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Introduction

Developers of battery-powered devices often have 

the challenge to offer high levels of functionality 

and performance while simultaneously maximizing 

battery life.  Applications like water and gas flow 

meters, medical monitoring devices and remote 

sensors typically demand months or even years of 

battery life from a single battery. In some cases, 

developers are also challenged to develop next 

generation products with no battery at all, requir-

ing energy harvesting from environmental sources 

such as heat, vibration and light.  Furthermore, 

as the demand for longer battery life and smaller 

batteries increases in more applications, users 

continue to demand more functionality and higher 

performance in their products. 

To maximize functionality and battery life, develop-

ers of these battery-powered applications must 

consider many factors in their system architecture 

and design.  In these applications, the micro-

controller is a primary power consumer and 

developers must carefully consider the way energy 

is used.  This article focuses on breaking down the 

primary modes in which microcontrollers consume 

energy by describing the critical parameters that 

must be considered in each of these modes, and 

by providing a holistic framework for developers 

to evaluate and compare microcontrollers in the 

context of specific applications.  By understanding 

the many ways microcontrollers consume energy, 

developers can make system architecture deci-

sions, choose optimal components and provide 

microcontroller users with optimized functionality 

and longer battery life.
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W H I T E  P A P E R

Power is more than just one number 
To maximize battery life, developers must minimize power consumption over the life of the product.  

Total power and energy are defined as:

Power = I x V

Energy = I x Time x V

 To minimize power or energy consumption from the system microcontroller, a developer can 

simply examine product datasheets to determine the current consumed at the CPU frequency 

needed for the application. Multiply this current by the battery voltage, and use the resulting data to 

choose the lowest power microcontroller.   This seems simple; however, consider a few hypothetical 

questions about typical applications to determine if this view of power consumption is comprehensive:

	 •	 Does	the	system	go	into	a	standby	mode	when	the	microcontroller	is	not	running?

	 •	 Is	the	system	required	to	automatically	wake	itself	up	at	specific	time	intervals?

	 •	 Does	the	system	take	any	real-world	analog	signal	measurements?

	 •	 Does	the	system	need	to	record	any	data	for	analysis	or	transmission	at	a	later	time?

 While these are just a few of the questions developers must consider when optimizing power 

consumption, a majority of battery-powered applications answer  “yes” to several of the questions 

above. The simple method of looking at microcontroller current and voltage does not result in an 

accurate representation of microcontroller power consumption.

 For developers to gain a comprehensive view of microcontroller power consumption, they must 

consider four primary power categories:

•	 Standby power – Typical microcontroller applications spend a majority of their product 

 life in a low-power standby mode waiting for an internal or external event to wake-up the 

 CPU to process data, make decisions and communicate with other system components.  In 

 many battery-powered applications, standby power consumes the largest amount of energy 

 and battery life.

•	 Peripheral power – Modern microcontrollers integrate many intelligent peripherals allowing 

 communication with other system components and measuring real-world signals.  In systems 

 measuring analog signals, this can have a significant impact on battery life.

•	 Data logging power – Most microcontroller applications log data for analysis or transmission at 

 a later time.  This data is logged using non-volatile memory, either inside or outside of the micro

 controller.  Depending on the frequency and amount of data that has to be recorded, data logging 

 can greatly impact battery life.

•	 Active power –  Understanding power when the CPU is actively processing is critical to 

 maximizing battery life.



Total Energy = EnergyActive + EnergyStandby

Time x I x V = TimeActive x IActive x V + TimeStandby x IStandby x V

 For battery powered applications, 3V is the typical nominal battery voltage. It is also the voltage at which many 

power consumption numbers are specified in datasheets. To narrow the elements in the power calculations to 

those under the influence of the microcontroller, we excluded voltage from further calculations so that average cur-

rent is the focus.  Obviously, power and energy consumed change dramatically if a different voltage level is used. 

Additionally, we removed the time aspects so each component of power is viewed as part of the overall average 

current.  For information on the ratio of time spent in each component of the power calculation, developers should 

look at the particular system.  In this case, we chose a generic remote sensing application as it is widely applicable, 

and we used the MSP430FR59xx as the example microcontroller with embedded ferroelectric random access 

memory (FRAM) for data logging.

