
Benchmarking MCU
power consumption for
ultra-low-power applications

Introduction

Developers of battery-powered devices often have

the challenge to offer high levels of functionality

and performance while simultaneously maximizing

battery life. Applications like water and gas flow

meters, medical monitoring devices and remote

sensors typically demand months or even years of

battery life from a single battery. In some cases,

developers are also challenged to develop next

generation products with no battery at all, requir-

ing energy harvesting from environmental sources

such as heat, vibration and light. Furthermore,

as the demand for longer battery life and smaller

batteries increases in more applications, users

continue to demand more functionality and higher

performance in their products.

To maximize functionality and battery life, develop-

ers of these battery-powered applications must

consider many factors in their system architecture

and design. In these applications, the micro-

controller is a primary power consumer and

developers must carefully consider the way energy

is used. This article focuses on breaking down the

primary modes in which microcontrollers consume

energy by describing the critical parameters that

must be considered in each of these modes, and

by providing a holistic framework for developers

to evaluate and compare microcontrollers in the

context of specific applications. By understanding

the many ways microcontrollers consume energy,

developers can make system architecture deci-

sions, choose optimal components and provide

microcontroller users with optimized functionality

and longer battery life.

Jacob Borgeson
Stefan Schauer

Horst Diewald
Texas Instruments

W H I T E P A P E R

Power is more than just one number
To maximize battery life, developers must minimize power consumption over the life of the product.

Total power and energy are defined as:

Power = I x V

Energy = I x Time x V

 To minimize power or energy consumption from the system microcontroller, a developer can

simply examine product datasheets to determine the current consumed at the CPU frequency

needed for the application. Multiply this current by the battery voltage, and use the resulting data to

choose the lowest power microcontroller. This seems simple; however, consider a few hypothetical

questions about typical applications to determine if this view of power consumption is comprehensive:

	 •	 Does	the	system	go	into	a	standby	mode	when	the	microcontroller	is	not	running?

	 •	 Is	the	system	required	to	automatically	wake	itself	up	at	specific	time	intervals?

	 •	 Does	the	system	take	any	real-world	analog	signal	measurements?

	 •	 Does	the	system	need	to	record	any	data	for	analysis	or	transmission	at	a	later	time?

 While these are just a few of the questions developers must consider when optimizing power

consumption, a majority of battery-powered applications answer “yes” to several of the questions

above. The simple method of looking at microcontroller current and voltage does not result in an

accurate representation of microcontroller power consumption.

 For developers to gain a comprehensive view of microcontroller power consumption, they must

consider four primary power categories:

•	 Standby power – Typical microcontroller applications spend a majority of their product

 life in a low-power standby mode waiting for an internal or external event to wake-up the

 CPU to process data, make decisions and communicate with other system components. In

 many battery-powered applications, standby power consumes the largest amount of energy

 and battery life.

•	 Peripheral power – Modern microcontrollers integrate many intelligent peripherals allowing

 communication with other system components and measuring real-world signals. In systems

 measuring analog signals, this can have a significant impact on battery life.

•	 Data logging power – Most microcontroller applications log data for analysis or transmission at

 a later time. This data is logged using non-volatile memory, either inside or outside of the micro

 controller. Depending on the frequency and amount of data that has to be recorded, data logging

 can greatly impact battery life.

•	 Active power – Understanding power when the CPU is actively processing is critical to

 maximizing battery life.

Total Energy = EnergyActive + EnergyStandby

Time x I x V = TimeActive x IActive x V + TimeStandby x IStandby x V

 For battery powered applications, 3V is the typical nominal battery voltage. It is also the voltage at which many

power consumption numbers are specified in datasheets. To narrow the elements in the power calculations to

those under the influence of the microcontroller, we excluded voltage from further calculations so that average cur-

rent is the focus. Obviously, power and energy consumed change dramatically if a different voltage level is used.

Additionally, we removed the time aspects so each component of power is viewed as part of the overall average

current. For information on the ratio of time spent in each component of the power calculation, developers should

look at the particular system. In this case, we chose a generic remote sensing application as it is widely applicable,

and we used the MSP430FR59xx as the example microcontroller with embedded ferroelectric random access

memory (FRAM) for data logging.

