User’s Guide

MSP430 GCC Toolchain

i3 TeEXAS INSTRUMENTS

ABSTRACT

This manual describes the setup and basic operation of the MSP430™ GCC toolchain and the software
development environment.

Table of Contents

LR =T Lo B TE= = PSSP 3
HOW 10 USE ThiS USEI'S GUILE.......eeiiiiiiiiiiiiiiie ettt a et e ettt e ea b e e sttt e e s et e eabe e e s bb e e e nbe e e naneeeannneens 3
(R e ol Do T U 4 T=T o1 ¢= o] o PSP SPTPRN 3
L (o U N LY=o BT =T o o7 T PP 4
L= Te (=T 10 F= T O PPPUP PP 4

LI L Lo T 11T (e o PO PRSPPI 5

2 Installing MSPA430 GCC TOOICRHAIN. ...ttt e e e et e e e e e saateee e e e s sasbeeeee e s sbaaeeaesaassseeeeeeannssneaeeeannnes 5
2.1 Installing MSP430 GCC in CCS Releases BEOre V7.2..........ooiiiiiiiie ettt e e ste e e e e st e e e e nsneeas 6
2.2 Installing MSP430 GCC as Stand-Alone PacCKage............ooi ittt e e et e e e e st e e e e e ansaeeaeeens 8

3 Using MSPA430 GCC WIthin CCS....... ..ottt et e et e e sttt et e e shbe e seesaeeeeteeemeeesbeaenseeaseeenteenneeenteas 9
B T I 02T | (I [T o o] [T S SRS PPPPRRSIN 9
3.2 Debug Using MSP-FET, MSPFETA430UIF, @Z-FET, 8Z430.........coiiieiitiieie ettt st 10
3.3 BUild Options fOr MSPA30 GCC........coouieiiiieitie et stee ettt ee et et e bt esteesateesseeebeesseeeaeesseeebeeameeebeesmseaneeanbeeaneesnseessaeenseees 10
3.4 CCS Compared t0 MSPA30 GCC.......coouiiiieeititeieeeie et e ettt et e stee s te e sttt abeesteeeabeeaseeesteeamseeaseeenseesaeeenbeesnseenseesnteenneennnes 29

4 MSP430 GCC Stand-AlONe PACKAQGE.cooiiiiiiiii ittt e e e e et e e e e sttt e e e sesbeaeaeeeassseeeesesstseeeessansseneaasaanns 29
4.1 MSP430 GCC Stand-Alone Package FOlder STrUCIUIE............oiiiiiiiiiiee ettt e e e e et e e e e e ennnees 30
A - Tod = (o LI @0 01 =Y o | PRSP SRRPP 30
Y ST o a0 T O G2 @ o] 1o =PSRRI 31
4.4 MSPA30 BUIt-IN FUNCHONS.etiitie ettt ettt e ettt e et et e e e e saeeenbeesmeeenbeeasteeseessbeeaseesnbeeseeeanseenseean 33
4.5 UsiNg MSP430 GCC SUPPOIT FIlES...cceeiiiiiiiee ittt e e et e e e e ettt e e e e e e st aeeeeesasassaeeeeesnsseeeeeseanssaeeaeeannnsaneens 34
4.6 QUICK Start: BIINK the LED.........ciiiiiieiiiie ettt ekt e e ea e e s et e et bt e e sttt e sabe e e et b e e e eabeeesnneeeeanbeeennee 35
A 1D ST 1] 0o L3 PP URPRRP 37

S IMSPA30 GCC FEALUIES.........eiiiitiiiitiee ettt ettt ettt ettt e h bt e e a bt e 2 bt e e oh bt e e eab et e eas et e e ah bt e e embe e e eanteeeanbeeeeabeeeenneas 39
Lo OO N« o T (= SRRSO 39
5.2 Hints for Reducing the Size of MSP430 GCC PrOGrams.........ccuuuiiieiiiiiiiieeeeeiiiiee e e e seiteeeeesessssaeeaesasnseaeeeessnnsaeeeeessanssaeeaeas 41
5.3 C Runtime Library (CRT) Startup BENaVION..........ccoi ettt e e st e e e s e e e e e e annsbaeeaeesnees 42
5.4 Using printf With IMSPA30 GCC.........oiiiiiiii ittt ettt et e st e s bt e s et e e teesaeeenteesaeeebeeaneeenteesmeeeneesnbeeaseesnseesneeenseees 43
5.5 Link-time OptimMiIZation (LTO)......ciiiiiiiie et eeee e e ettt e e sttt e e e ettt e e e e e sssta e e e e e aansbaeeeeeaannseeeaeseanssaeeeeesansseneeeeannsneeeaeas 43
5.6 The __int20 Type and Pointers in the Large Memory MOAEL.............uiiiiiiiiiiiiie et a e 43

6 BUilding MSP430 GCC FrOm SOUICES...........occiiiiiiiieieiiiiiie e e e ettt e e e s e teteeee e s s ataeeeeesaasseaeaaesasssbeeeeeesastseeaessaasssaeeassannssenaenesas 44
(o2 I S =To [U1 14 =To I oo L3RS ERRRST 44
6.2 Building MSP430 GCC (Mitto Systems LIMItEd).......cciuieiiiiiie ittt st e e et eeneeeneeas 44
6.3 Building MSP430 GCC Stand-Alone FUIl PACKAGE.cccoiiiiiiiiee ittt e ettt e e e et e e e s e st e e e e s etaaeeaeseansaneaeenns 45

7T MSPA30 GCC @nd MSPGCC...... .ottt ettt et s e te ettt etee sttt e teeeaee e beeemee e seeenteeaseeenbeeameeensessreeeseesnbeenneesnneenen 46
% B O7= 11 Ta Yol @7oT g1V 7=Y o1 o] o PP RPUPPRP 46
7.2 Other POrtions Of the ABLL.........ei ittt ettt e ettt e eab e e e ettt e ebt e e e easeeesabeeeenbeeesnneeesbeeennee 46

3 Y o o =Y T) PSP PPR R SURPRRPS 47
< T I O O [o1 {1 Ty (o310 o] o Yoy SRR 47
8.2 NOP Instructions Required Between Interrupt State Changes.........cooovviiiiiiiiiiiiie e 48

L B R (=1 (=TT OO UPSPPPROE 48

REVISION HISTOTY ... ittt e e e ettt e e e e e ettt e e e e s ateeteeesasseaeeeeaaassseeeeeesstaeeeeeseassseeeeesannssaeeenesanses 48

SLAUB46F — SEPTEMBER 2015 — REVISED JUNE 2020 MSP430 GCC Toolchain 1

Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Figures
Figure 2-1. MSP430 GCC With CCS INSTAIIE.......ccouiiiiiiieiie et e re e st e e b e e e et e e sneeeenaeee s 6
Figure 2-2. MSP430 GCC With CCS INSTAIIE.......ccotiiiiiiie ettt e re et e sb e e b e et e e sneeesnneee s 6
Figure 2-3. Installing MSP430 GCC Through CCS APPS CENLET......cccuiiiiiiie ettt e e 7
Figure 2-4. MSP430 GCC Stand-Alone Package INSLAlIEr.............ooiiiiiiiiii ettt 8
Figure 2-5. MSP430 GCC Stand-Alone Package Installation Dir€CtOrY............coiiuiiiiiiie ittt 8
Figure 3-1. Creating New CCS Project USiNg MSPA30 GCC.........ooiiiiiiiiii ittt ettt st et e et st e e nnaeees 9
Figure 3-2. CCS Project USINg MSP430 GCC........cuiiiiiiiiiiiie ettt sttt et e et e e s et e e sa b e e sttt e s ne e e e anb e e e eteeeenneeas 10
FigUure 3-3. MSPA30 GCC SEtlNGS. ...ceuteieiuiieeiitiie ettt ettt et e e bt e e ea et e e s bt e e e s bt e e aa bt e e e bee e e anbe e e eabeeeeaae e e e anbeeeenteeennneas 11
Figure 3-4. MSP430 GCC Settings: RUNTIME.coiiiiiiiie it e et e e s bt e et e e s beeesaneeeenanee 12
Figure 3-5. MSP430 GCC Settings: SYMDOIS.ottt ettt e e st e e st e e e snneeeabaeeenee 13
Figure 3-6. MSP430 GCC Settings: DiIr€CIOMES.cciiuuiieiiiie ittt ettt ettt et e e et e s be e e e bt e e e aateeesneeeennbeeea 14
Figure 3-7. MSP430 GCC Settings: OptimiZatioN..........c.ueiiiiiiiiiiie ettt st e et e st e e b e e e st e e e sneeesnneeas 15
Figure 3-8. MSP430 GCC SettiNgs: PrePrOCESSO......ciiiiiieiiiee ettt ettt e et ee ettt sttt ettt e et e e sas e e e sabe e e snte e e snseeesbeeesanteeenanee 16
Figure 3-9. MSP430 GCC Settings: ASSEMDIET.........oiiiiiiiiiii ettt et e e sttt e s bt e e aab e e eneeesnnneas 17
Figure 3-10. MSP430 GCC Settings: DEDUGGING.tetiiiiieiiiie ettt ettt e st e et e e s sae e e sebeeeebaeesaneeeenanee 18
Figure 3-11. MSP430 GCC Settings: DiagnostiC OPLiONS.ccouiiiiiiieiiiie ettt et eesneee s 19
Figure 3-12. MSP430 GCC Settings: MISCEIIANEOUS..........ciiiiiiiiiiie ittt ettt et e st e e e e e ebneeenes 20
Figure 3-13. MSP430 GCC LINKEr SEHINGS. ... ceiiiiiiiiiiieitie ettt ettt e bt e e saa e e ebb e e e ent e e e sbeeeenbbeeennes 21
Figure 3-14. MSP430 GCC LiNKer BasiC SEttNGS.ciuuiiiiieiiitiie ettt ettt e e sbe et e e sane e e s neeeeas 22
Figure 3-15. MSP430 GCC Linker Libraries SettiNgS.........cuuii ittt nee e 23
Figure 3-16. MSP430 GCC Linker SYmbOIS SEHINGS......cciiuiiiiiiiiiiiiieiie ettt e e 24
Figure 3-17. MSP430 GCC Linker MiSCellan€ous SEttNGS.uuiiiiiiiiiiii ittt e e 25
Figure 3-18. MSP430 GCC GNU Objcopy ULility SEHINGS......ccoiiuiiiiiiiiiiie et 26
Figure 3-19. MSP430 GCC GNU Objcopy Utility General Options SetliNgsS.........cccuieiriiiiiiiieiiiee e 27
Figure 3-20. MSP430 GCC GNU Objcopy Utility Miscellaneous SettingsS..........couiuiiiiiieiiiie et 28
List of Tables

Table 1-1. MSP430 Tl and GCC TooIChain COMPAIISON.ceiiiiiiiitiee it ee et ee ettt ettt e e b e ettt e ebe e e s abe e e e aabe e e sneeeennnees 5
Table 3-1. MSPA30 GCC SEENGS. ... cccueeitititieitieeitie ettt ettt et et ee et b e e stee e bt e steeeabeesteeeateeaaeeanbeeaaeeenbeesaeeenseessbeeneesnbeenseeenneenens 1
Table 3-2. MSP430 GCC Settings: RUNTIME.coiiiiiiiii ettt a e st e s bt e e aab e e et e e enneas 12
Table 3-3. MSP430 GCC Settings: SYMDOIS........ooi it e et e e ae e nanes 13
Table 3-4. MSP430 GCC Settings: DIr€CIOMES.cciuiiiiiiieeeit ettt sttt e et e e st e e e rane e e abeeeenee 14
Table 3-5. MSP430 GCC Settings: OPtimiZation..........c..eiiiiiiiiiii et e e e et e e e aaneeas 15
Table 3-6. MSP430 GCC SettiNgsS: PrePrOCESSONciiitiiiiiiee ettt ettt ettt et e et e e st e e aa bt e e eabe e e sbe e e e anb e e e etneesnnneas 16
Table 3-7. MSP430 GCC Settings: ASSEMDIET.........ooiiiiiiiiiii ettt b et e sb e e e et e nne e e naneeas 17
Table 3-8. MSP430 GCC Settings: DEDUGGING. ... eiiuteieiiiieiiiii ettt ettt ettt et e e sa e e e et et e s aae e e e aab e e e ebae e e nanees 18
Table 3-9. MSP430 GCC Settings: DiagnostiC OPIONS.......cocuiiiiiiii ittt e et e e 19
Table 3-10. MSP430 GCC Settings: MISCEIIANEOUS...........oiiiiiiiiiie et 20
Table 3-11. MSP430 GCC LINKEI SEHINGS.ceiiiiiiiiiie ittt ettt e a e e et sbt e e sa e e e enbn e e snees 21
Table 3-12. MSP430 GCC LiNKer BasiC SEHNGS.o.uuiiiiiii ittt et ettt e et e e s eennbeeeaaee 22
Table 3-13. MSP430 GCC Linker Libraries SEHINGS.coouuii ittt 23
Table 3-14. MSP430 GCC Linker SymboIls SEHINGS.ccouiiiiiiiiii e et 24
Table 3-15. MSP430 GCC Linker MiSCellan@ous SEttNGS.ciiiiiiiiiiiiiiie ettt e e 25
Table 3-16. MSP430 GCC GNU Objcopy ULility SEHINGS.......ooiiiiiiiii e 26
Table 3-17. MSP430 GCC GNU Objcopy Utility General Options Setlings.........cocuiiiiiiiiiiiieiiie e 27
Table 3-18. MSP430 GCC GNU Objcopy Utility Miscellaneous Settings............ciiiiiiiiiiiiiiiiiee e 28
Table 4-1. MSP430 GCC Stand-AlON€ PaCKAQGE.........coiiuiiiiiiieiiiie ettt ettt et bb e et e e s b e e et 29
Table 4-2. MSP430 GCC CoOMMANA OPLONS.iiiiiiiiiiii ittt ettt e st e e b b e e e aab et e sbe e e e se b e e e ebeeenneeeenaneeas 31
Table 4-3. MSP430 GCC ASSEMDIEr OPLONS......coiiiiiiiiiii ittt e ra e e sttt e be e e e e b e e etae e e nnneas 33
Table 4-4. MSPA430 GCC LIiNKEI OPtONS.c..tiiiiiiie ittt ettt ettt es et eab e e e et et e ebe e e e sab e e e eabe e e eateeerabeeeabneennee 33
Table 4-5. MSP430 ObJAUMP OPtIONS.uviiiiiiei ittt et b et e ek bt e et et e sb et e e aa bt e e s bt e e abe e e e st e e e snneesnneeeeas 33
2 MSP430 GCC Toolchain SLAUB46F — SEPTEMBER 2015 — REVISED JUNE 2020

Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Read This First
How to Use This User's Guide

This manual describes only the setup and basic operation of the MSP430™ GCC toolchain and the software
development environment. It does not fully describe the MSP430 GCC toolchain or MSP430 microcontrollers or
the complete development software and hardware systems. For details on these items, see the appropriate
documents listed in Section Related Documentation.