IAverage = IStandby x RatioStandby + IActive x RatioActive + IPeripheral x RatioPeripheral + IData x RatioData

 A remote sensor is one example of a typical low-power, battery-powered product, commonly used in industrial, 

seismology, agriculture, building automation and security applications.  Typical processing flow in this type of 

application would be:

Component Application activity

Peripheral 256 samples of sensor data; pressure, heat, vibration, chemical, etc

Active Process analog inputs, compare to threshold, average inputs

Data Store 16 bytes in non-volatile memory every cycle

Standby Wakes once every 3 seconds to run the program; maintain RTC, capable of wake on IO interrupt

 Clearly, power is more than just one number, and the four categories previously mentioned provide a broad 

framework that must be considered when developing a battery-powered system. However, each category itself is 

complex and the specific application requirements require careful consideration.
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Table 1: Remote sensing application activity profile

Figure 1: Model remote sensing application
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Standby
power

Table 2: Impact of IStandby on total power based on ratio of active to standby time

 It is common for developers to start their processor power analysis by considering active processing power. 

Though it may seem counterintuitive, the power the microcontroller consumes when it is not operating is often 

more important than active processing power.  Referring back to the remote sensing application, the system 

typically wakes up from standby mode once every three seconds, so the system is in standby mode greater than 

99% of the time.  The table below uses typical specs from Texas Instruments’ (TI) “Wolverine”-based MSP-

430FR59xx microcontroller family with a 500nA standby mode to illustrate the impact of standby power on total 

microcontroller power across varied active time to standby time ratios:

\Active to 
Standby Ratio

% Time in 
Standby

TimeActive x IActive 
(µAs)

TimeStandby x IStandby 
(µAs)

Total 
Charge 
(µAs)

% Impact of IStandby 
to Total Power

1:10 90% 100 5 107 6.54%

1:100 99% 100 50 150 33%

1:1,000 99.9% 100 500 600 83.3%

 As table 2 demonstrates, as the ratio of active to standby exceeds 1:100, understanding the true standby cur-

rent becomes critical.  At 1:1000, for example, standby current begins to account for nearly 85% of system power.  

Thus, a 10% error in standby power estimations corresponds to an 8.5% difference in battery operating 

life calculations – lowering battery life by months or even years.

 To help developers accurately evaluate the standby current the microcontroller will consume, the following 

system considerations and microcontroller parameters need to be considered and accounted for in the standby 

current estimate:

	 •	 Automatic wake-up on time intervals – Modern microcontrollers often offer real-time clocks (RTC) that 

  can run in low-power standby modes enabling the microcontroller to wake-up automatically at specified 

  time intervals.  The remote sensing application uses this capability to wake up once every three seconds 

  to measure analog data.  It is important to understand the current required to run the RTC in standby mode 

  as this can be a significant portion of standby current.

	 •	 RAM retention during standby – Maintaining RAM contents during standby allows microcontrollers to  

  wake-up quickly without running startup code that consumes valuable energy.  This saves energy and time 

  for lower system latency.  The current required to enable RAM retention modes can be significant and 

  needs to be carefully considered.

	 •	 Interrupt capabilities – Microcontrollers can often leave certain peripherals active in standby modes, 

  enabling the microcontroller to wake-up quickly with certain events such as a UART command or GPIO 

  interrupt. The remote sensing example monitors two-to-three GPIO lines constantly to wake-up the 

  processor for instant activity.

	 •	 Power monitoring – Brown out reset (BOR) and supply voltage supervisor (SVS) are important circuits 

  that monitor the integrity of the microcontroller’s power source.  Faults and interruptions to the 

  microcontroller power source can impact the reliability of operation.  It is critical to include these currents in 

  the standby current estimations. This can add as little as a few nanoamps to as much as 500microamps to 

  standby numbers.

	 •	 Temperature – Temperature is often overlooked on low-power system designs, however modern 

  semiconductor processes often drive much higher leakage currents at higher temperatures – in some 

  cases as much as 10-15 times more standby current between 25°C and 85°C. 
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Microcontrollers like TI’s MSP430FR59xx devices have been designed from the ground-up to optimize for 

lowest-standby power employing advanced power and clock gating features, ultra-low-power analog circuit 

designs and advancements in silicon technology such as embedded FRAM.  In the case of the remote sense 

application, the MSP430FR59xx microcontroller can enable RTC-standby mode with RAM retention, SVS/BOR and 

GPIO interrupt capability for as little as 500 nanoamps.

 For many low-power battery-powered applications, standby power can be the primary impact to battery life, 

and it is critical that developers consider how the features required in the application impact the standby current.  

