0x2D" count="1" radix="16">2E 00</i2c_write>
 <sleep ms="10" />
=====ADDR 2F====== ====CHB_HSYNC_PULSE_WIDTH_HIGH=======
 <i2c_write addr="0x2D" count="1" radix="16">2F 00</i2c_write>
 <sleep ms="10" />
=====ADDR 30====== ====CHA_VSYNC_PULSE_WIDTH_LOW=======
 <i2c_write addr="0x2D" count="1" radix="16">30 05</i2c_write>
 <sleep ms="10" />
=====ADDR 31====== ====CHA VSYNC PULSE WIDTH HIGH======
 <i2c_write addr="0x2D" count="1" radix="16">31 00</i2c_write>
 <sleep ms="10" />
=====ADDR 32====== ====CHB_VSYNC_PULSE_WIDTH_LOW=======
 <i2c_write addr="0x2D" count="1" radix="16">32 00</i2c_write>
 <sleep ms="10" />
<i2c_write addr="0x2D" count="1" radix="16">33 00</i2c_write>
 <sleep ms="10" />
=====ADDR 34====== ====CHA_HOR_BACK_PORCH======
 <i2c_write addr="0x2D" count="1" radix="16">34 2C</i2c_write>
 <sleep ms="10" />
=====ADDR 35====== ====CHB HOR BACK PORCH=======
 <i2c_write addr="0x2D" count="1" radix="16">35 00</i2c_write>
 <sleep ms="10" />
=====ADDR 36====== ====CHA_VER_BACK_PORCH======
 <i2c_write addr="0x2D" count="1" radix="16">36 00</i2c_write>
 <sleep ms="10" />
<i2c_write addr="0x2D" count="1" radix="16">37 00</i2c_write>
 <sleep ms="10" />
<i2c_write addr="0x2D" count="1" radix="16">38 00</i2c_write>
 <sleep ms="10" />
=====ADDR 39====== ====CHB_HOR_FRONT_PORCH======
 <i2c_write addr="0x2D" count="1" radix="16">39 00</i2c_write>
 <sleep ms="10" />
=====ADDR 3A====== ====CHA_VER_FRONT_PORCH======
 <i2c_write addr="0x2D" count="1" radix="16">3A 00</i2c_write>
 <sleep ms="10" />
=====ADDR 3B====== ====CHB_VER_FRONT_PORCH======
 <i2c_write addr="0x2D" count="1" radix="16">3B 00</i2c_write>
 <sleep ms="10" />
=====ADDR 3C====== ====CHA/CHB TEST PATTERN(bit4 CHA, bit0 CHB)=======
 <i2c_write addr="0x2D" count="1" radix="16">3C 00</i2c_write>
```


9.2.1.3 Application Curve

SINGLE Channel DSI to DUAL Channel LVDS

1440 × 1200

Figure 68. Channel A LVDS Data Output 0 Eye Diagram

Submit Documentation Feedback

9.2.2 Typical WQXGA 24-bpp Application

Figure 69 shows a typical application using the SN65DSI85-Q1 configured for a dual-channel DSI receiver to interface a dual-channel DSI application processor to an LVDS Dual-Link 24 bit-per-pixel panel supporting 2560 x 1600 WQXGA resolutions at 60 frames per second.

Copyright © 2016, Texas Instruments Incorporated

Figure 69. Typical WQXGA 24-bpp Panel Application

9.2.2.1 Design Requirements

Table 57 lists the design parameters for SN65DSI85-Q1.

Table 57. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
V _{CC}	1.8 V (±5%)
PANEL INFORMATION	
LVDS Output Clock Frequency	154 MHz
Resolution	2560 x 1600
Color Bit Depth (6 bpc or 8 bpc)	8-bit
Number of LVDS Lanes	2 x [4 Data lanes + 1 Clock lane]
DSI INFORMATION	
Number of DSI Lanes	2 x [4 Data Lanes + 1 Clock Lane]
DSI Input Clock Frequency	500 MHz

10 Power Supply Recommendations

10.1 V_{cc} Power Supply

Each V_{CC} power supply pin must have a 100-nF capacitor to ground connected as close as possible to the SN65DSI85-Q1 device. TI recommends to have one bulk capacitor (1 μ F to 10 μ F) on the supply. TI also recommends to have the pins connected to a solid power plane.