IAverage = IStandby x RatioStandby + IActive x RatioActive + IPeripheral x RatioPeripheral + IData x RatioData

 A remote sensor is one example of a typical low-power, battery-powered product, commonly used in industrial,

seismology, agriculture, building automation and security applications. Typical processing flow in this type of

application would be:

Component Application activity

Peripheral 256 samples of sensor data; pressure, heat, vibration, chemical, etc

Active Process analog inputs, compare to threshold, average inputs

Data Store 16 bytes in non-volatile memory every cycle

Standby Wakes once every 3 seconds to run the program; maintain RTC, capable of wake on IO interrupt

 Clearly, power is more than just one number, and the four categories previously mentioned provide a broad

framework that must be considered when developing a battery-powered system. However, each category itself is

complex and the specific application requirements require careful consideration.

Benchmarking MCU power consumption for ultra-low-power applications November 2012

2 Texas Instruments

Table 1: Remote sensing application activity profile

Figure 1: Model remote sensing application

Benchmarking MCU power consumption for ultra-low-power applications November 2012

4 Texas Instruments

Standby
power

Table 2: Impact of IStandby on total power based on ratio of active to standby time

 It is common for developers to start their processor power analysis by considering active processing power.

Though it may seem counterintuitive, the power the microcontroller consumes when it is not operating is often

more important than active processing power. Referring back to the remote sensing application, the system

typically wakes up from standby mode once every three seconds, so the system is in standby mode greater than

99% of the time. The table below uses typical specs from Texas Instruments’ (TI) “Wolverine”-based MSP-

430FR59xx microcontroller family with a 500nA standby mode to illustrate the impact of standby power on total

microcontroller power across varied active time to standby time ratios:

\Active to
Standby Ratio

% Time in
Standby

TimeActive x IActive
(µAs)

TimeStandby x IStandby
(µAs)

Total
Charge
(µAs)

% Impact of IStandby
to Total Power

1:10 90% 100 5 107 6.54%

1:100 99% 100 50 150 33%

1:1,000 99.9% 100 500 600 83.3%

 As table 2 demonstrates, as the ratio of active to standby exceeds 1:100, understanding the true standby cur-

rent becomes critical. At 1:1000, for example, standby current begins to account for nearly 85% of system power.

Thus, a 10% error in standby power estimations corresponds to an 8.5% difference in battery operating

life calculations – lowering battery life by months or even years.

 To help developers accurately evaluate the standby current the microcontroller will consume, the following

system considerations and microcontroller parameters need to be considered and accounted for in the standby

current estimate:

	 •	 Automatic wake-up on time intervals – Modern microcontrollers often offer real-time clocks (RTC) that

 can run in low-power standby modes enabling the microcontroller to wake-up automatically at specified

 time intervals. The remote sensing application uses this capability to wake up once every three seconds

 to measure analog data. It is important to understand the current required to run the RTC in standby mode

 as this can be a significant portion of standby current.

	 •	 RAM retention during standby – Maintaining RAM contents during standby allows microcontrollers to

 wake-up quickly without running startup code that consumes valuable energy. This saves energy and time

 for lower system latency. The current required to enable RAM retention modes can be significant and

 needs to be carefully considered.

	 •	 Interrupt capabilities – Microcontrollers can often leave certain peripherals active in standby modes,

 enabling the microcontroller to wake-up quickly with certain events such as a UART command or GPIO

 interrupt. The remote sensing example monitors two-to-three GPIO lines constantly to wake-up the

 processor for instant activity.

	 •	 Power monitoring – Brown out reset (BOR) and supply voltage supervisor (SVS) are important circuits

 that monitor the integrity of the microcontroller’s power source. Faults and interruptions to the

 microcontroller power source can impact the reliability of operation. It is critical to include these currents in

 the standby current estimations. This can add as little as a few nanoamps to as much as 500microamps to

 standby numbers.

	 •	 Temperature – Temperature is often overlooked on low-power system designs, however modern

 semiconductor processes often drive much higher leakage currents at higher temperatures – in some

 cases as much as 10-15 times more standby current between 25°C and 85°C.

Benchmarking MCU power consumption for ultra-low-power applications November 2012

4 Texas Instruments

Microcontrollers like TI’s MSP430FR59xx devices have been designed from the ground-up to optimize for

lowest-standby power employing advanced power and clock gating features, ultra-low-power analog circuit

designs and advancements in silicon technology such as embedded FRAM. In the case of the remote sense

application, the MSP430FR59xx microcontroller can enable RTC-standby mode with RAM retention, SVS/BOR and

GPIO interrupt capability for as little as 500 nanoamps.

 For many low-power battery-powered applications, standby power can be the primary impact to battery life,

and it is critical that developers consider how the features required in the application impact the standby current.