It can make a difference in years of battery life or save on system cost by using a lower capacity, less expensive 

battery. In the remote sensing example, the average standby current can be estimated as:

AvgIStandby = IStandby x (TimeStandby/TimeTotal) = (2.997s/3s) x .5µA = .4995µA

(Assumptions: 500nA LPM3.5 w/ RTC, SVS, and BOR at 25C; SLAS704)

 Low-power embedded systems often use analog, digital interfaces, references and other circuitry to achieve 

system functionality goals.  Modern microcontrollers have increasingly integrated more of these functions to 

simplify design complexity, lower system cost, enable smaller devices and decrease power consumption.  

Developers of these systems must carefully consider both the capabilities of the microcontroller as well as the 

power consumption of peripherals to efficiently optimize designs for maximum functionality and battery life.  

In the case of the remote sensing application introduced earlier in the article, an analog-to-digital converter 

(ADC) is used to measure a real-world signal such as an infrared sensor, temp sensor, or some other sensor.  

To accurately estimate peripheral power, developers should consider the following system design characteristics

and microcontroller parameters:

 •	 ADC – Current consumed variable across sampling speeds and operating modes, so make sure to browse 

  the datasheet for the mode most appropriate to each application.

	 •	 Comparator – Comparators are often low-power solutions to achieve the same basic analog 

  measurements performed with an ADC.

	 •	 Voltage reference – To minimize external components, often internal voltage references are provided with 

  microcontrollers.  These references are used in ADCs, comparators and other analog circuits.  In many 

  cases, the current consumed by the voltage reference is not included in the current specifications for the 

  peripheral in use. Developers need to consider this as the reference can often be larger than the 

  comparator or ADC that is using it.

	 •	 Digital interfaces – UART, I2C, and SPI are among the many digital interfaces used in embedded systems.  

  Each of these peripherals consume valuable energy impacting battery life.  Data rate and drive strength on 

  these digital interfaces need to be carefully considered to estimate the current consumption.

 In any application that requires measurement of real-world analog signals or the use of digital interfaces, 

developers must consider these currents in addition to the active power or the standby power depending on what 

modes in which the peripherals are used.  

AvgIPeripheral = (TimePeripheral/TimeTotal ) x IPeripheral = (0.00128s/3s) x 75µA= .032µA

Assumptions: 256 samples at 200ksps at current of 75µA (SLAS704) is .00128s

Peripheral power
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Many microcontroller applications need to record measurements and data for use later in the application. For 

example, the most recent data could be compared to past data recorded to look for larger trends.  Logging data 

on the sensor itself can also give users critical information from the moment of failure, as in the case of intelligent 

circuit breakers or automotive black boxes.

 Data logging can be extremely difficult when using a small, low-cost battery.  The current required to erase 

and program Flash can vary from 4-to-12 mA.  This cannot be directly sourced by coin cells that have a maximum 

current of 3-to-4mA.  Also, such operations take more than two dozen milliseconds just to set-up and erase the 

memory before programming, and then about the same time to write the required sector of Flash.  In addition, if an 

external memory is used for storage, there is an extra cost for using the serial communication interface to transfer 

data.  This adds peripheral and active current consumption to the system.

 This is important because it means that either a larger, more expensive battery must be used, or a lower-

power external memory must be added to the design.  These are both costly options and sometimes difficult to 

implement due to size constraints.

 Another key point is that logging data at slower rates in FRAM drastically lowers the current consumption.  It 

can be as low as 9µA to log data at the relatively quick rate of 13 kilobytes per second.  This is about 500 times 

lower than the same rate with Flash!

AvgIDataLog = TimeData x (IData/TimeTotal) = .0012s x 9µA/3s = .0036µA

Assumptions: 16 bytes at 13kBps is .00128s at 9µA (Bench Measurements SLAA498)

Active CPU power is often viewed as the largest power consumer in battery-powered applications. As the previous 

sections have shown, there are many other sources of power consumption in a microcontroller system.  That said, 

it is important that microcontroller software and hardware is optimized to minimize active power to take advantage 

of intelligent peripherals and utilize standby power modes that consume less energy.   

  To accurately estimate active power, developers should consider using the following microcontroller features, 

specifications and methods:

	 •	 Software execution from non-volatile memory or RAM – Developers must carefully consider whether 

  software is executed from non-volatile memories or RAM in estimating the current consumption.  

  Executing from RAM can offer lower active current specifications; however, many applications are not small 

  enough to execute from RAM alone and require programs be executed from non-volatile memory.

	 •	 Bus clocks enabled or disabled – Most microcontroller applications require access to memories and 

  peripherals during software execution. This requires bus clocks to be enabled and needs to be considered 

  in active current estimates.