This manual applies to the use of MSP430 GCC as stand-alone package or within the Code Composer Studio™
(CCS) IDE v10.x and with the TI MSP-FET, MSP-FET430UIF, eZ-FET, and eZ430 development tools series.

These tools contain the most up-to-date materials available at the time of packaging. For the latest materials
(including data sheets, user's guides, software, and application information), visit the TI MSP430 website or
contact your local Tl sales office.

Related Documentation

The primary sources of MSP430 information are the device-specific data sheets and user's guides. The MSP430
website contains the most recent version of these documents.

The GCC documentation can be found at http://www.gnu.org. All related information for the MSP430 GCC
toolchain is available at http://www.ti.com/tool/msp430-gcc-opensource.

Documents that describe the Code Composer Studio tools (CCS IDE, assembler, C compiler, linker, and
librarian) can be found at http://www.ti.com/tool/ccstudio. The Tl Resource Explorer and the Tools forum on Tl
E2E™ provide additional help.

MSP430 GCC documentation

Using the GNU Compiler Collection, Richard M. Stallman (http://gcc.gnu.org/onlinedocs/gcc.pdf). Refer to the
MSP430 Options section.

GDB: The GNU Project Debugger, Free Software Foundation, Inc. (https://sourceware.org/gdb/current/
onlinedocs/)

GCC for MSP430™ Microcontrollers Quick Start Guide

Calling Convention and ABI Changes in MSP GCC

CCS documentation

MSP430™ Assembly Language Tools User's Guide

MSP430™ Optimizing C/C++ Compiler User's Guide

Code Composer Studio™ IDE for MSP430™ MCUs User's Guide
MSP430 development tools documentation

MSP430™ Hardware Tools User's Guide

eZ430-F2013 Development Tool User's Guide

eZ430-RF2480 User's Guide

eZ430-RF2500 Development Tool User's Guide
eZ430-RF2500-SEH Development Tool User's Guide
€Z430-Chronos™ Development Tool User's Guide
MSP-EXP430G2 LaunchPad™ Development Kit User's Guide
Advanced debugging using the enhanced emulation module (EEM) with Code Composer Studio IDE
MSP430 device data sheets

SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020 MSP430 GCC Toolchain
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

3

http://www.ti.com/msp430
http://www.ti.com/msp430
http://www.ti.com/msp430
http://www.gnu.org
http://www.ti.com/tool/msp430-gcc-opensource
http://www.ti.com/tool/ccstudio
https://dev.ti.com/tirex/explore/node?node=APvvp0UXqShKs8PjZtNfzA__FUz-xrs__LATEST
https://e2e.ti.com/support/tools/ccs/f/81
https://e2e.ti.com/support/tools/ccs/f/81
http://gcc.gnu.org/onlinedocs/gcc.pdf
https://sourceware.org/gdb/current/onlinedocs/
https://sourceware.org/gdb/current/onlinedocs/
http://www.ti.com/lit/pdf/SLAU591
http://www.ti.com/lit/pdf/SLAA664
http://www.ti.com/lit/pdf/SLAU131
http://www.ti.com/lit/pdf/SLAU132
http://www.ti.com/lit/pdf/SLAU157
http://www.ti.com/lit/pdf/SLAU278
http://www.ti.com/lit/pdf/SLAU176
http://www.ti.com/lit/pdf/SWRA157
http://www.ti.com/lit/pdf/SLAU227
http://www.ti.com/lit/pdf/SLAU273
http://www.ti.com/lit/pdf/SLAU292
http://www.ti.com/lit/pdf/SLAU318
http://www.ti.com/lit/pdf/SLAA393
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

MSP430 device family user's guides

MSP430x1xx Family User's Guide

MSP430x2xx Family User's Guide

MSP430x3xx Family User's Guide

MSP430F4xx Family User's Guide

MSP430F5xx and MSP430F6xx Family User's Guide

MSP430FR4xx and MSP430FR2xx Family User's Guide

MSP430FR57xx Family User's Guide

MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide
If You Need Assistance

Support for the MSP430 devices and the hardware development tools is provided by the Tl Product Information
Center (PIC). Contact information for the PIC can be found on the Tl website. The TI E2E™ Community support
forums provide open interaction with peer engineers, Tl engineers, and other experts. Additional device-specific
information can be found on the MSP430 website.

Trademarks

MSP430™, Code Composer Studio™, E2E™, eZ430-Chronos™, and LaunchPad™ are trademarks of Texas
Instruments Incorporated.

Windows® is a registered trademark of Microsoft Corporation.

Linux® is a registered trademark of Linus Torvalds.

macOS® is a registered trademark of Apple Inc.

All other trademarks are the property of their respective owners.

4 MSP430 GCC Toolchain SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SLAU049
http://www.ti.com/lit/pdf/SLAU144
http://www.ti.com/lit/pdf/SLAU012
http://www.ti.com/lit/pdf/SLAU056
http://www.ti.com/lit/pdf/SLAU208
http://www.ti.com/lit/pdf/SLAU445
http://www.ti.com/lit/pdf/SLAU272
http://www.ti.com/lit/pdf/SLAU367
http://www.ti.com/support
http://e2e.ti.com
http://e2e.ti.com
http://www.ti.com/msp430
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS

INSTRUMENTS

www.ti.com

1 Introduction

The MSP430 GCC toolchain uses the MSP430 ABI and is compatible with the Tl toolchain. This free GCC

toolchain supports all MSP430 devices and has no code size limit. In addition, this toolchain can be used as a

stand-alone package or used within Code Composer Studio (CCS) IDE v6.0 or later. Get started today in

Windows, Linux, or macOS environments.

Table 1-1 compares the MSP430 Tl and GCC toolchain.
Table 1-1. MSP430 Tl and GCC Toolchain Comparison

The MSP430 GCC supports the following:

Proprietary Tl
Code MSP430 GCC MSPGCC
Generation Toolchain Toolchain

Tools
Code Size and JIS v v
Performance
ABI TI TI Community
Integrated in CCS v v X
Stand-alone X v v
Support TI TI Community
Cost Free v v v

(1) The combination of CCS and GCC is completely free of charge with no code size

limit.

MSP430 CPU 16-bit architecture
MSP430 CPUX 20-bit architecture
MSP430 CPUXv2 20-bit architecture
Code and data placement in the lower (<64K) and upper (>64K) memory areas and across the memory

boundary

The hardware multiplier of the MSP430 microcontrollers

This manual describes the use of the MSP430 GCC toolchain with the MSP430 ultra-low-power microcontrollers.

The MSP430 GCC toolchain can be used within CCS version 6.0 or later, or it can be used as a stand-alone
package. The toolchain supports Windows®, Linux®, and macOS® operating systems. This manual describes
only CCS for Windows operating systems. The versions of CCS for Linux and macOS operating systems are

similar and, therefore, are not described separately.

2 Installing MSP430 GCC Toolchain

MSP430 GCC supports Windows, Linux, and macOS:

Windows 7 32 bit or 64 bit
Windows 8 32 bit or 64 bit
Windows 10 32 bit or 64 bit

Linux 32 bit or 64 bit

macOS 64 bit

You can install the MSP430 GCC using any of the following methods:
MSP430 GCC toolchain is installed by default by CCS v7.2 and higher.

In CCS releases prior to v7.2, the MSP430 GCC (toolchain only) is available in the CCS Apps Center. The
corresponding MSP430 GCC support files (header and linkers) are downloaded with a standard MSP430

emulation package. For details, see Section 2.1.
MSP430 GCC can be also downloaded as stand-alone package. For details, see Section 2.2.

SLAUG46F — SEPTEMBER 2015 — REVISED JUNE 2020

Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

MSP430 GCC Toolchain

5

http://www.ti.com/tool/msp430-gcc-opensource
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

6

13 TEXAS
INSTRUMENTS

www.ti.com

2.1 Installing MSP430 GCC in CCS Releases Before v7.2
The MSP430 GCC toolchain can be installed in CCS v6.0 or higher in two ways: either when CCS is installed or
as an add-on to an existing CCS installation.

1. During the install process of CCS, select the MSP430 GCC toolchain to be installed as an "add-on" (see

Figure 2-1). MSP430 GCC is installed the first time you run CCS (see Figure 2-2).
[is%l Code Composer Studio vb Setup

= App Center

Texas Instruments

=)

There are additional products and features ("add-ons") available from the CCS App Center. Selected
add-ons will be installed by the App Center when you run Code Composer Studio for the first time.

Description
= I¥] Tools (for App Center background download)

GMU Compiler for MSP430 devices.

= [software (for App Center baduround download)
O mspware

D GUI Composer

[Select Al Install Size: 899.04 MEB.

Texas Instruments

next> |[Fnish] |

Cancel

Figure 2-1. MSP430 GCC With CCS Installer

e

v» CCS App Center - Pending Installation lﬂ_hj

% You have selected to install additional *Add-ons' to CCS.

Click "Yes' if you would like to download and install thermn now.
Click 'Me' to install them later frem the CCS App Center (Help-=CC5 App Center).

Figure 2-2. MSP430 GCC With CCS Installer

MSP430 GCC Toolchain

SLAUG46F — SEPTEMBER 2015 — REVISED JUNE 2020

Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

i3 TEXAS
INSTRUMENTS

www.ti.com

2. If CCS is already installed without MSP430 GCC, MSP430 GCC can be added at a later time through the
CCS Apps Center (see Figure 2-3).
a. Go to the menu View — CCS App Center.
b. Select MSP430 GCC
c. Click the Install Software button to start the installation.

¥ CCS Edit - CCS App Center - Code Composer Studio e
File Edit View MNavigate Project Run Scripts Window Help
S @iy G . > Quick Access %\|
E. %) Getting Started & CCS App Center 2 = &
By -
App Center
121 Texas Instruments
' ._, Install Soﬁware Relevance
Code Composer Studio Add-ons -
| \ JEp— 7
& : :
® E

& =l e :

MSP430 GCC MSPWare GUI Composer TI-RTOS for MSP43x MSPA30 Compiler
Standalone Software See more »

"y | A :

 Full License

Figure 2-3. Installing MSP430 GCC Through CCS Apps Center
3. The GCC toolchain is installed to the following directory in the CCS installation: ccsv#\tools\compiler
\gcc_msp430_x.x.x (where xxx denotes the version number).

SLAUG46F — SEPTEMBER 2015 — REVISED JUNE 2020 MSP430 GCC Toolchain 7

Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

2.2 Installing MSP430 GCC as Stand-Alone Package

The MSP430 GCC full stand-alone package can be downloaded from the Tl website for all supported operating
systems. The MSP430 GCC stand-alone package contains the toolchain, device support files, debug stack, and

USB drivers.

To install the package:

1. Download the corresponding package installer and run it (see Figure 2-4).

b

[F=E)

Setup - GCC - Open Source Compiler for MSP430
Microcontrollers

 Setup

Welcome to the GCC - Open Source Compiler for M5P430
Microcentrollers Setup Wizard,

< Back

| Mext > |’ Cancel]

Figure 2-4. MSP430 GCC Stand-Alone Package Installer

2. Select the install directory and click Next (see Figure 2-5).

Figure 2-5. MSP430 GCC Stand-Alone Package Installation Directory

-

%

™ Setup = -G
Installation Directory »

Please specify the directory where GCC - Open Source Compiler for M5P430
Microcontrollers will be installed.

Installation Directory Chtivmspd30_gec e

| <Back || Net> || cancel |

Note

For the Linux installer, apply sudo chmod +x <installer> before executing the package.

8 MSP430 GCC Toolchain

SLAUG46F — SEPTEMBER 2015 — REVISED JUNE 2020

Copyright © 2020 Texas Instruments Incorporated

Submit Document Feedback

http://www.ti.com/tool/msp430-gcc-opensource
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

3 Using MSP430 GCC Within CCS
3.1 Create New Project

This section describes the step-by-step instructions to create an assembly or C project from scratch and to

download and run an application on the MSP430 MCU using the MSP430 GCC toolchain. Also, the CCS Help

presents a more detailed information of the process.

1. Start CCS (Start — All Programs — Texas Instruments — Code Composer Studio — Code Composer

Studio).

2. Create a new project (File — New — CCS Project). Select the appropriate MSP430 device variant in the
Target field and enter the name for the project.

3. Select GNU v7.3.0.9 (Mitto Systems Limited) for Compiler version (or any newer version).

4. In the Project template and examples section, select Empty Project (with main.c). For assembly-only
projects, select Empty Project.

% New CCS Project [S
CCS Project ra ?f j

Create a new CCS Project.

Target: msp430fr3969 ¥ |MSP430FR5969 A ‘

Connection: | TI MSP430 USB1 [Default] || Identify.. |

5 MSP430

Project name: Blink

Use default location

C\Users\a0406842\workspace_v8\Blink Browse...

Compiler version: |GNU v7.3.0.9 (Mitto Systems Limited) V‘ l More... ‘

» Tool-chain
= Project templates and examples

type filter text Creates an empty project initialized for the
selected device. The project will contain

4 ||=] Empty Projects S .
an empty ‘main.c’ source-file.

& Empty Project
= Empty Project (with main.c)

Open Resource Explorer to browse a wide selection of example projects...

L 'f?)' < Back Next = [Finish l l Cancel ‘ 4

Figure 3-1. Creating New CCS Project Using MSP430 GCC

5. If you are using a USB Flash Emulation Tool such as the MSP-FET, MSP-FET430UIF, eZ-FET, or the 2430

Development Tool, they should be already configured by default.
6. For C projects, the setup is complete now.
7. Click Finish to create a new project that is then visible in the Project Explorer view.

Notice that the project contains a .Id file (appropriate for the target selected). This is the linker script that
contains the memory layout and section allocation. This file is the equivalent of the Tl linker command file
(.cmd) used by TI MSP430 Compiler and Linker.

SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020 MSP430 GCC Toolchain
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

9

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

8. Enter the program code into the main.c file.

To use an existing source file for the project, click Project — Add Files... and browse to the file of interest.
Single click on the file and click Open or double-click on the file name to complete the addition of it into the
project folder.

Now add the necessary source files to the project and build. Similar to Tl tools, additional compiler and linker
options can be set from Project Properties.