It can make a difference in years of battery life or save on system cost by using a lower capacity, less expensive

battery. In the remote sensing example, the average standby current can be estimated as:

AvgIStandby = IStandby x (TimeStandby/TimeTotal) = (2.997s/3s) x .5µA = .4995µA

(Assumptions: 500nA LPM3.5 w/ RTC, SVS, and BOR at 25C; SLAS704)

 Low-power embedded systems often use analog, digital interfaces, references and other circuitry to achieve

system functionality goals. Modern microcontrollers have increasingly integrated more of these functions to

simplify design complexity, lower system cost, enable smaller devices and decrease power consumption.

Developers of these systems must carefully consider both the capabilities of the microcontroller as well as the

power consumption of peripherals to efficiently optimize designs for maximum functionality and battery life.

In the case of the remote sensing application introduced earlier in the article, an analog-to-digital converter

(ADC) is used to measure a real-world signal such as an infrared sensor, temp sensor, or some other sensor.

To accurately estimate peripheral power, developers should consider the following system design characteristics

and microcontroller parameters:

 •	 ADC – Current consumed variable across sampling speeds and operating modes, so make sure to browse

 the datasheet for the mode most appropriate to each application.

	 •	 Comparator – Comparators are often low-power solutions to achieve the same basic analog

 measurements performed with an ADC.

	 •	 Voltage reference – To minimize external components, often internal voltage references are provided with

 microcontrollers. These references are used in ADCs, comparators and other analog circuits. In many

 cases, the current consumed by the voltage reference is not included in the current specifications for the

 peripheral in use. Developers need to consider this as the reference can often be larger than the

 comparator or ADC that is using it.

	 •	 Digital interfaces – UART, I2C, and SPI are among the many digital interfaces used in embedded systems.

 Each of these peripherals consume valuable energy impacting battery life. Data rate and drive strength on

 these digital interfaces need to be carefully considered to estimate the current consumption.

 In any application that requires measurement of real-world analog signals or the use of digital interfaces,

developers must consider these currents in addition to the active power or the standby power depending on what

modes in which the peripherals are used.

AvgIPeripheral = (TimePeripheral/TimeTotal) x IPeripheral = (0.00128s/3s) x 75µA= .032µA

Assumptions: 256 samples at 200ksps at current of 75µA (SLAS704) is .00128s

Peripheral power

6

Benchmarking MCU power consumption for ultra-low-power applications November 2012

6Texas Instruments

Many microcontroller applications need to record measurements and data for use later in the application. For

example, the most recent data could be compared to past data recorded to look for larger trends. Logging data

on the sensor itself can also give users critical information from the moment of failure, as in the case of intelligent

circuit breakers or automotive black boxes.

 Data logging can be extremely difficult when using a small, low-cost battery. The current required to erase

and program Flash can vary from 4-to-12 mA. This cannot be directly sourced by coin cells that have a maximum

current of 3-to-4mA. Also, such operations take more than two dozen milliseconds just to set-up and erase the

memory before programming, and then about the same time to write the required sector of Flash. In addition, if an

external memory is used for storage, there is an extra cost for using the serial communication interface to transfer

data. This adds peripheral and active current consumption to the system.

 This is important because it means that either a larger, more expensive battery must be used, or a lower-

power external memory must be added to the design. These are both costly options and sometimes difficult to

implement due to size constraints.

 Another key point is that logging data at slower rates in FRAM drastically lowers the current consumption. It

can be as low as 9µA to log data at the relatively quick rate of 13 kilobytes per second. This is about 500 times

lower than the same rate with Flash!

AvgIDataLog = TimeData x (IData/TimeTotal) = .0012s x 9µA/3s = .0036µA

Assumptions: 16 bytes at 13kBps is .00128s at 9µA (Bench Measurements SLAA498)

Active CPU power is often viewed as the largest power consumer in battery-powered applications. As the previous

sections have shown, there are many other sources of power consumption in a microcontroller system. That said,

it is important that microcontroller software and hardware is optimized to minimize active power to take advantage

of intelligent peripherals and utilize standby power modes that consume less energy.

 To accurately estimate active power, developers should consider using the following microcontroller features,

specifications and methods:

	 •	 Software execution from non-volatile memory or RAM – Developers must carefully consider whether

 software is executed from non-volatile memories or RAM in estimating the current consumption.

 Executing from RAM can offer lower active current specifications; however, many applications are not small

 enough to execute from RAM alone and require programs be executed from non-volatile memory.