10.2 VCORE Power Supply

This pin must have a 100-nF capacitor to ground connected as close as possible to the SN65DSl85-Q1 device. TI recommends to have one bulk capacitor (1 μ F to 10 μ F) on the supply. TI also recommends to have the pins connected to a solid power plane.

11 Layout

11.1 Layout Guidelines

11.1.1 Package Specific

For the PAP package, to minimize the power supply noise floor, provide good decoupling near the SN65DSI85-Q1 device power pins. The use of four ceramic capacitors (2 × 0.1 μ F and 2 × 0.01 μ F) provides good performance. At the least, TI recommends to install one 0.1- μ F and one 0.01- μ F capacitor near the SN65DSI85-Q1 device. To avoid large current loops and trace inductance, the trace length between decoupling capacitor and device power inputs pins must be minimized. Placing the capacitor underneath the SN65DSI85-Q1 device on the bottom of the PCB is often a good choice.

11.1.2 Differential pairs

- Differential pairs must be routed with controlled 100-Ω differential impedance (±20%) or 50-Ω single-ended impedance (±15%).
- Keep away from other high speed signals.
- Keep lengths to within 5 mils of each other.
- Length matching must be near the location of mismatch.
- Each pair must be separated at least by 3 times the signal trace width.
- The use of bends in differential traces must be kept to a minimum. When bends are used, the number of left and right bends must be as equal as possible and the angle of the bend must be ≥ 135 degrees. This arrangement minimizes any length mismatch caused by the bends and therefore minimizes the impact that bends have on EMI.
- Route all differential pairs on the same of layer.