9. Build the project (Project — Build Project).

+'= workspace_v8 - Blink/main.c - Code Composer Studio a - = |6 S|
File Edit View Navigate Project Run Scripts Window Help

=~ Difvi@ R vDiA By D Quick Access | [| (&)

% Getting Started [2 main.c 2 =8
- 1#include <msp430.h>

45 Blink [Active - Debug] 2

» ¥ Binaries 3
») Includes
» & Debug o xf
» & targetConfigs 7int main(void) {
» [@ main.c 8 WDTCTL = WDTPW | WDTHOLD;
» [msp430fr5969.1d 9 PMSCTLO &= ~LOCKLPMS;

5 [Project Explorer 52 =8
= ~

11 PIDIR |= @xol;

3 for(5;) {
14 volatile unsigned int i;

16 P10UT ~= @x01;

18 i = 16000;
19 do i--;
20 while(i I= 0);

B Console ¢ B EBE& ey =0
CI?T Buljg CO,"}?',E,[,B,"W(],, R

Building file: "../main.c"

Invoking: GNU Compiler

"C:/ti/ccs8.0.0.16/ccsv8/tools/conpiler/mspd3e-gec-7.3.0.9_win32/bin/mspa3e-elf-gec.exe” - -mmcu=mspd3@fr5969 -I"C:/ti/ccs8.0.0.16/ccsv8/ccs_base/mspa30/include_gec™
-I"C:/Users/a0406842/workspace_v8/Blink” -I"C:/ti/ccs8.0.0.16/ccsv8/tools/compiler/mspa30-gec-7.3.0.9_win32/mspd30-elf/include” -Os -g -gdwarf-3 -gstrict-dwarf -Wall -mlarge
-mhumult=fSseries -mcode-region=none -mdata-region=none -MMD -MP -MF"main.d” -MT"main.o” -o’main.o™ "../main.c"

Finished building: "../main.c"

Building target: “Blink.out"
Invoking: GNU Linker

“C:/ti/ccs8.8.0.16/ccsv8/tools/conpiler/mspa30-gcc-7.3.0.9_win32/bin/mspa30-elf-gcc.exe” -Os -g -gdwarf-3 -gstrict-dwarf -Wall -mhumult=FSseries -mcode-region=none
-mdata-region=none -mlarge -W1,-Map,"Blink.map" -Wl,--gc-sections -L"C:/ti/ccs8.0.0.16/ccsv8/ccs_base/mspa30/include_goc” -o"Blink.out” “./main.o” -T../mspa30fr5969.1d"
-1, --start-group -lgcc -lc -Wl,--end-group

Finished building target: "Blink.out"

I

% Build Finished *

& Blink

Figure 3-2. CCS Project Using MSP430 GCC

10.Debug the application (Run — Debug (F11)). This starts the debugger, which gains control of the target,
erases the target memory, programs the target memory with the application, and resets the target.

11.Click Run — Resume (F8) to start the application.
12.Click Run — Terminate to stop the application and to exit the debugger. CCS automatically returns to the
C/C++ view (code editor).

3.2 Debug Using MSP-FET, MSPFET430UIF, eZ-FET, eZ430

MSP430 devices can be debugged in CCS using MSP-FET, MSPFET430UIF, eZ-FET, and eZ430 debuggers.
For more details, refer to the Code Composer Studio™ IDE for MSP430™ MCUs User's Guide .

3.3 Build Options for MSP430 GCC

The settings required to configure the GCC are numerous and detailed and are not all described here. Most
projects can be compiled and debugged with default factory settings.

To access the project settings for the active project, click Project — Properties.
The following project settings are common:

« Specify the target device for debug session (Project — Properties — General — Device — Variant). The
corresponding Linker Command File and Runtime Support Library are selected automatically.

10 MSP430 GCC Toolchain SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SLAU157
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

» To debug a C project more easily, disable optimization (-O0) or use -Og, which enables only those
optimizations that do not interfere with debugging. The -Og option reduces code size and improves
performance compared to -OO0.

» Specify the search paths for the C preprocessor (Project — Properties — Build — GNU Compiler —
Directories — Include Paths (-l)).

+ Specify the search paths for any libraries being used (Project — Properties — Build — GNU Linker —
Libraries — Library search path (-L, --library-path)).

» Specify the debugger interface (Project — Properties — General — Device — Connection). Select Tl
MSP430 USBx for the USB interface.

» Enable the erasure of the Main and Information memories before object code download (Project —
Properties — Debug — MSP430 Properties — Download Options — Erase Main and Information

Memory).

» To ensure proper stand-alone operation, select Hardware Breakpoints (Project — Properties — Debug —
MSP430 Properties). If Software Breakpoints are enabled (Project — Properties — Debug — Misc/Other
Options — Allow software breakpoints to be used), ensure proper termination of each debug session
while the target is connected. Otherwise, the target may not work as expected stand-alone as the application
on the device still contains the software breakpoint instructions.

3.3.1 GNU Compiler

Figure 3-3 shows the MSP430 GCC settings window.

r

++ Properties for Blink

S [|

type filter text

+ Resource
General
4 Build
4 GNU Compiler
Runtime
Symbaols
Directories
Optimization
Preprocessar
Assembler
Debugging
Diagnostic Options
Miscellaneous
» GMNU Linker
GNU Objcopy Utility [Dise
Debug

'/?3' Show advanced settings

GNU Compiler oo

Configuration: |Debug [Active] A | | Manage Configurations...

Command: "SICG_TOOL GCCY" ¢

Command-line pattern: ${command} ${flags} ${output_flag}${output} ${inputs}

Summary of flags set:

-mmcu=msp430fr3969 -1"C:/ti/ccs8.0.0.16/ccsv8/ccs_base/msp430/include_gec” - *
["C:/Users/a0406842 /workspace_v8/Blink" -1"C:/ti/ccs8.0.0.16/ccsv8/tools/compiler/msp430-gcc-
7.3.0.9_win32/msp430-elf/include” -Os -g -gdwarf-3 -gstrict-dwarf -Wall -mlarge -mhwmult=f3series -
mcode-region=none -mdata-region=none

Edit Flags...

See 'General’ for changing tool versions and device settings

Apply and Closel | Cancel |

Figure 3-3. MSP430 GCC Settings

Table 3-1 describes the options that are available for MSP430 GCC Settings.

Table 3-1. MSP430 GCC Settings

Option

Description

Command

Compiler location

Command-line pattern

Command line parameters

Summary of flags set

Command line with which the compiler is called. Displays all the flags passed to the compiler.

SLAUG46F — SEPTEMBER 2015 — REVISED JUNE 2020

Submit Document Feedback

MSP430 GCC Toolchain 11

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

3.3.2 GNU Compiler: Runtime
Figure 3-4 shows the MSP430 GCC Runtime settings window.

r

++ Properties for Blink

type filter text

+ Resource
General
4 Build
4 GNU Compiler
Runtime
Symbaols
Directories
Optimization
Preprocessar
Assembler
Debugging
Diagnostic Options
Miscellaneous
» GMNU Linker
GNU Objcopy Utility [Dise
Debug

'/?3' Show advanced settings

Target CPU (-mcpu)

Target MCU (-mmcu) msp430fr3969
Generate run time type descriptor information | hd |
Enable exception handling | v|

Runtime

Configuration: |Debug [Active]

Apply and Closel | Cancel

Figure 3-4. MSP430 GCC Settings: Runtime

Table 3-2 describes the options that are available for MSP430 GCC Runtime settings.

Table 3-2. MSP430 GCC Settings: Runtime

Option

Description

Target CPU (-mcpu)

Specifies the Instruction Set Architecture (ISA) to use. Accepted values are msp430, msp430x, and
msp430xv2. This option is deprecated. The '-mmcu=" option should be used to select the ISA.

Target MCU (-mmcu)

Select the MCU to target. This is used to create a C preprocessor symbol based on the MCU name,
converted to upper case and prefixed and postfixed with__. This in turn is used by the msp430.h header
file to select an MCU-specific supplementary header file.

The option also sets the ISA to use. If the MCU name is one that is known to only support the 430 ISA
then that is selected, otherwise the 430X ISA is selected. A generic MCU name of msp430 can also be
used to select the 430 ISA. Similarly, the generic msp430x MCU name selects the 430X ISA.

In addition, an MCU-specific linker script is added to the linker command line. The script's name is the
name of the MCU with ".Id" appended. Thus, specifying '-mmcu=xxx' on the gcc command line defines
the C preprocessor symbol _ XXX__ and causes the linker to search for a script called 'xxx.Id'. This
option is also passed to the assembler.

information

Generate run time type descriptor

Enable or disable generation of information about every class with virtual functions for use by the C++
runtime type identification features.

+ On (-frtti)
o Off (-fno-rtti)

Enable exception handling

Enable or disable exception handling. Generates extra code needed to propagate exceptions.
* On (-fexceptions)
» Off (-fno-exceptions)

12 MSP430 GCC Toolchain

SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

3.3.3 GNU Compiler: Symbols
Figure 3-5 shows the MSP430 GCC Symbols settings window.

-

«+ Properties for Blink l_‘El-z_hJ

type filter text Symbols @
: Resource
General

4 Build Configuration: |Debug [Active] Vl [Manage Configurations...

4 GNU Compiler
Runtime
Symbuols
Directories Define symbuols (-D) LS|
Optimization
Preprocessor
Assembler
Debugging
Diagnostic Optiens
Miscellaneous

> GMNU Linker
GMU Objcopy Utility [Disabled]
Debug

Undefine symbols (-U) LE|

':?:' Show advanced settings [oK l [Cancel

Figure 3-5. MSP430 GCC Settings: Symbols

Table 3-3 describes the options that are available for MSP430 GCC Symbols settings.
Table 3-3. MSP430 GCC Settings: Symbols

Option Description

-D name
Predefine name as a macro.

Define symbols (-D) -D name=definition

Predefine name as a macro, with definition 1.

-U name

Undefine symbols (-U) Cancel any previous definition of name, either built-in or provided with a -D option.

SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020 MSP430 GCC Toolchain
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

3.3.4 GNU Compiler: Directories
Figure 3-6 shows the MSP430 GCC Directories settings window.

«+ Properties for Blink lr =] ﬂ

type filter text Directories =1 2 v v
» Resource
General
4 Build Configuration: |Debug [Active] 'l lManage Configurations...
4 GNU Compiler
Runtime
i Symbols Include paths (-I) & w8 5l H
Directories ${CCS_BASE_ROOT}/msp430/include_gcc &
' Optimization ${PROJECT_ROQT} =
Preprocessor ${CG_TOOL_INCLUDE_PATH} [
Assembler
Debugging

Diagnostic Options
Miscellaneous
» GNU Linker
GNU Objcopy Utility [Dise
Debug

< | 11 | P

I @ Show advanced settings Apply and Close] l Cancel

s - =

Figure 3-6. MSP430 GCC Settings: Directories

Table 3-4 describes the options that are available for MSP430 GCC Directories settings.
Table 3-4. MSP430 GCC Settings: Directories

Option Description
Include paths (-I) Add the directory to the list of directories to be searched for header files.
14 MSP430 GCC Toolchain SLAUG46F — SEPTEMBER 2015 — REVISED JUNE 2020

Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

3.3.5 GNU Compiler: Optimization
Figure 3-7 shows the MSP430 GCC Optimization settings window.

«+ Properties for Blink l_lﬂl-g_hj

type filter text Optimization =l T
» Resource
General
4 Build Configuration: [DEbUg [Active] '] ’Manage Configurations...]
4 GNU Compiler
Runtime
Symbels
Directories Optimization Level [VI
Optimization [7] Optimize for speed disregarding exact standards compliance (-Ofast)
Preprocessor Optimize for space rather than speed (-0Os)
Assembler [T Make 'char' unsigned by default {-funsigned-char)
Debugging

. . . [7] Place each function into its own section (-ffunction-sections)
Diagnostic Optiens

Miscellaneaus ["]Place data items inte their own section (-fdata-sections)

. GMU Linker [7] Convert floating point constants to single precision constants (-fsingle-precision-constant)
GMU Objcopy Utility [Disabled]
Debug
'?3' Show advanced settings oK] ’ Cancel

Figure 3-7. MSP430 GCC Settings: Optimization

Table 3-5 describes the options that are available for MSP430 GCC Optimization settings.
Table 3-5. MSP430 GCC Settings: Optimization

Option Description

Specifies the optimizations that the compiler applies to the generated object code. The options available

are:

» None (O0): Disable optimizations. This setting is equivalent to specifying the -O0 command-line
option. The compiler generates unoptimized linear assembly language code.

* Optimize (O1): The compiler performs all targets independent (that is, nonparallelized) optimizations,
such as function inlining. This setting is equivalent to specifying the -O1 command-line option. The
compiler omits all target-specific optimizations and generates linear assembly language code.

* Optimize more (O2): The compiler performs all optimizations (both target-independent and target-
specific). This setting is equivalent to specifying the -O2 command-line option. The compiler outputs

Optimization Level optimized nonlinear parallelized assembly language code.

* Optimize most (O3): The compiler performs all the level 2 optimizations, then the low-level optimizer
performs global-algorithm register allocation. This setting is equivalent to specifying the -O3
command-line option. At this optimization level, the compiler generates code that is usually faster
than the code generated from level 2 optimizations.

* Optimize for space rather than speed (-Os): Enables all -O2 optimizations that do not typically
increase code size. The -Os option also performs further optimizations designed to reduce code size.

* Optimize for speed disregarding exact standards compliance (-Ofast): Enables all -O3 optimizations.
The -Ofast option also enables optimizations that are not valid for all standard-compliant programs,
such as -ffast-math.

Make 'char' unsigned by default

(funsigned-char) Enable this option to ensure that the char is signed.

Place each function into its own

. .) Enable this option to place each function in its own section in the output file.
section (-ffunction-sections)

Place data items into their own

section (-fdata-sections) Enable this option to place each data item in its own section in the output file.

SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020 MSP430 GCC Toolchain 15
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Option

Description

Convert floating point constants
to single precision constants
(-fsingle-precision-constant)

Treat floating-point constants as single precision instead of implicitly converting them to double-precision
constants.

Note

Use the -ffunction-sections and -fdata-sections options in conjunction with the --gc-sections linker
option to reduce code size by allowing the linker to remove unused sections.

3.3.6 GNU Compiler: Preprocessor

Figure 3-8 shows the MSP430 GCC Preprocessor settings window.

-

«+ Properties for Blink

type filter text

» Fesource
General
4 Build

4 GNU Compiler
Runtime
Symbels
Directories
Optimization
Preprocessor
Assembler
Debugging
Diagnostic Optiens
Miscellaneous

> GMNU Linker

GMU Objcopy Utility [Disabled]

Debug

= .
L\?’,' Show advanced settings

Preprocessor =1 v

Cenfiguration: |Debug [Active] '] ’Manage Cenfigurations..,

[] Preprocess only; do not compile, assemble or link {-E)

Other preprocessor flags (-Xpreprocessor) &)

0K] ’ Cancel

Figure 3-8. MSP430 GCC Settings: Preprocessor

Table 3-6 describes the options that are available for MSP430 GCC Preprocessor settings.

Table 3-6. MSP430 GCC Settings: Preprocessor

Option

Description

Preprocess only; do not compile,
assemble, or link (-E)

Enable this option to preprocess only without compiling or assembling or linking.

Other preprocessor flags
(-Xpreprocessor)

Use this to supply system-specific preprocessor options that GCC does not recognize.

To pass an option that takes an argument, use -Xpreprocessor twice, once for the option and once for
the argument.

16 MSP430 GCC Toolchain

SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

3.3.7 GNU Compiler: Assembler
Figure 3-9 shows the MSP430 GCC Assembler settings window.

-

«+ Properties for Blink l_lﬂl-z_hj

: Resource
General

type filter text Assembler =R - -

4 Build Configuration: |Debug [Active] Vl [Manage Configurations...

4 GNU Compiler
Runtirme
Symbuols
Directories Other assembler flags (-Xassembler) &
Optimization
Preprocessor
Assembler
Debugging
Diagnostic Optiens
Miscellanecus

> GMNU Linker
GMU Objcopy Utility [Disabled]
Debug

'/?3' Show advanced settings [oK l [Cancel

Figure 3-9. MSP430 GCC Settings: Assembler

Table 3-7 describes the options that are available for MSP430 GCC Assembler settings.
Table 3-7. MSP430 GCC Settings: Assembler

Option Description

Other assembler flags

(-Xassembler) Specifies individual flag based on the user requirements.

SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020 MSP430 GCC Toolchain
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

-

13 TEXAS
INSTRUMENTS

www.ti.com

3.3.8 GNU Compiler: Debugging

Figure 3-10 shows the MSP430 GCC Debugging settings window.

«v Properties for Blink

type filter text Debugging =1 - -
: Resource
General
4 Build Configuration: |Debug [Active] 'l [Manage Configurations...
4 GNU Compiler
Runtime
S}Irmbols. [¥] Generate debug information (-g)
Directories
Optimization Generate debug information in DWARF version (-gdwarf-) |3 =
Preprocessor Do not emit DWARF additions beyond selected version (-gstrict-dwarf)
Assembler [T] Enable function profiling (-p)
Debugging

Diagnostic Optiens
Miscellanecus
> GMU Linker
GMU Objcopy Utility [Disabled]
Debug

/7'\ R
| f) Show advanced settings

| ok || Cancel

Figure 3-10. MSP430 GCC Settings: Debugging

Table 3-8 describes the options that are available for MSP430 GCC Debugging settings.

Table 3-8. MSP430 GCC Settings: Debugging

Option

Description

Generate debug information (-g)

Produce debugging information. This information is required by the GDB debugger.

Generate debug information in DWARF
version (-gdwarf-)

Produce debugging information in DWARF format (if that is supported). The value of version
may be 2, 3 or 4; the default version for most targets is 4.

Do not emit DWARF additions beyond
selected version (-gstrict-dwarf)

Disallow using extensions of later DIWARF standard version than selected with -gdwarf-
version. On most targets using nonconflicting DWARF extensions from later standard
versions is allowed.

Enable function profiling (-p)

Generate extra code to write profile information suitable for the analysis program. This
option is required when compiling source files for which data is needed, and it is also
required when linking.

18 MSP430 GCC Toolchain

SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

3.3.9 GNU Compiler: Diagnostic Options

Figure 3-11 shows the MSP430 GCC Diagnostic Options settings window.

-

«r Properties for Blink

4 Build

type filter text

: Rezource
General

4 GNU Compiler

Runtirme

Symbuols
Directories
Optimization
Preprocessor
Assembler
Debugging
Diagnostic Options
Miscellanecus

> GMNU Linker
GMU Objcopy Utility [Disabled]
Debug

= .
';2_,' Show advanced settings

Diagnostic Options =l - -

Configuration: |Debug [Active] Vl [Manage Configurations...

["] Check for syntax errors, then stop (-fsyntax-only)
["] Suppress warnings (-w)

Enable most warning messages (-Wall)

[Treat all warnings as errors (-\Werror)

[C] Enable verbose cutput (-v)

| ok || Cancel

Figure 3-11. MSP430 GCC Settings: Diagnostic Options

Table 3-9 describes the options that are available for MSP430 GCC Diagnostic Options settings.

Table 3-9. MSP430 GCC Settings: Diagnostic Options

Option

Description

Check for syntax errors, then stop
(-fsyntax-only)

Enable this option to check the syntax of the code and report any errors.

Suppress warnings (-w)

Inhibit all warning messages.

(-Wall)

Enable most warning messages

Enable this option to enable all the warnings about constructions that some users consider questionable,
and that are easy to avoid (or modify to prevent the warning), even in conjunction with macros.

(-Werror)

Treat all warnings as errors

Enable this option to make all warnings into hard errors. Source code that triggers warnings is rejected.

Enable verbose output (-v)

Enable this option for the IDE to show each command line that it passes to the shell, along with all
progress, error, warning, and informational messages that the tool emits. This setting is equivalent to
specifying the —v command-line option. By default, this checkbox is clear. The IDE displays only error
messages that the compiler emits. The IDE suppresses warning and informational messages.

SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020 MSP430 GCC Toolchain 19
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

3.3.10 GNU Compiler: Miscellaneous

Figure 3-12 shows the MSP430 GCC Miscellaneous settings window.

«+ Properties for Blink @@ﬂ
type filter text Miscellaneous Gy
» Resource
General
4 Build Configuration: |Debug [Active] 'l lManage Configurations...]
4 GNU Compiler
Runtime
Symbols Override built-in specs with the contents of the specified file (-specs)
Directories - — TR
i Optimization Read options from specified file (@) E K Tl vl
Preprocessar
| Assembler C source specific flags & a0 3§l 2
Debugging
Diagnostic Options C++ source specific flags 80 3§l
! Miscellaneous
! » GNU Linker = S
GNU Objcopy Utility [Disz Assembly soure specific flags & & & 3l 2
-x assembler-with-cpp
Debug
- |
Other flags € 5 8 4l 3
-mhwmult=f3series
-mcode-region=none
R -mdata-region=none
| R 1 | P
i
||
i ® Show advanced settings [Js'i\pplyr and Close] l Cancel
[1
I —

Figure 3-12. MSP430 GCC Settings: Miscellaneous

Table 3-10 describes the options that are available for MSP430 GCC Miscellaneous settings.
Table 3-10. MSP430 GCC Settings: Miscellaneous

Option

Description

Override built-in specs with the contents of
the specified file (-specs)

The spec strings built into GCC can be overridden by using the -specs= command-line
switch to specify a spec file.

Other flags

-mlarge

Use large-model addressing (20-bit pointers, 20-bit size_t).
-mcode-region=none

-mdata-region=none

The MSP430 compiler has the ability to automatically distribute code and data between low
memory (addresses below 64K) and high memory. This only applies to parts that actually
have both memory regions and only if the linker script for the part has been specifically set
up to support this feature. See Table 4-2 for more information.

20 MSP430 GCC Toolchain

SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

3.3.11 GNU Linker

Figure 3-13 shows the MSP430 GCC Linker settings window.

r

«+ Properties for Blink

type filter text GNU Linker
» Resource
General

4 Build Configuration: |Debug [Active]

'l lManage Configurations...

4 GNU Compiler
Runtime
Symbols Command: "${CG_TOOL_GCCy
Directories
Optimization
Preprocessar Summary of flags set:
Assembler

Diagnostic Options
Miscellaneous

4| GMNU Linker
Basic
Libraries
Symbaols
Miscellaneous

GNU Objcopy Utility [Dise
Debug

'f?} Show advanced settings

It n b See 'General' for changing tool versions and device settings

Command-line pattern: ${command} ${flags} ${output_flag}${output} ${inputs}

) -0s -g -gdwarf-3 -gstrict-dwarf -Wall -mhwmult=f5series -mcode-region=none -mdata-region=none -mlarge =
Debugging -WI,-Map,"Blink.map” -WI,--gc-sections -L"C:/ti/ccs8.0.0.16/ccsv8/ccs_base/msp430/include_gcc”

Edit Flags...

[Js'i\pplyr and Closel l Cancel]
Figure 3-13. MSP430 GCC Linker Settings
Table 3-11 describes the options that are available for MSP430 GCC Linker settings.
Table 3-11. MSP430 GCC Linker Settings
Option Description
Command Linker location
Command-line pattern Command line parameters
Summary of flags set Command line with which the compiler is called. Displays all the flags passed to the linker.

SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

MSP430 GCC Toolchain 21

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

3.3.12 GNU Linker: Basic
Figure 3-14 shows the MSP430 GCC Linker Basic settings window.

v+ Properties for Blink l_lﬂl-z_h]

type filter text Basic =1 r -
» Resource
General
4 Build Configuration: |Debug [Active] '] ’Manage Cnnfiguratinns...]
4 GMNU Compiler
Runtime
Symbols
Directories Output file (-a) "8{ProjNamehout”
Optimization Write a map file (-Map) "8ProjNamel.map"
Preprocessor
Assemnbler Set start address (-g, --entry)
Debugging

[7] Do not use the standard system startup files when linking (-nostartfiles)

Di stic Opti
fagnostic Sphions [7] Do net use the standard systemn libraries when linking (-nodefaultlibs)

Miscellaneous

2 GMNU Linker [7] Do not use the standard system startup files or libraries when linking (-nostdlib)
Basic [7] Do not link with the shared libraries (-static)
Libraries [7] Remove unused sections (--gc-sections)
Symbols

Miscellaneocus
GMU Objcopy Utility [Disabled]
Debug

'i?:' Show advanced settings [oK] ’ Cancel

Figure 3-14. MSP430 GCC Linker Basic Settings

Table 3-12 describes the options that are available for MSP430 GCC Linker Basic settings.
Table 3-12. MSP430 GCC Linker Basic Settings

Option Description

Use output as the name for the file produced by Id; if this option is not specified, the name 'a.out' is used

Outputfile (-0) by default. The script command OUTPUT can also specify the output file name.

Print to the file mapfile a link map, which contains diagnostic information about where symbols are

Write a map file (-Map) mapped by Id and information on global common storage allocation.

Set start address (-e, --entry) Use entry as the explicit symbol for beginning program execution, rather than the default entry point.

Do not use the standard system
startup files when linking
(-nostartfiles)

Do not use the standard system startup files when linking. The standard system libraries are used unless
-nostdlib or -nodefaultlibs is used.

Do not use the standard system libraries when linking. Only the specified libraries are passed to the

Do not use the standard system |linker, and options specifying linkage of the system libraries, such as -static-libgcc or -shared-libgcc, are
libraries when linking ignored. The standard startup files are used unless -nostartfiles is used. The compiler may generate calls
(-nodefaultlibs) to memcmp, memset, memcpy, and memmove. These entries are usually resolved by entries in libc.
These entry points should be supplied through some other mechanism when this option is specified.

Do not use the standard system

startup files or libraries when Do not use the standard system startup files or libraries when linking.

linking (-nostdlib)

Do not link with the shared On systems that support dynamic linking, this prevents linking with the shared libraries. On other
libraries (-static) systems, this option has no effect.

Remove unused sections

(~gc-sections) Enable garbage collection of unused input sections. Ignored on targets that do not support this option.

22 MSP430 GCC Toolchain SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

3.3.13 GNU Linker: Libraries

Figure 3-15 shows the MSP430 GCC Linker Libraries settings window.

-

«+ Properties for Blink

NEI™)

type filter text

» Resource
General
4 Build
4 GNU Compiler
Runtime
Symbaols
Directories
Optimization
Preprocessar
| Assembler
Debugging
Diagnostic Options
Miscellaneous
4 GMNU Linker
Basic
Libraries
Symbaols
Miscellaneous

Debug

< | 11 | P

Libraries

=1 2 v v

GNU Objcopy Utility [Dise

Configuration: |Debug [Active]

'l lManage Configurations...

Linker command files (-T, --script)

Libraries (-l, --library)
gcc
c

Library search path (-L, --library-path)

848 34l 2

88 83 H

88 83l

${CCS_BASE_ROOT}/msp430/include_gcc &

W Group libraries to resolve backward references (--start-group ... --end-group)

® Show advanced settings

e = = - -

[Js'i\pplyr and Close] l Cancel

Figure 3-15. MSP430 GCC Linker Libraries Settings

Table 3-13 describes the options that are available for MSP430 GCC Linker Libraries settings.

Table 3-13. MSP430 GCC Linker Libraries Settings

Option

Linker command files (-T, --script)

-T commandfile

Read link commands from the file command file.

Libraries (-, --library)

-l library

Search the library named library when linking.

Library search path (-L, --library-path)

-L searchdir

scripts.

Add path searchdir to the list of paths that Id will search for archive libraries and Id control

SLAUG46F — SEPTEMBER 2015 — REVISED JUNE 2020

Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

MSP430 GCC Toolchain

23

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

I

TexAs
INSTRUMENTS

www.ti.com

3.3.14 GNU Linker: Symbols

Figure 3-16 shows the MSP430 GCC Linker Symbols settings window.

-

«+ Properties for Blink

type filter text

- Resource
General
4 Build
. GNU Compiler
4 GMU Linker
Baczic
Libraries
Symbels
Miscellaneous
GMU Objcopy Utility [Disabled]
Debug

= .
L\?’,' Show advanced settings

Configuration:

Symbols

Debug [Active]

'I [Manage Configurations...

Define a symbol (--defsym)

Start with undefined reference to SYMBOL (--undefined, -u)

=

&

Cancel

Figure 3-16. MSP430 GCC Linker Symbols Settings

Table 3-14 describes the options that are available for MSP430 GCC Linker Symbols settings.

Table 3-14. MSP430 GCC Linker Symbols Settings

Option

Description

Define a symbol (--defsym)

-defsym symbol=expression

Create a global symbol in the output file, with the absolute address given by expression.

Start with undefined reference to SYMBOL (--
undefined, -u)

Force symbol to be entered in the output file as an undefined symbol

24 MSP430 GCC Toolchain

SLAUG46F — SEPTEMBER 2015 — REVISED JUNE 2020

Copyright © 2020 Texas Instruments Incorporated

Submit Document Feedback

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

3.3.15 GNU Linker: Miscellaneous

Figure 3-17 shows the MSP430 GCC Linker Miscellaneous settings window.

-

«+ Properties for Blink

type filter text

. Resource
General
4 Build
. GNU Compiler
4 GMU Linker
Baczic
Libraries
Symbels
Miscellaneous
GMU Objcopy Utility [Disabled]
Debug

P .
L\'_?,' Show advanced settings

Miscellaneous

Configuration: |Debug [Active]

= | | Manage Configurations...

Other flags

&

OK l | Cancel

Figure 3-17. MSP430 GCC Linker Miscellaneous Settings

Table 3-15 describes the options that are available for MSP430 GCC Linker Miscellaneous settings.

Table 3-15. MSP430 GCC Linker Miscellaneous Settings

Option

Description

Other flags

Specifies individual flags based on the user requirements.

SLAUG46F — SEPTEMBER 2015 — REVISED JUNE 2020

Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

MSP430 GCC Toolchain

25

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

3.3.16 GNU Objcopy Utility
Figure 3-18 shows the MSP430 GCC GNU Objcopy Utility settings window.

-

«v Properties for Blink

type filter text

» Resource
General
4 Build
4 GNU Compiler
Runtirme
Symbuols
Directories
Optimization
Preprocessor
Assembler
Debugging
Diagnostic Optiens
Miscellanecus
> GMNU Linker
4 GNU Objcopy Utility
General Options
Miscellanecus
Debug

= .
'\?_,' Show advanced settings

GNU Objcopy Utility

Configuration: |Debug [Active] Vl [Manage Configurations...

Enable GNU Objcopy Utility

Command: "S${CG_TOOL_OBICOPY}"

Command-line pattern: 5{command} 5{flags} {inputs} ${output}

Summary of flags set:

See 'General' for changing tool versions and device settings

| Set Additional Flags...

|| cancel |

Figure 3-18. MSP430 GCC GNU Objcopy Utility Settings

Table 3-16 describes the options that are available for GNU Objcopy Utility.

Table 3-16. MSP430 GCC GNU Objcopy Utility Settings

Option

Description

Enable GNU Objcopy Utility

Enable this option to enable the GNU Objcopy Ultility. It is disabled by default.

Command

GNU Objcopy location

Command-line pattern

Command line parameters

Summary of flags set

Objcopy command.

Command line with which the GNU Objcopy is called. Displays all the flags passed to the

26 MSP430 GCC Toolchain

SLAUG46F — SEPTEMBER 2015 — REVISED JUNE 2020

Copyright © 2020 Texas Instruments Incorporated

Submit Document Feedback

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Figure 3-19 shows the MSP430 GCC GNU Objcopy Utility General Options settings window.

-

«# Properties for Blink

type filter text

> Resource
General
4 Build
4 GNU Compiler
Runtime
Symbels
Directories
Optimization
Preprocessor
Assembler
Debugging
Diagnostic Options
Miscellanecus
» GNU Linker
4 GNU Objcopy Utility
General Options
Miscellanecus
Debug

F :
'\‘?/' Show advanced settings

General Options

Configuration: ’DEbug [Active]

'l [Manage Configurations...l

Specify cutput file name
Assume input file is in format <bfdname= (-1, --input-target)

Create an output file in format <bfdname: (-0, --cutput-target) [

Set output arch, when input is arch-less (-B, --binary-architecture)
[[] Convert debugging information, if possible (--debugging)
[] Copy modified/access timestamps to the output (-p, --preserve-dates)

Remove section <name> from the cutput (-R, --remove-section)

[] Remove all symbol and relocation information (-5, --strip-all)

[] Rernove all debugging symbols sections (-g, --strip-debug)

[] Remove all symbols not needed by relocations (--strip-unneeded)
Set the start address to <addr> (--set-start)
[List all object files modified (-v, --verbose)

${BuildArtifactFileBaseMame}.hex

)

)

OK l [Cancel

Figure 3-19. MSP430 GCC GNU Objcopy Utility General Options Settings

Table 3-17 describes the options that are available for GNU Objcopy Utility General Options.
Table 3-17. MSP430 GCC GNU Objcopy Utility General Options Settings

Option

Description

Specify output file name

Specifies the output file name

Assume input file is in format <bfdname>
-1 bfdname

--input-target=bfdname

Consider the source file's object format to be bfdname, rather than attempting to deduce it.

Create an output file in format <bfdname>
-O bfdname

--output-target=bfdname

Write the output file using the object format bfdname.

Set output arch when input is arch-less
-B bfdarch

--binary-architecture=bfdarch

Useful when transforming an architecture-less input file into an object file. In this case the

output architecture can be set to bfdarch.

Convert debugging information, if possible
(--debugging)

Convert debugging information, if possible. This is not the default because only certain
debugging formats are supported, and the conversion process can be time consuming.

SLAUG46F — SEPTEMBER 2015 — REVISED JUNE 2020

Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

MSP430 GCC Toolchain

27

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Option

Description

Copy modified/access timestamps to the
output (-p, --preserve-dates)

Set the access and modification dates of the output file to be the same as those of the input
file.

Remove section <name> from the output
-R sectionpattern

--remove-section=sectionpattern

Remove any section matching sectionpattern from the output file. This option may be given
more than once. Note that using this option inappropriately may make the output file
unusable. Wildcard characters are accepted in sectionpattern. Using the -j and -R options
together results in undefined behavior.

Remove all symbol and relocation information
(-S, --strip-all)

Do not copy relocation and symbol information from the source file.

Remove all debugging symbols sections
(-g, --strip-debug)

Do not copy debugging symbols or sections from the source file.

Remove all symbols not needed by
relocations (--strip-unneeded)

Strip all symbols that are not needed for relocation processing.

Set the start address to <addr>
(--set-start)

Set the start address of the new file to the specified value. Not all object file formats support
setting the start address.

List all object files modified (-v, --verbose)

Verbose output: list all object files modified. In the case of archives, 'objcopy -V' lists all
members of the archive.

Figure 3-20 shows the MSP430 GCC GNU Objcopy Utility Miscellaneous settings window.

-

v'# Properties for Blink

type filter text

. Resource
General
4 Build
4 GMNU Compiler
Runtime
Symbols
Directories
Optimization
Preprocessor
Assembler
Debugging
Diagnestic Options
Miscellaneocus
- GMU Linker
4 GMNU Objcopy Utility
General Options
Miscellaneocus
Debug

o :
Lt?,' Show advanced settings

Miscellaneous

Cenfiguration:

Other flags

Debug [Active] *J IManage Configurations...

£

[OK Cancel

Figure 3-20. MSP430 GCC GNU Objcopy Utility Miscellaneous Settings

Table 3-18 describes the options that are available for GNU Objcopy Utility Miscellaneous.

Table 3-18. MSP430 GCC GNU Objcopy Utility Miscellaneous Settings

Option Description
Other flags Specifies individual flags based on the user requirements.
28 MSP430 GCC Toolchain SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020

Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

3.4 CCS Compared to MSP430 GCC

Some CCS features are not supported in MSP430 GCC. These features are:

» Optimizer Assistant
* ULP Advisor

* Memory Protection Unit and Intellectual Property Encapsulation GUI configuration

* Memory allocation

These features require the Tl toolchain.

4 MSP430 GCC Stand-Alone Package

The MSP430 GCC stand-alone package is provided for users who prefer to use the MSP430 GCC toolchain with
other IDE or console-based solutions for compiling and debugging. This stand-alone package supports different
operating systems and is provided in different formats:

« GCC, Binutils, and GDB binaries for Windows, Linux, and macOS

« MSP430 header and linker files
« MSP430 GCC source code
» GDB agent configuration

The following table lists all the available MSP430 GCC stand-alone packages.
Table 4-1. MSP430 GCC Stand-Alone Package

Software

Description

msp430-gcc-full-linux-x64-installer-x.x.x.x.run

MSP430 GCC 64-bit Linux installer including support files, debug stack, and USB
drivers. Run sudo chmod +x <installer> before executing the package.

msp430-gcc-full-osx-installer-x.x.x.x .app.zip

MSP430 GCC macOS installer including support files, debug stack, and USB
drivers.

msp430-gcc-full-windows-installer-x.x.x.x.exe

MSP430 GCC Windows installer including support files, debug stack, and USB
drivers.

msp430-gcc-x.x.x.x_{platform}.{zip,tar.bz2}

MSP430 GCC toolchain only. For linux32, linux64, macOS, win32, and win64
platforms.

msp430-gcc-x.x.x.x-source-full.tar.bz2

Full source tree of MSP430 GCC toolchain with scripts and instructions to build the
toolchain from source.

msp430-gcc-x.x.x.x-source-patches.tar.bz2

Patch files for each of the components of MSP430 GCC (GCC, binutils, newlib,
GDB). These can be applied on top of the corresponding upstream release of the
component to build the toolchain from source.

msp430-gcc-support-files-x.xxx.zip

Header files and linker scripts.

SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020
Submit Document Feedback

MSP430 GCC Toolchain 29

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

4.1 MSP430 GCC Stand-Alone Package Folder Structure
The placeholder INSTALL_DIR refers to the directory where you installed the GCC MSP430 package.
* INSTALL_DIR

bin
+ MSP430 GCC, GDB, and Binutils binaries
» GDB Agent
+ MSP430 Debug Stack
common
docs
» Links to this user's guide and the quick start guide
emulation
* Windows USB-FET Drivers
examples
» Makefile-based examples to build and debug using MSP430 GCC
include
* MSP430 Support Files (device header files and linker scripts)
lib
libexec
msp430-elf
+ lib
— MSP430 Target Libraries
share
+ doc
— HTML documentation for GCC, GDB, Binutils, and Newlib. The “index.html” file in each subdirectory
is the recommended starting point for browsing.
msp430.dat
MSP430-GCC_manifest.html

4.2 Package Content

MSP430 GCC contains binary and sources software development tools for all TI MSP430 devices. The toolchain
contains: compiler, assembler, linker, debugger, libraries, and other utilities.

These software development tools include:

Compiler: MSP430 GCC (msp430-elf-gcc and msp430-elf-g++) is configured to compile C or C++.
binutils: assembler, archiver, linker, librarian, and other programs.

Newlib is the standard C library.

Debugging: GDB (available with and without Python scripting support) and the GDB Agent:

Note: The Python-enabled GDB client (msp430-elf-gdb-py) requires Python 2.7 libraries to be installed on
the host system.

Source code: Toolchain source code is available at http://www.ti.com/tool/msp430-gcc-opensource.

30

MSP430 GCC Toolchain SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

https://software-dl.ti.com/ccs/esd/documents/xdsdebugprobes/emu_xds_gdb_agent.html
http://www.ti.com/tool/mspds
http://www.ti.com/tool/msp430-gcc-opensource
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

4.3 MSP430 GCC Options

The GNU compiler, assembler, and linker in the MSP430 GCC toolchain support the target-specific options listed
in Table 4-2, Table 4-3, and Table 4-4, in addition to the standard options. For the full list of options for the GNU
compiler, refer to the GCC online documentation. For the full list of options for the GNU assembler (gas) and
linker (Id), refer to the GNU binutils online documentation. The manifest distributed with the toolchain specifies
the version numbers of each of the components.

Table 4-2. MSP430 GCC Command Options

Option

Description

-masm-hex

This option forces assembly output to always use hex constants. Normally such constants are signed
decimals, but this option is available for test suite or aesthetic purposes.

-mcode-region=
-mdata-region=

These options change the behavior of the compiler and linker. The names of function and data sections
are modified so that they will be placed in a specific way across the upper and lower memory regions,
according to the rules in the linker script. These options have no effect unless -mlarge is also passed.
Possible values are:
* upper

— The compiler adds the “.upper” prefix to section names.

— The linker adds the “.upper” prefix to all section names that do not already have a prefix.
* either

— The compiler adds the “.either” prefix to section names.

— The linker adds the “.either” prefix to all section names that do not already have a prefix.

— The linker places “.either” sections in the lower memory region. If the lower memory region
overflows, the linker shuffles sections between the upper and lower memory regions to try to
get the program to fit.

* lower

— Neither the compiler nor the linker adds the “.lower” prefix unless the
-muse-lower-region-prefix option is also passed.

— For -mdata-region=lower, the compiler assumes data is in the lower region of memory (in the
16-bit address range below address 0x10000), so MSP430 instructions can be generated to
handle data. For other values passed to
-mdata-region, the compiler assumes data could be in the entire 20-bit address range, so
MSP430X instructions must be used to handle data. This results in increased code size
compared to -mdata-region=lower.

— Object files compiled with -mdata-region=lower cannot be linked with object files compiled with
a different -mdata-region value.

* none
— Neither the compiler nor the linker makes any changes to section names.

The default settings for these options are: -mdata-region=lower and -mcode-region=none.

-mhwmult=

This option describes the type of hardware multiply supported by the target.
Accepted values:

* 'none' for no hardware multiply

« '"16bit' for the original 16-bit-only multiply supported by early MCUs

« '32bit' for the 16/32-bit multiply supported by later MCUs

» ‘'f5series' for the 16/32-bit multiply supported by F5-series MCUs.

» 'auto' can also be given. This tells GCC to deduce the hardware multiply support based upon the
MCU name provided by the -mmcu’ option.

If no -mmcu option is specified, then no hardware multiply support is assumed. 'auto’ is the default
setting.

Hardware multiplies are normally performed by calling a library routine. This saves space in the
generated code. When compiling at -O3 or higher, however, the hardware multiplier is invoked inline.
This makes for larger but faster code.

The hardware multiply routines disable interrupts while running and restore the previous interrupt state
when they finish. This makes them safe to use inside interrupt handlers as well as in normal code.

-mdisable-device-warnings

Disable warnings emitted when the devices.csv file cannot be found by the compiler.

SLAUG46F — SEPTEMBER 2015 — REVISED JUNE 2020 MSP430 GCC Toolchain 31

Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

https://gcc.gnu.org/onlinedocs/gcc-8.2.0/gcc/Invoking-GCC.html
https://sourceware.org/binutils/docs-2.26/
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com
Option Description
“minrt This option is deprecated. The toolchain now dynamically decides which start up and initialization/
termination functions are required.
-mlarge Use large-model addressing (20-bit pointers, 20-bit size_t). Small-model addressing is the default.

-mmax-inline-shift=<0,64>

This option takes an integer between 0 and 64 inclusive. The value sets the maximum number of inline
shift instructions to emit to perform a shift operation by a constant amount. If this value will be
exceeded, an MSPABI helper function is used instead. The default value is 4.

This option affects only cases where a shift by multiple positions cannot be completed with a single
instruction (for example, all shifts by more than one position on the MSP430 ISA). Shifts of a 32-bit
value are at least twice as costly, so the value passed for this option is divided by 2 and the resulting
value is used instead.

This option selects the MCU to target. This is used to create a C preprocessor symbol based upon the
MCU name, converted to upper case and prefixed and postfixed with '__". This in turn is used by the
'msp430.h' header file to select an MCU-specific supplementary header file.

The option also sets the ISA to use. If the MCU name is one that is known to only support the 430 ISA
then that is selected, otherwise the 430X ISA is selected. A generic MCU name of 'msp430' can also
be used to select the 430 ISA. Similarly, the generic 'msp430x' MCU name selects the 430X ISA.

-mmcu= In addition, an MCU-specific linker script is added to the linker command line. The script's name is the
name of the MCU with ".Id' appended. Thus specifying '-mmcu=xxx' on the gcc command line defines
the C preprocessor symbol _ XXX___ and causes the linker to search for a script called 'xxx.Id". This
option is also passed on to the assembler.

Manually passing a linker script using the -T option prevents this linker script from being used
automatically. To augment rather than displace this linker script, use the --script option to pass directly
to the linker (-WI,--script=).

This option enables both assembler and linker relaxation, which are optimizations that modify the code

-mrelax that was emitted by the compiler. See the descriptions of the -mQ option for the assembler and --relax

option for the linker for more information. By default, assembler relaxation is disabled, and linker
relaxation is enabled.

-msilicon-errata=NAME[,NAME...]

This option implements fixes for named silicon errata. Multiple silicon errata can be specified by
multiple uses of the -msilicon-errata option or by including the errata names, separated by commas, on
an individual -msilicon-errata option. Errata names currently recognized by the assembler are:

cpu4 = PUSH #4 and PUSH #8 need longer encodings on the MSP430. This errata is enabled by
default; it cannot be disabled.

cpu8 = Do not set the SP to an odd value.

cpu11 = Do not update the SR and the PC in the same instruction.
cpu12 = Do not use the PC in a CMP or BIT instruction.

cpu13 = Do not use an arithmetic instruction to modify the SR.
cpu19 = Insert NOP after CPUOFF.

-msim

This option links to the simulator runtime libraries and linker script. Overrides any scripts that would be
selected by the '-mmcu=" option.

-msmall

Use small-model addressing (16-bit pointers, 16-bit size_t). This is the default.

-msilicon-errata-
warn=NAME[,NAME...]

This option is similar to the -msilicon-errata option, except that instead of fixing the specified errata, a
warning message is issued instead. This option can either be used with -msilicon-errata to generate
messages whenever a problem is fixed, or used on its own to inspect code for potential problems.

-mtiny-printf

This option links a reduced-size implementation of the printf() and puts() library functions. This reduced
size implementation is not reentrant, so should be used with care in multi-threaded applications.
Buffering of the string to be output has been removed from printf() and puts(), so user implementations
of the system write() function must also implement buffering. The library implementation of write() that
is included with MSP430 GCC does buffer the output string.

-muse-lower-region-prefix

This option adds the ".lower" prefix to function or data section names when
-mdata-region=lower or -mcode-region=lower is passed.

-mwarn-mcu
-mno-warn-mcu

This option enables or disables warnings about conflicts between the MCU name specified by the -
mmcu option and the ISA set by the -mcpu option or the hardware multiply support set by the -
mhwmult option. It also toggles warnings about unrecognized MCU names. This option is on by default.

32 MSP430 GCC Toolchain

SLAUG46F — SEPTEMBER 2015 — REVISED JUNE 2020

Copyright © 2020 Texas Instruments Incorporated

Submit Document Feedback

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Most assembler and linker options specific to MSP430 are passed automatically by the GCC wrapper,
depending on the options passed to GCC itself. Table 4-3 and Table 4-4 list options that control behavior specific
to the assembler and linker.

When passing an option to the assembler via the GCC wrapper (msp430-elf-gcc), the option must be prefixed
with “ -Wwa, ”. For example, to pass -mU to the assembler, you would pass -Wa, -mU to msp430-elf-gcc.

The assembler emits warnings when instructions to enable or disable interrupts are used without surrounding
NOP instructions. See Section 8.2 for details. This behavior can be modified using the options in Table 4-3.

Table 4-3. MSP430 GCC Assembler Options

Option Description
-mn Insert NOPs around interrupt enable/disable instructions.
-mN Do not insert NOPs around interrupt enable/disable instructions (default).
-mQ Enable assembler relaxation. The assembler tries to replace some instructions with alternate versions

that have smaller code sizes. This is disabled by default.

Warn or insert NOP instructions (default) around an instruction that may change the interrupt enable
-mu state if it is not known how the state will change. Whether a warning is emitted or a NOP is inserted is
dependent on which of the -m{N,n,Y,y} options are set.

Do not warn or insert NOP instructions around an instruction that may change the interrupt enable

-mU state if it is not known how the state will change.
-my Warn about missing NOPs around interrupt enable/disable instructions (default).
-mY Do not warn about missing NOPs around interrupt enable/disable instructions.

When passing options to the linker via the GCC wrapper (msp430-elf-gcc), the option must be prefixed with “ -
wl, 7. For example, to pass --disable-sec-transformation to the linker, you would pass
-Wl,--disable-sec-transformation to msp430-elf-gcc.

Table 4-4. MSP430 GCC Linker Options

Option Description

Disable the transformation of section names in object files being linked, based on the
-mdata-region and -mcode-region options. For example, passing

--disable-sec-transformation “-mdata-region=either -WI,--disable-sec-transformation” to msp430-elf-gcc instructs the compiler to
add the “.either” prefix to data section names being compiled, but the linker will not add the “.either”
prefix to any section names in the object files it is passed.

--relax --no-relax Enable or disable relaxation. The linker tries to replace some instructions with alternate versions that
have smaller code sizes. Relaxation may grow short branch instructions that do not reach their target.
Linker relaxation is enabled by default and cannot be disabled when linking executable files.

Table 4-5. MSP430 Objdump Options

Option Description

Print the symbol meta-information entries from the .symtab_meta section of the specified ELF object

~-Symtab-meta or executable file.

4.4 MSP430 Built-in Functions
GCC provides special built-in functions to aid in the writing of interrupt handlers in C.
__bic_SR_register_on_exit (int mask)

This clears the indicated bits in the saved copy of the status register that currently resides on the stack. This only
works inside interrupt handlers and the changes to the status register only take effect after the handler returns.

__bis_SR_register_on_exit (int mask)

This sets the indicated bits in the saved copy of the status register that currently resides on the stack. This only
works inside interrupt handlers and the changes to the status register only take effect after the handler returns.

SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020 MSP430 GCC Toolchain 33
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

4.5 Using MSP430 GCC Support Files

MSP430 GCC uses the devices.csv file thatis included with the MSP430 GCC Support Files package to get
the device data for the device specified with the -mmcu option. This causes the source code to be built for the
correct ISA and hardware multiplier with any necessary symbols defined. This ensures the correct operation of
the toolchain. When using the -mmcu option, the toolchain automatically selects the correct header files and
linker scripts for the device specified.

MSP430 GCC uses a few different methods to find the support files (in the following precedence order):

1.

Command-line options for compiler include path and linker library path. The compiler looks in the
directories specified by the -l option, and the linker looks in the directories specified by the -L option. Pass the
path to the "include" directory in the MSP430 GCC Support Files package to both of these options. CCS uses
this method by default, so users of the CCS IDE should not have to make any changes.

. Directory specified via environment variable. If the command line options described above are not

provided, the toolchain examines the MSP430_GCC_INCLUDE_DIR environment variable. Set this
environment variable to the full path to the "include" directory in the MSP430 GCC Support Files package.
For example, on Linux:

export MSP430 GCC INCLUDE DIR=/home/user/ti/gcc/include

. Default toolchain installation directory. If neither a command line option nor the environment variable

described above is provided, the toolchain checks the msp430-elf/include/devices/ directory within
the MSP430 GCC installation for the support files. Note that this "devices" directory does not exist in the
latest toolchain installations, so the "include" directory from the support files package should be copied to this
location. For example, on Linux:

cp -r /home/user/ti/gcc/include/ /home/user/ti/gcc/mspd430-elf/include/devices/

Note

The toolchain stops searching for support files once it finds devices.csv . The results may be
different than expected if one of the higher-precedence methods finds out-of-date support files,
despite newer support files being pointed to by one of the lower-precedence methods.

34

MSP430 GCC Toolchain SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

4.6 Quick Start: Blink the LED

This document assumes that a version of the GNU Make utility is installed on the system and that it is available
on the system path. The placeholder INSTALL_DIR refers to the directory where the GCC MSP430 package is
installed. The directory INSTALL_DIR/bin should be on the system path.

4.6.1 Building with a Makefile

1. In the command terminal, go to the INSTALL_DIR\examples directory.

2. There are examples for Windows, macOS, and Linux. They are located in the corresponding subdirectories.
Choose one of the examples suitable for the operating system and MSP430 target device.

3. Change to the directory and type make.

4. The binary can now be downloaded and debugged on the target hardware.

4.6.2 Building Manually with gcc

To build one of the examples manually, open a terminal and change to the example for the target device and
operating system. The compiler executable msp430-elf-gcc must be available on your system path.

msp430-elf-gcc -I <Path to MSP430 Support Files> -L <Path to MSP430 Support Files>
-T DEVICE.1ld -mmcu=DEVICE -02 -g blink.c -o blink.o

The placeholder <Path to MSP430 Support Files> is the directory that contains the MSP430 support files
(header files and linker scripts to support the different MSP430 devices).

The placeholder DEVICE tells the compiler and linker to create code for the target device. The command line
argument -T DEVICE.Id is not normally required. When the -mmcu=DEVICE option is passed, the linker
searches for the linker script “DEVICE.Id” in the current directory, and for paths specified with -L.

Example

msp430-elf-gcc -I ../../../include -L ../../../include -mmcu=msp430fr5969 \
-02 -g blink.c -o blink.o

4.6.3 Debugging
4.6.3.1 Starting GDB Agent

On Microsoft Windows, the GDB Agent is available as either as a small GUI application or on the command line.

On GNU Linux, only the command line version is available.
4.6.3.1.1 Using the GUI
Open the INSTALL_DIR/bin directory and double-click gdb_agent_gui.

1. After the program starts, click the button Configure, select msp430.dat, and click Open.
2. Click on the button Start under the Panel Controls.

3. The "Log" window now contains the status message "Waiting for client".

4. Leave the window open until the end of the debugging process.

4.6.3.1.2 Using the Command Line

Open a command terminal, change to INSTALL_DIR and type:
Linux

./bin/gdb_agent_console msp430.dat

Windows

\bin\gdb_agent_console msp430.dat

SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020 MSP430 GCC Toolchain
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

35

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

4.6.3.2 Debugging With GDB
4.6.3.2.1 Running a Program in the Debugger

1. In the command terminal, go to the INSTALL DIR\examples\[Selected example], and type the command
make debug.

2. This command starts GDB and waits for commands. This is indicated by the prompt <gdb>.

3. To connect GDB to the GDB Agent, type the command target remote :55000 and press enter.
4. To load the program binary to the MSP430 target device, type load.

5. Type the command continue (short version: c) to tell GDB to run the loaded program.

6. The LED on the target board blinks.

4.6.3.2.2 Setting a Breakpoint

1

2

. Connect GDB to the GDB Agent as described in Section 4.6.3.2.1 and load a program to the device.

. To set a breakpoint on a function, type break function name. By default this sets a software breakpoint (see
Section 4.7.2). Use hbreak to set a hardware-assisted breakpoint, which speeds up debugging. A limited
number of hardware breakpoints are available; the number is dependent on your device.

3. To set a breakpoint on a source line, type break filename:line.
4. When you run a program, program execution stops at the entry to the specified function or the specified line.
4.6.3.2.3 Single Stepping

1. Connect GDB to the GDB Agent as described in Section 4.6.3.2.1 and load a program to the device.
2. After the debugger has stopped the program at a breakpoint, you can step through the code:

» To execute the source line, type next. next does not step into functions, it executes the complete function
and stops on the line following the function call.

» To execute the next source line and step into functions, type step.

» To execute the next instruction, type nexti.

» To execute the next instruction and step into functions, type stepi.
4.6.3.2.4 Stopping or Interrupting a Running Program

1. Connect GDB to the GDB Agent as described in Section 4.6.3.2.1 and load a program to the device.
2. To stop a running program and go to the GDB command prompt, press Ctrl+C (not supported on Windows).

4.6.4 Creating a New Project

1. Create a directory for your project, and copy one of the example project makefiles into the project directory.
Open the copied makefile and set the variable DEVICE to the target device.

Set the variable GCC_DIR to point to the directory where the GCC MSP430 package is installed.

Include all of the project source files (that is, the *.c files) as a dependency for the first target of the makefile.
Go to the project directory in a terminal. Type make to build the project or make debug to debug the project.

oD

OBJECTS=blink.o
GCC DIR = ../../../bin
SUPPORT FILE DIRECTORY = ../../../include

Please set your device here
DEVICE msp430X

ccC = $(GCC_DIR) /msp430-elf-gcc

GDB = $(GCC _DIR) /msp430-elf-gdb

CFLAGS = -I $(SUPPORT_FILE_DIRECTORY) -mmcu=$ (DEVICE) -02 -g
LFLAGS = -L $(SUPPORTiFILEiDIRECTORY) -T $(DEVICE) .1ld

all: ${OBJECTS}

$(CC) $(CFLAGS) $(LFLAGS) $? -o $(DEVICE) .out
debug: all

$ (GDB) $ (DEVICE) .out

36 MSP430 GCC Toolchain SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

4.7 GDB Settings

The GDB Agent is a tool to connect GDB with the target hardware to debug software. The GDB Agent uses the

MSP430 debug stack to connect to the hardware and provides an interface to GDB. On Windows, both a

console and a GUI application version of the GDB Agent are provided. Only the console application is supported

on Linux.

4.7.1 Console Application

If you use the console application, run it from a command terminal using following syntax:
Linux

INSTALL_DIR/bin/gdb_agent_console INSTALL_DIR/msp430.dat

Windows

INSTALL_DIR\bin\gdb_agent_console INSTALL_DIR\msp430.dat

The console application opens a TCP/IP port on the local machine. It displays the port number in the console. By

default, this port number is 55000.
4.7.2 Optional Parameters for msp430.dat
Add the following lines to msp430.dat to enable or modify the specific debug options.

MSP430 low-power debugging

msp430 lowpowerdebug=true

MSP430 programming and erase options for GDB

The BSL or the protected memory can be unlocked at the start of the session using the
msp430_ connectaction keyword.

msp430 connectaction=[unlockbsl] [unlockprotected] [<other connect options>]

If protected memory is unlocked, it is erased on download if the download erase option is set to
erasefactory , erasemain , Or erasemainandinfo , orif the download erase option is set to
erasesegment and the download image includes protected memory data.

msp430 loadaction controls whether a reset is done before or after download and also configures erase
options for download.

msp430_loadaction =[resetbefore] [resetafter] [erasefactoryl|erasemain|erasemainandinfo|eraseuser|
erasesegment] [<other load options>]
Where:

erasefactory = MSP430 Erase(type = ERASE_TOTAL, ...) called at the start of each download
erasemain = MSP430_Erase(type = ERASE_MAIN, ...) called at the start of each download
erasemainandinfo = MSP430_Erase(type = ERASE_ALL, ...) called at the start of each download
eraseuser =MSP430_Erase(type = ERASE_USER, ...) called at the start of each download

erasesegment = MSP430_ Erase(type = ERASE_SEGMENT, ...) called the first time that the segment is
written to during each download

Another optional connect action is to reset or erase on connect:

msp430 connectaction=[reset] [erasefactory|erasemain|erasemainandinfo|eraseuser]

If this line is not present, the default is to not reset or erase on connect.

SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020 MSP430 GCC Toolchain
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

37

http://www.ti.com/mspds
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

If the BSL or protected areas are unlocked, they are erased on connect if the erasefactory or
erasemainandinfo options are set. They are erased on download if the erasefactory ,
erasemainandinfo , Or erasesegment options are set and the image includes the BSL or protected
segment.

No action is taken on the auto run or launch options as they are outside the scope of the GDB agent.
MSP430 verification options for GDB

msp430 loadaction includes averify keyword. If this keyword is present, each write to flash is verified.

‘ msp430 loadaction=[verify] ‘

Add MSP430 breakpoints options for GDB

‘ msp430 default breakpoint = [software|hardware] ‘

By default, the MSP430 GDB agent uses software breakpoints (type=BP_SOFTWARE) for all GDB break
commands. If a software breakpoint fails, the GDB agent then attempts to set a hardware (type=BP_CODE)
breakpoint. A hardware breakpoint can be set explicitly using the GDB hbreak command.

If the msp430 default breakpoint option is setto hardware, the GDB agent uses type BP_CODE for all
GDB breakpoints (both break and hbreak commands).

4.7.3 GUI Application

After you start the GUI application, configure the GUI and then start the GDB server. For more information, refer
to the XDS GDB Agent online documentation.

1. Click the Configure button and, in the Select board configuration file window, select the msp430.dat file. If
successfully configured, an MSP430 device is displayed in the <Targets> list. The TCP/IP port for the GDB
server is displayed when the MSP430 device is selected from the list.

2. To start the GDB Agent, click the Start button when the MSP430 device is selected.

4.7.4 Attaching the Debugger

After starting the debugger and to attach to the GDB server, use the target remote [<host ip address>]:<port>
command, where <port> is the TCP/IP port from above. If the GDB Agent runs locally, omit the host IP address.

4.7.5 Configuring the Target Voltage

To configure the target voltage for the device, open the file msp430.dat in a text editor. To change the voltage,
modify the key msp430_vcc. By default, this value is set to 3.3 V.

4.7.6 Resetting the Target
To reset the target, use the monitor reset command.
4.7.7 Halting the Target

To halt the target, use the monitor halt command.

38 MSP430 GCC Toolchain SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=AF6L9KK4ZMC6jHfQoWaJoQ__FUz-xrs__LATEST
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

I

TEXAS
INSTRUMENTS

www.ti.com

5 MSP430 GCC Features
The following MSP430-specific features are additions to the standard set of GCC features.
5.1 C/C++ Attributes

The following sections describe MSP430-specific additions to the function and data attributes available with
GCC.

5.1.1 GCC Function Attribute Support

The following attributes may be applied to function declarations:

.

critical

Disable interrupts on entry, and restore the previous interrupt state on exit.
interrupt or interrupt(x)

Make the function an interrupt service routine for interrupt "x". This attribute can also be used without an
argument. If no argument is used, the function is not linked to an interrupt, but the function will have
properties that are associated with interrupts.

To define an interrupt, use the following syntax:

void attribute ((interrupt (INTERRUPT VECTOR))) INTERRUPT ISR (void)
Example:

void _ attribute ((interrupt (UNMI_VECTOR))) UNMI_ISR (void)

{ // isr }

You can also use the following macro defined in the iomacros.h file, which is automatically included when
using msp430.h from the MSP430 GCC support files:

#define interrupt vec(vec) attribute ((interrupt (vec)))

Example:

void interrupt vec (UNMI VECTOR) UNMI ISR (void)
{}

location(address)

Can be applied to declarations of functions or static/global data. It instructs the linker to place the section
containing the function or data object at the specified address if possible.

For accurate placement, objects with this location attribute should be in their own sections. This can be
achieved by using the GCC command-line options -f { function, data}-sections or by applying the
"section" attribute to the object’s declaration.

The memory region containing the specified address must be compatible with the type of section created for
the object. For example, you cannot place read/write data in a read-only memory region. The linker deduces
the memory region type from the flags set in the linker script for the memory region and the names of output
sections that have been placed in that memory region. For example, if a memory region contains an output
section called “.text”, the linker assumes that entire region is executable.

The linker renames sections containing objects that use the “location” attribute, giving them the prefix
“.smi.location”. These “.smi.location” sections are placed either in their own output sections in the linked
executable or within other output sections, among input sections that do not rely on a specific ordering. More
specifically, the linker places “.smi.location” sections with other input sections only under certain known
output sections such as “.text” or “.data.*”. This prevents “.smi.location” sections from being placed with
sections such as “.crt_*”, which rely on section ordering for proper operation of the program.

SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020 MSP430 GCC Toolchain 39
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

If the linker cannot place a “.smi.location” section within an output section due to an incompatibility, it places
the “.smi.location” section in its own output section at the specified address. It then shifts the incompatible
output section to be placed immediately after it.

The linker only attempts to place the first object with a location attribute in an input section. It emits a warning
if any subsequent location attributes are ignored. Since the linker can only place location objects at a specific
address by placing their input section at that address, it is not possible to accurately place more than one
location object per input section.

To initialize data/bss variables that have been placed at specific locations, the linker creates a
“.smi.location_init_array” section. The C Run-time (CRT) startup code uses this table to copy data or zero-
initialize bss variables just before calling main().

naked

Do not generate a prologue or epilogue for the function.
reentrant

Disable interrupts on entry, and always enable them on exit.
retain

Can be applied to declarations of functions or static/global data. It instructs the linker to retain the section that
contains this object in the linked executable file, even if symbols in that section appear unused. This prevents
the section from being garbage collected. This attribute implies that the “used” attribute also applies.

wakeup

When applied to an interrupt service routine, wake the processor from any low-power state as the routine
exits. When applied to other routines, this attribute is silently ignored.

5.1.2 GCC Data Attribute Support

The following attributes may be applied to variable declarations:

location

See the description of this attribute in Section 5.1.1.
noinit
Variables with this attribute are not initialized by the C runtime startup code or the program loader. Not

initializing data in this way can reduce program startup times. A compiler warning will be provided if a variable
marked with the noinit attribute is initialized to a constant value.

persistent

Variables with this attribute are not initialized by the C runtime startup code. Instead their value is set once
when the application is loaded, and then never initialized again, even if the processor is reset or the program
restarts. Persistent data is intended to be placed into Flash RAM, where its value will be retained across
resets. The linker script used to create the application should ensure that persistent data is correctly placed.
A compiler warning is provided if a variable marked with persistent is not initialized to a constant value.

retain

See the description of this attribute in Section 5.1.1.

70

MSP430 GCC Toolchain SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

5.1.3 GCC Section Attribute Support

The following attributes can be applied to functions or data to add a prefix to their default section name. This
may change whether the linker places them in high or low memory. See Table 4-2 for details about how the linker
handles sections with these prefixes.

¢ lower

Adds the “.lower” prefix to the default section name.
* upper

Adds the “.upper” prefix to the default section name.
» either

Adds the “.either” prefix to the default section name.
5.2 Hints for Reducing the Size of MSP430 GCC Programs

In addition to size optimization (-Os) and link-time optimization (-flto), there are additional command-line options
you can use and small changes you can make to reduce the code and data size of your program.

5.2.1 The -mtiny-printf Option

The -mtiny-printf option enables minimal implementations of the printf() and puts() library functions. These
implementations reduce code size by removing some functionality. See Table 4-2 for more information.

5.2.2 The -ffunction-sections and -fdata-sections Options

The -ffunction-sections and -fdata-sections options instruct the GCC compiler to create a new output section for
each function and data object. When used with the --gc-sections linker option, these options ensure that the
linker can perform garbage collection of unused function and data objects in your program.

Typically, this reduces overall program size. However, if there is not a significant number of sections the linker
can remove, these options may actually increase the size of your program and reduce performance. This is
because the GCC compiler cannot perform certain optimizations when these options are enabled. We
recommend that you experiment with these options to determine the overall effect they have on your program
size.

5.2.3 Making Large Programs Fit Across Upper and Lower Memory

For MSP430X devices that have an “upper” memory region (memory above the OxFFFF boundary), the large
memory model (-mlarge) is supported.

If a program built for one of these MSP430X devices is too large to fit exclusively in the lower memory region
using the small memory model, rebuilding the program for the large memory model (-mlarge) with -mcode-
region=either and possibly -mdata-region=either can help it to fit.

There is a code size and performance penalty when using -mdata-region=either. MSP430X instructions must be
generated to address data, even in cases where an MSP430 instruction would suffice, since the compiler must
assume that data might be placed in the upper memory region. Therefore, -mdata-region=either should be used
only if it is necessary—that is, if the program would not otherwise fit on the device.

Note that the -mlarge option alone forces the compiler to generate CALLA and RETA instructions for all
subroutine calls and returns. While there is no code size penalty for using these instructions instead of CALL and
RET, there is some performance overhead. There is no additional penalty to using -mcode-region=either if -
mlarge is in use.

See Table 4-2 for details on how the "either" options shuffle code and data sections between upper and lower
memory. For best results, use these options with the -ffunction-sections and -fdata-sections options, so that the
sections available to be shuffled are smaller.

SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020 MSP430 GCC Toolchain 41
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

5.2.4 NOP Instructions Surrounding Interrupt State Changes

To prevent incorrect behavior when two adjacent instructions both change the global interrupt enable state (see
Section 8.2), the C macros for modifying the interrupt state contain NOP instructions. The following macros are
affected and are defined in in430.h, which is part of the msp430-gcc-support-files package:

* _set interrupt_state
* _enable_interrupts
* _disable_interrupts
* _bis_SR register

* _bic_SR register

Macros that modify the status register (SR) might be used for purposes other than changing the interrupt state,
so NOP instructions in these macros may not be needed. If code size is important, you can examine places your
source code uses the _bic_SR_register and _bis_SR_register macros. If NOPs inserted by macros are not
needed in some places, you can define your own macros that omit NOPs and use them where appropriate.

5.3 C Runtime Library (CRT) Startup Behavior

When your program starts running but before execution reaches main(), C Runtime (CRT) startup code initializes
global/static data, zero-initializes bss, and calls any functions stored in .init_array (for example, global
constructors for C++). The inclusion of functionality during this startup sequence is dynamic, so that functions
are linked into the program only if they are required.

CRT functions are each stored in their own section. The linker script sorts these sections by name to enforce the
order in which they are executed. You can cause your own functions to run before main() by placing them in a
section with a name beginning with “.crt_####’, where #### is a 4-digit decimal number, padded with leading 0s.

It is important to mark these functions with both the “naked” and "used" function attributes. The "naked" attribute
removes the function prologue and epilogue, allowing the function to “fall-through” to the next CRT function
instead of trying to execute a return instruction. The “used” attribute prevents compiler optimization from
removing the function if it is not explicitly called. See Section 5.1.1

User-specified CRT functions may be used to disable the watchdog immediately after program start. This can
prevent the watchdog from firing before main(), during initialization of large data or bss sections. For example:

#include <msp430.h>

static void _ attribute ((naked, used, section(".crt 0042")))
disable watchdog (void)
{
WDTCTL = WDTPW | WDTHOLD;
}

The names of existing sections containing CRT startup code are show below. This list can be extracted by
looking at the section names in “libcrt.a” and “crt0.0”.

» .crt_0000start

» .crt_0100init_bss

« .crt_0200init_highbss

« .crt_0300movedata

» .crt_0400move_highdata

e .crt_0500run_preinit_array

e .crt_0600run_init_array

e .crt_0710run_smi_location_init_array
« .crt_0800call_main

The example above for the disable_watchdog() function would therefore run immediately after the system
initializes and branches to “_start” and before bss initialization is performed.

42 MSP430 GCC Toolchain SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

5.4 Using printf with MSP430 GCC

The printf() function is commonly used to assist with debugging, however its behavior in MSP430-GCC is
dependent on the debugging software being used.

When debugging within CCS, printf() output is shown in the CIO console.

When debugging with GDB and the GDB Agent, printf() is silently ignored. This is because the default
implementation relies on the debugger understanding the TI C 1/O protocol, which is currently unimplemented in
GDB.

The default implementation can be overridden by defining the write() system call in your application. The write()
function is called with the finalized string, ready to be printed, and must handle the process of outputting the
string. The prototype for write() is:

int write (int fd, const char *buf, int len); ‘

» fdis the file descriptor, which for printf will always be STDOUT.
* buf contains a pointer to the formatted string.
* len is the number of bytes from buf that should be written.

5.5 Link-time Optimization (LTO)

MSP430 GCC supports link-time optimization, which significantly reduces code size and improves performance
in projects that consist of multiple source files and libraries. It can be enabled by passing the -flto flag to msp430-
elf-gcc.

LTO is a feature of the GCC compiler, and does not affect the behavior of the linker. It is recommended that you
compile all source files using the same options, and pass that same set of options when linking using msp430-
elf-gcc. For the most straightforward operation, just compile and link all your source files using a single
invocation of msp430-elf-gcc.

If the --save-temps option is passed, the optimized assembly code from your entire project will be stored in
<output_filename>.ltrans0.s. The output assembly files from individual source files contain the LTO bytecode.

For more detailed information and tips on using LTO, see the GCC documentation on the -flto option.
5.6 The __int20 Type and Pointers in the Large Memory Model

For MSP430X devices in the large memory model, pointers and size_t are 20 bits in size. To handle this, GCC
defines the int20 type, which uses 20 bits of space in registers, and 32 bits of space in memory.

This type is built into the compiler, so it can be used like any other type in source code. Using unsigned
__int20 designates the unsigned version of the type.

The __int20 type is not part of the ISO C specification, so using this type in any program compiled with flags that
check for standards compliance may cause a warning or error to be emitted. A variation of the type that will not
trigger these standards compliance messages is defined as int20 (using a trailing double underscore).

SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020 MSP430 GCC Toolchain 43
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

6 Building MSP430 GCC From Sources
6.1 Required Tools

This document assumes that the required tools are installed on the system and that they are available on the
system path.

* GNU make

* GCC and binutils

* bzip2 and tar

» curl, flex, bison, and texinfo

6.2 Building MSP430 GCC (Mitto Systems Limited)

The README-build.sh bash script included with the source-full package (and in the source-patches package)
can be used to build the toolchain for Windows, Linux and macOS hosts. The script contains some distribution-
specific instructions on how to install the pre-requisite tools from Section 6.1.

To build native Linux and macOS toolchains, follow the instructions in Section 6.2.1.

To build the toolchain for Windows hosts, follow both the instructions in Section 6.2.1 and then Section 6.2.2.

Note
If less than 2 GB of RAM is available during the build, the build may fail.

6.2.1 Building a Native MSP430 GCC Toolchain
Follow these steps to build Mitto MSP430 GCC for Linux and macOS:

1. Download the source-full tar archive (for example, msp430-gcc-7.3.0.9-source-full.tar.bz2) from the MSP430
GCC page.

2. Untar the file.

3. Change to the source-full directory.

4. Run README-build.sh to build the toolchain.

5. Build files are in the ./build folder.

6. Binaries/libs are in the ./install folder.

Note

An alternative to this process is to use the "source-patches" tar archive (for example, msp430-
gcc-7.3.0.9-source-patches.tar.bz2)to apply patches to source tars as released by the
upstream community.
Versions 7.3.0.9 and later include a script (README-apply-patches.sh), which downloads the
upstream releases and applies the patches so the sources are ready for building. The README -
build.sh script can then be used to build a native toolchain.