	 •	 Bus clocks enabled or disabled – Most microcontroller applications require access to memories and

 peripherals during software execution. This requires bus clocks to be enabled and needs to be considered

 in active current estimates.

	 •	 DMA – Many microcontrollers have DMA features that allow peripherals to complete activities using DMA’s

 while the CPU is sleeping – enabling substantially lower currents at the system level. It is important to

 consider whether this is possible with the particular peripheral or task as this can save significant current.

	 •	 Acceleration – Low-power microcontrollers typically employ accelerators that lower the number of cycles

 and energy required for specific tasks. For instance, AES256 encryption can take as much as 7,000 CPU

 cycles without acceleration. With hardware accelerators, the same encryption can take approximately 500

 CPU cycles. In this case, hardware acceleration can reduce active processing time by more than 10x!

	 •	 Use optimized code – Microcontroller code can be optimized for shortest execution time using intelligent

 code structure and compiler optimizations.

Data logging power

Active power

Bringing it all together:
Remote sensing

applications

 Ensuring the proper conditions and optimization techniques are employed when estimating the number of

cycles required for active processing tasks and the active current required is critical to accurately estimate peak

currents and battery life impact. Referring back to the remote sensing application, the average current is

calculated as:

AvgIActive = TimeActive x (IActive/TimeTotal) = 70µs x 1230µA/3s = .029µA

Assumptions: 1000 cycles required to complete averaging of 256 samples at 16MHz = 70µs;

Active current @16MHz = 1.23mA

To illustrate how standby, peripheral, data logging and active CPU power work together to determine total battery

life, the remote sensing application calculations derived in each section can be easily combined to show the total

projected battery life of this typical application. Starting with an average power calculation:

AvgITotal

 = AvgIStandby + AvgIPeriperal + AvgIActive + AvgIDataLog

 = 0.4995 + 0.032 + 0.029 + 0.0036 = 0.5641µA

 As you can see, standby current has by far the largest impact on average current, followed by analog and

active in the case of remote sensing applications. The impact of individual components is dependent on the duty

cycle of the specific application. The average current can be easily translated into battery life by taking the charge

in a common CR2032 battery that can be purchased for under $1 at 230mAh.

230000µAh/0.5641µA

 = 407,729 hours

 = 16,988 days

 = 46 years of battery life (far longer than the shelf discharge of 8-10 years)

 Because the microcontroller power consumption has been minimized, this gives the developer the opportu-

nity to add other system features to their system and still offer 5-to-10 years of battery life from a single coin cell

battery. In addition, this type of calculation can be easily extended by using the same use case to evaluate several

different microcontrollers to determine which offers the lowest power capability for a specific application. In the

table below, four different microcontrollers are evaluated using the same remote sensing application example:

Figure 2: Average current comparison

Benchmarking MCU power consumption for ultra-low-power applications November 2012

5 Texas Instruments

6Texas Instruments

SLAY023

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard terms and conditions of sale.
Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance,
customer’s applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does
not constitute TI’s approval, warranty or endorsement thereof.

The platform bar and MSP430 are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

E010208

© 2012 Texas Instruments Incorporated

 While the remote sensing application was used as an example, it is typical of use cases for many low-power,

battery-powered products that require long battery lifetimes. Water and gas flow meters, heart rate monitors,

pedometers and industrial sensors all employ similar techniques to minimize costs, meet regulatory standards and

meet consumer demands. To maximize battery life, all four components of microcontroller power consumption

must be considered.

For developers, meeting the needs of increased system functionality and performance objectives while

increasing the battery life of products is a significant challenge. To effectively develop products that deliver the

longest possible battery life – or even operate with no battery at all – requires a deep understanding of the both

the system requirements and the microcontroller’s current specifications. This is much more complex than

simply estimating how much current the CPU consumes when active. Depending on the application being

developed, standby current, peripheral current, or data logging current may have a more significant impact on

battery life than CPU power.

 This article was created to build a simple framework to help developers understand how microcontrollers

consume power, how power can be optimized and how power consumption can be fairly compared across available

microcontroller solutions, to enable the developer to meet the specific needs of their application.

 TI will continue to push the boundaries of low power through optimization of ALL key areas of power

 consumption. TI’s ultra-low-power MSP430™ portfolio has been designed with low-power at the foundation –

through silicon technology advancements, low-power design techniques, intelligent peripherals and accelerators

and low-power design tools.

For more information on ultra-low-power design and TI’s extensive portfolio of ultra-low-power products,

visit www.ti.com/ulp.

Summary

http://www.ti.com/ulp

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