- The number of vias must be kept to a minimum. TI recommends to keep the via count to 2 or less.
- Keep traces on layers adjacent to ground plane.
- Do NOT route differential pairs over any plane split.
- Adding test points causes impedance discontinuity and therefore negatively impacts signal performance. If test points are used, they must be placed in series and symmetrically. They must not be placed in a manner that causes a stub on the differential pair.

11.1.3 Ground

TI recommends that only one board ground plane be used in the design which provides the best image plane for signal traces running above the plane. The thermal pad of the SN65DSI85-Q1 must be connected to this plane with vias.

11.2 Layout Example

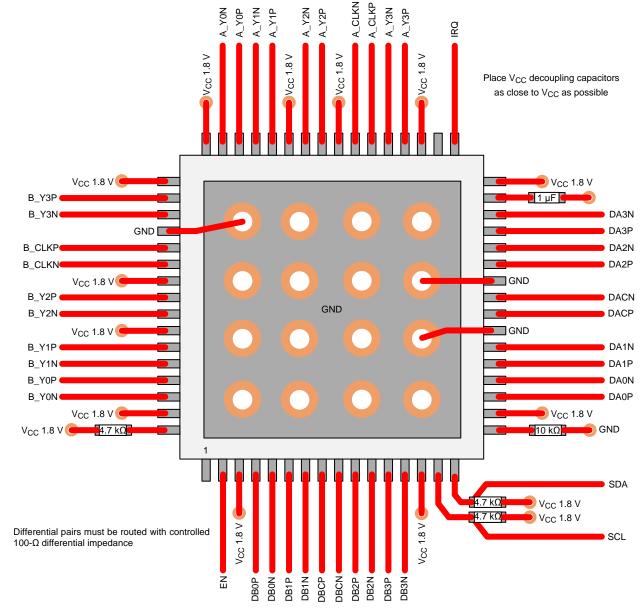


Figure 70. SN65DSI85-Q1 Layout Example

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

- SN65DSI8x Video Configuration Guide and Configuration Tool Software Users Manual, SLLA332
- SN65DSI83, SN65DSI84, and SN65DSI85 Hardware Implementation Guide, SLLA340

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Community Resource

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

PowerPAD, E2E are trademarks of Texas Instruments. MIPI is a registered trademark of Arasan Chip Systems, Inc.. All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 23-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
SN65DSI85TPAPRQ1	Active	Production	HTQFP (PAP) 64	1000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 105	DSI85TQ1
SN65DSI85TPAPRQ1.A	Active	Production	HTQFP (PAP) 64	1000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 105	DSI85TQ1