	 •	 DMA – Many microcontrollers have DMA features that allow peripherals to complete activities using DMA’s 

  while the CPU is sleeping – enabling substantially lower currents at the system level.  It is important to 

  consider whether this is possible with the particular peripheral or task as this can save significant current.

	 •	 Acceleration – Low-power microcontrollers typically employ accelerators that lower the number of cycles 

  and energy required for specific tasks.  For instance, AES256 encryption can take as much as 7,000 CPU 

  cycles without acceleration.  With hardware accelerators, the same encryption can take approximately 500 

  CPU cycles.  In this case, hardware acceleration can reduce active processing time by more than 10x!

	 •	 Use optimized code – Microcontroller code can be optimized for shortest execution time using intelligent 

  code structure and compiler optimizations. 

Data logging power

Active power



Bringing it all together: 
Remote sensing 

applications

 Ensuring the proper conditions and optimization techniques are employed when estimating the number of 

cycles required for active processing tasks and the active current required is critical to accurately estimate peak 

currents and battery life impact.  Referring back to the remote sensing application, the average current is 

calculated as:

AvgIActive = TimeActive x (IActive/TimeTotal) = 70µs x 1230µA/3s = .029µA

Assumptions: 1000 cycles required to complete averaging of 256 samples at 16MHz = 70µs; 

Active current @16MHz = 1.23mA

To illustrate how standby, peripheral, data logging and active CPU power work together to determine total battery 

life, the remote sensing application calculations derived in each section can be easily combined to show the total 

projected battery life of this typical application. Starting with an average power calculation:

AvgITotal 

    = AvgIStandby + AvgIPeriperal + AvgIActive + AvgIDataLog 

    = 0.4995 + 0.032 + 0.029 + 0.0036 = 0.5641µA

 As you can see, standby current has by far the largest impact on average current, followed by analog and 

active in the case of remote sensing applications.  The impact of individual components is dependent on the duty 

cycle of the specific application.  The average current can be easily translated into battery life by taking the charge 

in a common CR2032 battery that can be purchased for under $1 at 230mAh.

230000µAh/0.5641µA 

   = 407,729 hours 

   = 16,988 days 

   = 46 years of battery life (far longer than the shelf discharge of 8-10 years)

 Because the microcontroller power consumption has been minimized, this gives the developer the opportu-

nity to add other system features to their system and still offer 5-to-10 years of battery life from a single coin cell 

battery.  In addition, this type of calculation can be easily extended by using the same use case to evaluate several 

different microcontrollers to determine which offers the lowest power capability for a specific application.  In the 

table below, four different microcontrollers are evaluated using the same remote sensing application example:

Figure 2: Average current comparison

Benchmarking MCU power consumption for ultra-low-power applications   November 2012

5 Texas Instruments



6Texas Instruments

SLAY023

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard terms and conditions of sale. 
Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, 
customer’s applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does 
not constitute TI’s approval, warranty or endorsement thereof.

The platform bar and MSP430 are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

E010208

© 2012 Texas Instruments Incorporated

 While the remote sensing application was used as an example, it is typical of use cases for many low-power, 

battery-powered products that require long battery lifetimes. Water and gas flow meters, heart rate monitors, 

pedometers and industrial sensors all employ similar techniques to minimize costs, meet regulatory standards and 

meet consumer demands. To maximize battery life, all four components of microcontroller power consumption 

must be considered.

For developers, meeting the needs of increased system functionality and performance objectives while 

increasing the battery life of products is a significant challenge.  To effectively develop products that deliver the 

longest possible battery life – or even operate with no battery at all – requires a deep understanding of the both 

the system requirements and the microcontroller’s current specifications.  This is much more complex than 

simply estimating how much current the CPU consumes when active. Depending on the application being 

developed, standby current, peripheral current, or data logging current may have a more significant impact on 

battery life than CPU power.

 This article was created to build a simple framework to help developers understand how microcontrollers 

consume power, how power can be optimized and how power consumption can be fairly compared across available 

microcontroller solutions, to enable the developer to meet the specific needs of their application.

 TI will continue to push the boundaries of low power through optimization of ALL key areas of power

 consumption.  TI’s ultra-low-power MSP430™ portfolio has been designed with low-power at the foundation – 

through silicon technology advancements, low-power design techniques, intelligent peripherals and accelerators 

and low-power design tools.

 

For more information on ultra-low-power design and TI’s extensive portfolio of ultra-low-power products, 

visit www.ti.com/ulp.
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