44 MSP430 GCC Toolchain SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020

Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com/tool/msp430-gcc-opensource
http://www.ti.com/tool/msp430-gcc-opensource
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

6.2.2 Building the MSP430 GCC Toolchain for Windows
Follow these instructions to build the toolchain for Windows hosts:

1. Begin by following the instructions in Section 6.2.1 to build a native toolchain.

2. Move the installation directory to a permanent location. (This is because the README-build.sh script
deletes the "build" and "install" directories before starting the toolchain build.)

3. Install a cross-compiler for Windows:
* On Ubuntu install the "mingw-w64" package as follows:

> apt-get install mingw-w64
* On Centos 7, first install the "Extra Packages for Enterprise Linux" (EPEL) repository, then install the
mingw toolchain as follows:

> yum install epel-release
> yum install mingw64-gcc.x86 64 mingw64-gcc-c++.x86 64

4. Add the desired host platform to "configure_args_common" in README-build.sh . For 64-bit Windows this
is usually "x86_64-w64-mingw32" and for 32-bit Windows it is "i686-w64-mingw32". For example:

> configure args_common='--target=msp430-elf --enable-languages=c,c++ --disable-nls
--host=x86_ 64-w64-mingw32'

Note

You can confirm that a cross-compiler is available for the target host by running
${HOST}-gcc --version .For example:

> x86 64-wb64-mingw32-gcc --version

5. Make sure the native toolchain installed earlier is on the PATH.
6. Run README-build.sh .

6.3 Building MSP430 GCC Stand-Alone Full Package

+ MSP430 GCC Toolchain
1. Download the MSP430 GCC Installer (Toolchain only) from http://www.ti.com/tool/msp430-gcc-
opensource.
2. Use the generated MSP430 GCC version (see Section 6.2).
» USB driver package (Windows only)
1. Download "Stand-alone Driver Installer for USB Low-Level Drivers" from http://www.ti.com/tool/mspds.
« MSPDS OS package
1. Download "MSP Debug Stack Open Source Package" from http://www.ti.com/tool/mspds.
* Build MSPDebugStack
1. Extract "MSP Debug Stack Open Source Package".
2. Follow the instructions in "README-build.sh".
+ GDB agent
1. Download the GDB Agent from the XDS Emulation Software (EMUPack) Download page.
* MSP430 support files for GCC
1. Download "msp430-gcc-support-files.zip" from http://software-dl.ti.com/msp430/
msp430_public_sw/mcu/msp430/MSPGCC/latest/index FDS.html.

SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020 MSP430 GCC Toolchain 45
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com/tool/msp430-gcc-opensource
http://www.ti.com/tool/msp430-gcc-opensource
http://www.ti.com/tool/mspds
http://www.ti.com/tool/mspds
https://software-dl.ti.com/ccs/esd/documents/xdsdebugprobes/emu_xds_software_package_download.html
http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSPGCC/latest/index_FDS.html
http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSPGCC/latest/index_FDS.html
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

7 MSP430 GCC and MSPGCC

The new GCC compiler for MSP low-power microcontrollers conforms to the MSP Embedded Application Binary
Interface (EABI) (see MSP430 Embedded Application Binary Interface). This allows GCC to interoperate with the
proprietary Tl toolchain.

For example, assembly functions can be written in the same way, and libraries that are built with one compiler
can be used as part of executables built with the other compiler. Aligning with the MSP EABI required breaking
compatibility with the prior MSPGCC compiler. This document gives a brief overview of the ABI changes that are
most likely to be noticed by and to affect a developer who is moving from MSPGCC to the newer GCC compiler
for MSP.

7.1 Calling Convention

For developers writing assembly code, the most noticeable part of an ABI is the calling convention. Full
specification of the calling convention is very detailed (see MSP430 Embedded Application Binary Interface), but
developers writing assembly do not typically use most of it. There are three basic differences between MSPGCC
and the GCC compiler for MSP in the calling convention that are important to be aware of:

* In MSPGCC, registers are passed starting with R15 and descending to R12. For example, if two integers are
passed, the first is passed in R15 and the second is passed in R14. In contrast, the MSP430 EABI specifies
that arguments are passed beginning with R12 and moving up to R15. So, in the same situation, registers
R12 and R13 would hold the two arguments. In both cases, after the registers R12 through R15 are used,
continued arguments are passed on the stack. If you are using stack-based arguments, you should consult
the EABI specification.

» MSPGCC and the GCC compiler for MSP use different registers for the return value. MSPGCC places the
return value in R15 (or R15 and consecutive lower registers if the value is larger than a word), while the EABI
specifies that the return value is placed in R12.

* In MSPGCC, register R11 is considered a save on entry register and needs to be saved and restored by the
callee if it is used in the called function. Conversely, the MSP EABI specifies that R11 is a save on call
register, so it needs to be saved and restored by the calling function if its value will be needed after a function
call. For comparison purposes, R4 to R10 are save on entry registers for both compilers, and R12 to R15 are
save on call.

These are the key differences to be aware of when moving between the compilers. If you are writing assembly
code that passes parameters on the stack or that passes structures by value, you should consult the MSP EABI
document for additional information.

7.2 Other Portions of the ABI

Many other pieces make up the EABI, such as the object file format; debug information, and relocation
information that is used when linking together files. However, in general, these pieces do not affect migration.

One other area to be aware of is that the details of data layout differ between ABIs. If you are relying on
advanced data layout details such as layout of structures and bitfields, see MSP430 Embedded Application
Binary Interface.

46 MSP430 GCC Toolchain SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SLAA534
http://www.ti.com/lit/pdf/SLAA534
http://www.ti.com/lit/pdf/SLAA534
http://www.ti.com/lit/pdf/SLAA534
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

8 Appendix
8.1 GCC Intrinsic Support

The GCC Compiler supports the same intrinsics that the TI CGT for MSP430 does. These are:

* unsigned short __becd_add_short(unsigned short op1, unsigned short op2);
» unsigned long __bed_add_long(unsigned long op1, unsigned long op2);
* unsigned short __bic_SR_register(unsigned short mask); BIC mask, SR
* unsigned short __bic_SR_register_on_exit(unsigned short mask);

» unsigned short __bis_SR_register(unsigned short mask);

* unsigned short __bis_SR_register_on_exit(unsigned short mask);

* unsigned long __data16_read_addr(unsigned short addr);

» void __data16_write_addr (unsigned short addr, unsigned long src);
» unsigned char __data20_read_char(unsigned long addr);

* unsigned long __data20_read_long(unsigned long addr);

* unsigned short __data20_read_short(unsigned long addr);

» void __data20_write_char(unsigned long addr, unsigned char src);
» void __data20_write_long(unsigned long addr, unsigned long src);

» void __data20_write_short(unsigned long addr, unsigned short src);
» void __delay_cycles(unsigned long);

» void __disable_interrupt(void); AND __disable_interrupts(void);

» void __enable_interrupt(void); AND __enable_interrupts(void);

* unsigned short __get_interrupt_state(void);

* unsigned short __get_SP_register(void);

» unsigned short __get_SR_register(void);

* unsigned short __get_SR_register_on_exit(void);

* void __low_power_mode_0(void);

» void __low_power_mode_1(void);

* void __low_power_mode_2(void);

» void __low_power_mode_3(void);

* void __low_power_mode_4(void);

* void __low_power_mode_off_on_exit(void);

* void __no_operation(void);

» void __set_interrupt_state(unsigned short src);

» void __set_SP_register(unsigned short src);

* unsigned short __swap_bytes(unsigned short src);

SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020 MSP430 GCC Toolchain 47
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

8.2 NOP Instructions Required Between Interrupt State Changes

Incorrect execution of the MSP430 CPU can result from consecutive interrupt state changes (for example, EINT
followed by DINT). The assembler detects such instruction patterns in code being assembled and emits
warnings that NOP instructions might be required.

Since it is not always known what instruction will actually be executed after an EINT or DINT, the assembler
warns if there is a NOP missing before/after every EINT or DINT, as appropriate for the device. The assembler
also warns about instructions that modify the status register in a way that is unknown at assembly time, as these
instructions might change the interrupt state.

Whether NOP instructions are required between interrupt state changes depends on the ISA the code is being
assembled for. The assembler uses the following rules when deciding whether to warn about missing NOP
instructions:

* Both the MSP430 and MSP430X ISA require a NOP after DINT.
* Only the MSP430X ISA requires a NOP before EINT.
* Only the MSP430X ISA requires a NOP after EINT.

See the user guide for your device family for more details.
9 References

1. Using the GNU Compiler Collection, Richard M. Stallman (http://gcc.gnu.org/onlinedocs/gcc.pdf). Refer to the
MSP430 Options section.

2. GDB: The GNU Project Debugger, Free Software Foundation, Inc. (https://sourceware.org/gdb/current/
onlinedocs/)

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from June 30, 2019 to June 30, 2020 Page
o CCS V10.X iS the CUITENT VEISION.......uiiiiiiiiiiiie ettt e e e e e et e e e st e e e s assaeeeeesnssaeeaesnnsseeeesannneeens 3
e Removed 32-bit LINUX INSTAIIEI ... et e e e e e e e e et e e e e e e e e e e e e e e nnnnneeeeeeeas 29
* Added share directory, changed name of manifest file, and provided descriptions.............ccoccociiiiiiiinennnnn. 30
* Python 2.7 is required to debug with GDB and GDB AgQENt..........ccocoiiiiiiiiiiiieeee e 30
» Added -mmax-inline-shift and --symtab-meta options. Made corrections and additions to descriptions for -
mhwmult, -mmcu, -msmall, and -MY OPLIONS........ooiii e e e e e e e e e e e 31
* Added -mQ assembler option and --relax/--no-relax lINKer OPtioNS..........cooovi i 31
+ Explained how to set a hardware-assisted breakpoint on a funNClion.............cccoooiiiiiii e, 36
» Using Ctrl+C to stop a running program is supported on Linux and macOS, but not Windows....................... 36
» Software breakpoints are now used by default instead of hardware breakpoints in GDB Agent...................... 37
* Added new section with descriptions of MSP430-specific GCC features............ccoccciiiiii e 39
» Added location and retain function attributes and examples for interrupt function attributes.......................... 39
* Added location and retain data attribUtes. ... 40
» Added information about code size and performance penalty for data placed in upper memory. 41
e Added section on startup DENAVIO............. e e e e e e e e e e eas 42
o Added Section 0N USING PriNtf..... ..ot e e ettt e e e e eat e e e e s bbe e e e e s anbeeeeesaanbeeeaeeann 43
* Added section on link-time OptimIZation.............ooeiiiiiiii e 43
* Added section on the __int20 type and pointers in the large memory model...............ccooiiiiie 43
48 MSP430 GCC Toolchain SLAU646F — SEPTEMBER 2015 — REVISED JUNE 2020

Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

http://gcc.gnu.org/onlinedocs/gcc.pdf
https://sourceware.org/gdb/current/onlinedocs/
https://sourceware.org/gdb/current/onlinedocs/
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU646F&partnum=

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Tl products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an
application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other Tl intellectual property right or to any third party intellectual property right. Tl disclaims responsibility for, and you
will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for
TI products.

Tl objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	Read This First
	How to Use This User's Guide
	Related Documentation
	If You Need Assistance
	Trademarks

	1 Introduction
	2 Installing MSP430 GCC Toolchain
	2.1 Installing MSP430 GCC in CCS Releases Before v7.2
	2.2 Installing MSP430 GCC as Stand-Alone Package

	3 Using MSP430 GCC Within CCS
	3.1 Create New Project
	3.2 Debug Using MSP-FET, MSPFET430UIF, eZ-FET, eZ430
	3.3 Build Options for MSP430 GCC
	3.3.1 GNU Compiler
	3.3.2 GNU Compiler: Runtime
	3.3.3 GNU Compiler: Symbols
	3.3.4 GNU Compiler: Directories
	3.3.5 GNU Compiler: Optimization
	3.3.6 GNU Compiler: Preprocessor
	3.3.7 GNU Compiler: Assembler
	3.3.8 GNU Compiler: Debugging
	3.3.9 GNU Compiler: Diagnostic Options
	3.3.10 GNU Compiler: Miscellaneous
	3.3.11 GNU Linker
	3.3.12 GNU Linker: Basic
	3.3.13 GNU Linker: Libraries
	3.3.14 GNU Linker: Symbols
	3.3.15 GNU Linker: Miscellaneous
	3.3.16 GNU Objcopy Utility

	3.4 CCS Compared to MSP430 GCC

	4 MSP430 GCC Stand-Alone Package
	4.1 MSP430 GCC Stand-Alone Package Folder Structure
	4.2 Package Content
	4.3 MSP430 GCC Options
	4.4 MSP430 Built-in Functions
	4.5 Using MSP430 GCC Support Files
	4.6 Quick Start: Blink the LED
	4.6.1 Building with a Makefile
	4.6.2 Building Manually with gcc
	4.6.3 Debugging
	4.6.3.1 Starting GDB Agent
	4.6.3.1.1 Using the GUI
	4.6.3.1.2 Using the Command Line

	4.6.3.2 Debugging With GDB
	4.6.3.2.1 Running a Program in the Debugger
	4.6.3.2.2 Setting a Breakpoint
	4.6.3.2.3 Single Stepping
	4.6.3.2.4 Stopping or Interrupting a Running Program

	4.6.4 Creating a New Project

	4.7 GDB Settings
	4.7.1 Console Application
	4.7.2 Optional Parameters for msp430.dat
	4.7.3 GUI Application
	4.7.4 Attaching the Debugger
	4.7.5 Configuring the Target Voltage
	4.7.6 Resetting the Target
	4.7.7 Halting the Target

	5 MSP430 GCC Features
	5.1 C/C++ Attributes
	5.1.1 GCC Function Attribute Support
	5.1.2 GCC Data Attribute Support
	5.1.3 GCC Section Attribute Support

	5.2 Hints for Reducing the Size of MSP430 GCC Programs
	5.2.1 The -mtiny-printf Option
	5.2.2 The -ffunction-sections and -fdata-sections Options
	5.2.3 Making Large Programs Fit Across Upper and Lower Memory
	5.2.4 NOP Instructions Surrounding Interrupt State Changes

	5.3 C Runtime Library (CRT) Startup Behavior
	5.4 Using printf with MSP430 GCC
	5.5 Link-time Optimization (LTO)
	5.6 The __int20 Type and Pointers in the Large Memory Model

	6 Building MSP430 GCC From Sources
	6.1 Required Tools
	6.2 Building MSP430 GCC (Mitto Systems Limited)
	6.2.1 Building a Native MSP430 GCC Toolchain
	6.2.2 Building the MSP430 GCC Toolchain for Windows

	6.3 Building MSP430 GCC Stand-Alone Full Package

	7 MSP430 GCC and MSPGCC
	7.1 Calling Convention
	7.2 Other Portions of the ABI

	8 Appendix
	8.1 GCC Intrinsic Support
	8.2 NOP Instructions Required Between Interrupt State Changes

	9 References
	Revision History