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN65DSI85-Q1:

Catalog: SN65DSI85

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

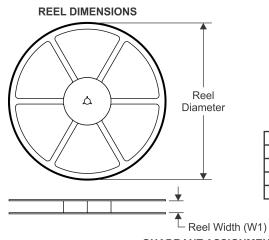
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

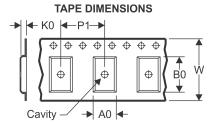
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 23-May-2025


NOTE: Qualified Version Definitions:

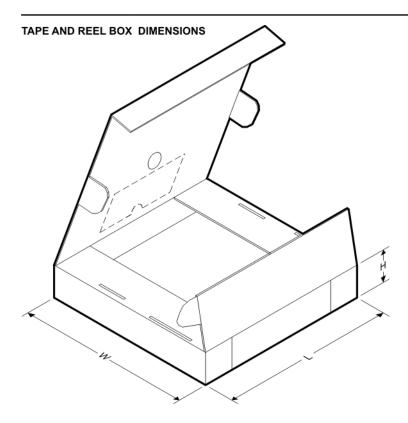

 $_{\bullet}$ Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com 16-May-2021

TAPE AND REEL INFORMATION

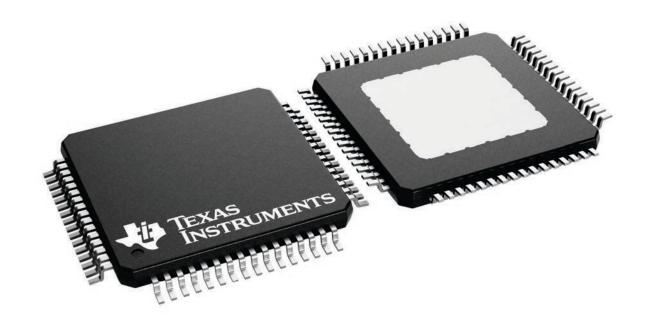
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

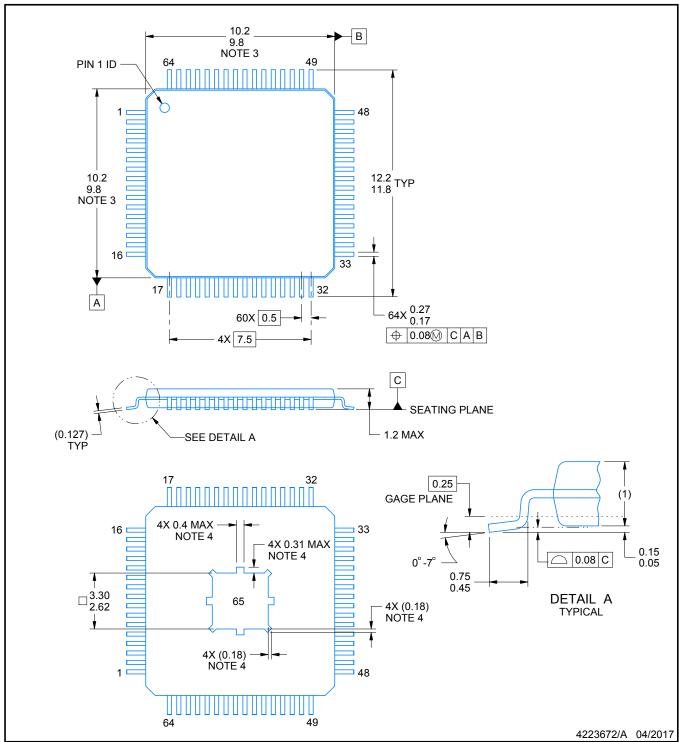
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65DSI85TPAPRQ1	HTQFP	PAP	64	1000	330.0	24.4	13.0	13.0	1.5	16.0	24.0	Q2

www.ti.com 16-May-2021


*All dimensions are nominal

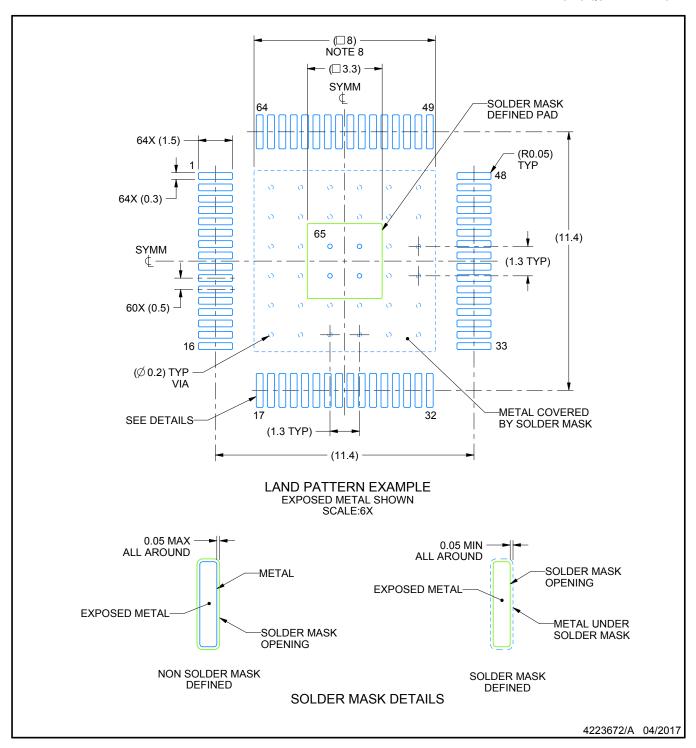
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65DSI85TPAPRQ1	HTQFP	PAP	64	1000	367.0	367.0	55.0

10 x 10, 0.5 mm pitch


QUAD FLATPACK

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

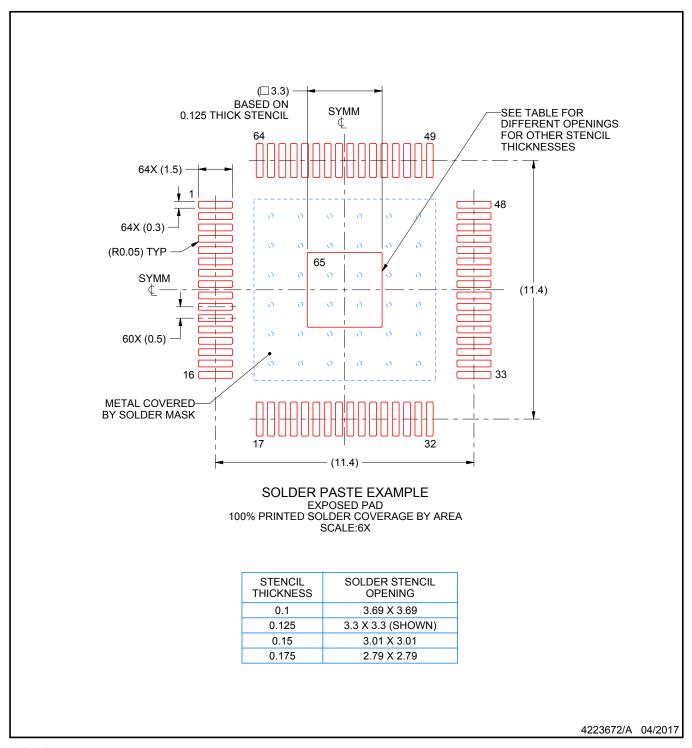
PLASTIC QUAD FLATPACK


NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs.
- 4. Strap features may not be present.
- 5. Reference JEDEC registration MS-026.

PLASTIC QUAD FLATPACK



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package, Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.
- 10. Size of metal pad may vary due to creepage requirement.

PLASTIC QUAD FLATPACK

NOTES: (continued)

^{11.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

^{12.} Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated