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In this application note we will do a system noise analysis of the PGA900 connected to a resistive bridge
pressure sensor. First, we will measure the noise referred to the output for the PGA900. Then, using these
measurement results we will calculate the noise-free resolution and effective resolution of the PGA900 for
its analog-to-digital converter operating at 64- and 128-us output data rates and different gain setups.
Next, we will summarize the trend between the output resolution and the signal bandwidth when an
additional moving average filter is applied. Finally, we will prove that an increase in resolution is minimal
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Introduction

When designing mixed signal systems, the most important factor is the accuracy of the output information.
Observing the PGA900 connected to a resistive bridge pressure sensor, the excitation signal will create a
voltage that will then be gained by the internal instrumentation amplifier (IA) and passed to the internal
analog-to-digital converter (ADC). The output of the PGA900 ADC will then be processed by the internal
digital filter before it is available at the PGA900 output.

In this signal chain environment, there are many places where the signal can be corrupted and create
inaccurate output data. The main problem for this measurement system is that noise can mask the signal.

The user can analyze several sources of noise separately:
* Resistive bridge noise

* |A gain stage noise

+ ADC noise

» Reference voltage

Instead of analyzing each single source of noise, this application note examines total noise that is present
at the system output and uses this information to determine the best achievable resolution of the input
signal.

PGA and ADC System Noise

Delta-sigma (AZX) analog-to-digital converters (ADCs) are based on the principle of oversampling. The
input signal of a A~ ADC is sampled at a high frequency (modulator frequency) and subsequently filtered
and decimated in the digital domain to yield a conversion result at the respective output data rate (DR).
The ratio between modulator frequency and output data rate is called oversampling ratio (OSR). By
increasing the OSR, and thus reducing the output data rate, the noise performance of the ADC can be
optimized. In other words, the input referred noise drops when reducing the output data rate because
more samples of the internal modulator are averaged to yield one conversion result. The delta-sigma
modulator of the PGA900 is second order with the output word size of 4 bits and a sampling frequency of
1 MHz. The output of the modulator passes through a third-order digital low-pass Sinc filter that has an
adjustable decimation ratio or OSR of 64 or 128. Output DR is 15.6 kSPS and 7.8 kSPS respectively.

To measure the amount of noise at the output of the PADC, the inputs VINPP and VINPN of the PGA900
are short circuited and connected to a heavily-decoupled, common mode voltage source. We used internal
reference voltage as the voltage source to keep measurements ratiometric. Figure 1 shows the
measurement setup.
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Figure 1. PGA900 Noise Measurement Test Circuit
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In most cases the conversion result is directly proportional to the stability of the reference sources. Any
noise and drift of the voltage reference is reflected in the conversion result. Using internal voltage
reference for ADC and bridge excitation allows the implementation of ratiometric measurements. In a
ratiometric measurement the same excitation voltage source that is used to excite the sensor is also used
to establish the reference for the ADC. The circuit in Figure 1 employs a ratiometric measurement
approach. In other words, the sensor signal (that is, the voltage across the resistive bridge in this case)
and the reference voltage for the ADC are derived from the same excitation source. Therefore, errors
resulting from temperature drift or noise of the excitation source cancel out because these errors are
common to both the sensor signal and the reference.

Then, 2048 output samples are collected that are representative of typical noise performance at T, = 25°C
using the internal 2.5-V reference. Data are the result of averaging readings from a single device over a
time period of approximately 0.26 and 0.13 seconds depending on OSR selection. These samples are
then plotted as a histogram and analyzed. Example of histogram for OSR of 128 and the gain setting of 80
VIV is shown in Figure 2. Bin with is 57.3 codes, standard deviation o is 157.3 codes and range is 1146
codes.
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Figure 2. Histogram of the Measurement Codes for Gain of 80 V/V

Device noise is approximately Gaussian in its distribution, the standard deviation of the histogram, o,
corresponds to the effective output's rms noise. This rms noise is expressed in terms of LSBs. The
corresponding rms input voltage and rms output noise are referenced to the ADC full-scale input range
(FSR), which is +2.5 V for the PGA900.

Knowing the peak-to-peak noise, the noise-free code resolution of the PGA900 ADC can be defined as
the number of bits of resolution beyond which it is impossible to distinctly resolve individual codes,
Equation 2. The ratio of the full-scale range to the rms input noise (rather than peak-to-peak noise) is
sometimes used to calculate resolution, Equation 1. In this case, the term effective resolution was used.
Note that under identical conditions, effective resolution is larger than noise-free code resolution by
log2(6.6), or approximately 2.7 bits.

Because of the similarity of the terms, effective number of bits (ENOB) and effective resolution are often
assumed to be equal. This assumption is not correct. ENOB is derived from a FFT analysis of the ADC
output when the ADC is stimulated with a full-scale sine-wave input signal. SINAD and ENOB are used to
measure the dynamic performance of an ADC, while effective resolution and noise-free code resolution
are used to measure the noise of the ADC under essentially dc input conditions, where quantization noise
and distortion are not a problem.

Noise measurements with shorted inputs are repeated for different gain settings. Table 1 and Table 2
summarize the device noise performance. Table 1 list the effective resolution calculated from o, rms noise
codes from histogram, using Equation 1. Note that noise-free resolution is calculated from peak-to-peak
noise values, also from histogram analysis, using Equation 2 as shown in parenthesis.

224
Effective resolution = log, _
rms noise (LSBs) (1)
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Noise-free resolution = log, -

peak-to-peak noise (LSBS) )

Table 2 lists the corresponding input-referred noise in units of yVgyg for the conditions shown previously.
Note that uVpp values are shown in parenthesis. RMS noise voltage is calculated from effective resolution
where there relationship is shown in Equation 3. Peak-to-pea noise voltage and its relationship to noise-
free resolution is shown in Equation 4.

Full-scale range

Effective resolution = log,

e, (Vrws) @
Noise-free resolution = log, Fulkscale range
e, (Vep) @
2xV
Full-scale range = <~ ~REF
GAIN )

Table 1. Effective Resolution from RMS Noise (Noise-Free Bits from Peak-to-Peak Noise)

DR GAIN (VIV)
(SPS) 5 9.09 14.29 22.22 40 80 133.3 400
7813 18.0 (15.1) | 18.0 (15.2) | 17.9 (14.9) | 17.7 (15.0) | 17.3 (14.4) | 16.7 (13.8) | 16.0 (13.2) | 14.4 (11.6)
15625 17.2 (14.6) | 17.2 (14.4) | 17.2 (14.1) | 17.0 (14.2) | 16.7 (13.8) | 16.1(13.3) | 15.5(12.6) | 14.0 (11.2)

Table 2. RTI Noise in uVgys (UVpp)

DR GAIN (V/V)
(SPS) 5 9.09 14.29 22.22 40 80 133.3 400
7813 3.85 (27.60) | 2.16 (14.59) | 1.44 (11.28) | 1.03(6.95) | 0.76 (5.60) | 0.59 (4.27) | 0.57 (3.89) | 0.57 (3.94)
15625 6.54 (41.13) | 3.67 (26.23) | 2.36 (19.60) | 1.67 (12.34) | 1.14 (8.72) | 0.89 (6.03) | 0.82 (6.04) | 0.76 (5.29)

The IA of the PGA900 that is interfacing the resistive bridge can provide a signal gain from 5 V/V up to
400 V/V.

This 1A is performing function of programmable gain amplifier (PGA) in the signal chain of PGA900.
Unfortunately, any noise present at the input of the 1A will also be gained along with the signal. This
means the total noise on the output of IA will be dominated by the broadband noise on the input, and its
magnitude will be dependent on the measurement bandwidth. The higher the gain, the higher output-
referred noise (RTO) will be. On the other hand, increasing the gain at the same time will reduces the
input-referred noise, which is particularly useful when measuring low-level signals. From Table 2 and
Figure 3 we can see how RTI noise changes for different gains.
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Figure 3. PGA900 RTI Noise vs Gain
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3 Applying Additional Digital Filter

The device uses a linear-phase finite impulse response (FIR) digital filter that performs both filtering and
decimation of the digital data stream coming from the modulator. Output data rate is selectable between
15.6 kSPS and 7.8 kSPS. The frequency responses of the digital filter are shown in Figure 4 and Figure 5
for two different output data rates.

. Nl

B N

o o
'

B N

o o
[

AN A A
[ HOADANAR A A
IR INRIATAAY,

10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
Frequency (kHz) Frequency (kHz)

Magnitude (dB)
[o2]
o
||
/\
Magnitude (dB)
[o2]
o

|
\

>
>

= '
o ®
o o
—

=
=}
S

SN
N
o

SN
N
o

o

Figure 4. ADC Filter Response (DR = 15.6 kSPS) Figure 5. ADC Filter Response (DR = 7.8 kSPS)

It is common for the ADCs used in this application to have data rates that are much higher than the
required system bandwidth. Therefore, additional digital filtering can be applied to further reduce the ADC
noise and therefore increase the noise-free resolution at the expense of the output data rate.

Adding a simple averaging filter creates a low-pass filter that will lower the in-band noise by 3 dB and
increase the measurement resolution by a half-bit for each two consecutive samples that are averaged.

1
W = =log, M
2
where
* Mis the number of consecutive samples averaged.
* Wi s the increase in output signal resolution. (6)

Frequency response of an M point moving average filter is shown in Equation 7. Example of its effect on
the signal noise can be seen in Figure 6. Averaging 32 samples, RTI noise can be reduced from 0.59
MVirus (4.27 PVpp) to 0.12 pVeys (0.76 pVep). Effective resolution will increase from 16.7 bit to 19.1 bit and
noise-free resolution from 13.8 bit to 16.3 bit. Output DR from the filter will decrease from 7.8 kSPS to 244
SPS as described by Equation 8.

1 sin(Mnff]
() = o ——%

sin(n fj
f S @)
DR _ DRADC
FILTER —
M ®
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Figure 6. ADC and Filter Output With Decimation Ratio by a Factor of M = 32

Table 3 shows dynamic performances of PGA900 with added moving average filter for different number of
averaged samples. Nyquist frequency is half of the DR, where —3-dB bandwidth is calculated using
Equation 7. Sinc filter that is implemented inside of the ADC is third order, so the step response of the
output signal can be calculated by following formula.

+M

Step response =
Rapc 9)

Table 3. Dynamic Performances of PGA900 With Added Moving Average Filter

M DR NYQUIST FREQUENCY —3-dB BANDWIDTH STEP RESPONSE
(samples) (SPS) (Hz) (Hz) (ms)

64 122 61 54 8.45

32 244 122 108 4.35

16 488 244 216.3 2.30

8 977 488 434.8 1.28

4 1953 977 888 0.77

2 3906 1953 1950.2 0.51

1 7813 3906 3455.1 0.38

Now data from previous noise measurements with shorted inputs for different gain settings are pass
through added moving average filter operating over different number of averaged samples. Table 4 and
Table 5 summarize the device new noise performance. Table 4 lists the effective resolution calculated
from o, rms noise codes from histogram when signal is pass through added moving average filter. Note
that noise-free resolution is calculated from peak-to-peak noise values, also from the same histogram
analysis, are shown in parenthesis.

Table 5 lists the corresponding new input-referred noise in units of pVgys for the conditions shown
previously. Note that new uV,, values are shown in parenthesis.
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Table 4. Effective Resolution from RMS Noise (Noise-Free Bits from Peak-to-Peak Noise) With
Added Moving Average Filter

DR GAIN (VIV)

(SPS) 5 9.09 14.29 22.22 40 80 133.3 400
61 21.4 (19.0) | 21.5(19.0) | 21.1(18.9) | 20.8 (18.4) | 20.3(18.1) | 20.2 (17.8) | 19.0 (16.6) | 17.5(15.1)
122 20.8 (18.4) | 20.7 (18.1) | 20.6 (18.2) | 20.3 (17.9) | 19.9 (17.7) | 19.6 (17.1) | 18.6 (16.1) | 17.0 (14.6)
244 20.2 (17.6) | 20.2(17.6) | 20.1(17.2) | 19.8 (17.3) | 19.3(16.7) | 19.1(16.3) | 18.1(15.5) | 16.6 (14.1)
488 19.7 (17.0) | 19.6 (17.0) | 19.5(16.9) | 19.4 (17.1) | 18.8(16.2) | 18.4(15.8) | 17.6 (15.0) | 16.1(13.6)
977 19.2 (16.6) | 19.1(16.4) | 19.0 (16.4) | 18.9 (16.2) | 18.4(15.7) | 17.9 (15.2) | 17.1(145) | 15.6 (12.9)

1953 18.7 (16.0) | 18.6 (16.0) | 18.5(15.8) | 18.4 (15.5) | 18.0(15.2) | 17.4 (14.9) | 16.6 (14.0) | 15.1 (12.4)

3906 18.3 (15.5) | 18.2(15.6) | 18.2 (15.4) | 18.0(15.2) | 17.6 (14.7) | 17.0 (14.3) | 16.3 (13.5) | 14.7 (12.0)

ADC OUTPUT
7813 | 18.0(151) | 18.0(152) | 17.9(14.9) | 17.7(15.0) | 17.3(14.4) | 16.7 (138) | 16.0(13.2) | 14.4 (116)
Table 5. RTI Noise in uVgys (UWVep) With Added Moving Average Filter
DR GAIN (V/V)

(SPS) 5 9.09 14.29 22.22 40 80 133.3 400
61 0.36 (1.87) | 0.19(1.02) | 0.15(0.73) | 0.12 (0.63) | 0.10(0.44) | 0.05(0.28) | 0.07 (0.37) | 0.07 (0.36)
122 0.54 (2.84) | 0.32(1.95) | 0.22(1.19) | 0.18 (0.94) | 0.13(0.60) | 0.08 (0.44) | 0.10(0.53) | 0.09 (0.49)
244 0.83 (4.94) | 047 (2.77) | 0.32(2.25) | 0.24 (1.36) | 0.19(1.13) | 0.12(0.76) | 0.13(0.82) | 0.12 (0.69)
488 1.15 (7.65) | 0.68 (4.10) | 0.48 (2.95) | 0.33(1.65) | 0.27 (1.62) | 0.18 (1.08) | 0.19 (1.16) | 0.18 (1.01)
977 1.66 (9.99) | 0.98 (6.44) | 0.67 (3.99) | 0.47(3.07) | 0.37(2.27) | 0.26 (1.71) | 0.27 (1.66) | 0.26 (1.66)

1953 2.35 (15.48) | 1.35(8.65) | 0.92(5.97) | 0.66 (4.72) | 0.49(3.30) | 0.36 (2.11) | 0.37 (2.35) | 0.36 (2.31)

3906 3.15 (21.90) | 1.79 (11.23) | 1.20(8.18) | 0.86 (5.93) | 0.63 (4.55) | 0.48 (3.08) | 0.48 (3.15) | 0.48 (3.02)

ADC OUTPUT
7813 | 3.85 (27.60) | 2.16 (14.59) | 1.44 (11.28) | 1.03(6.95) | 0.76 (5.60) | 0.59 (4.27) | 057 (3.89) | 0.57 (3.94)
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Conclusion

In this application note, we measured ADC output noise with shorted PGA inputs. Significant RTI noise
improvement is seen for gain increase up to 80 V/V. For gain from 80 V/V up to 400 V/V there is
insignificant decrease in RTI noise. We also show how noise-free resolution and effective resolution
change for different gain settings. At the end we summarized the trend between the output resolution and
the signal bandwidth when an additional moving average filter is applied. For different number of averaged
samples we show how dynamic performance of the system change and how resolution increase.
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