
Subsystem Design
SPI to I2C Bridge

1 Design Description
This subsystem serves as a SPI-to-I2C bridge. In this subsystem, the MSPM0 device is the SPI Peripheral
and I2C Controller. When a SPI controller transmits to the bridge SPI peripheral, the peripheral collects all the
received data. Once the peripheral reaches the expected maximum message, the peripheral transmits the data
using the I2C controller. The device sends an I2C transmit request and waits for I2C data from the I2C target.
When the I2C controller finishes reading the data, the bridge waits for a SPI controller to send a request to read
the data from the bridge. Finally, the bridge transmits the I2C controller received data through the bridge SPI
peripheral.

SPI Controller

PICO

POCI

CS

SCLK

SPI

(Peripheral)

I2C

(Controller)

VDD

I2C Peripheral

Figure 1-1. System Functional Block Diagram

2 Required Peripherals
Two MSPM0 peripherals are used for this subsystem: the SPI and I2C.

Table 2-1. Peripherals
Sub-Block Functionality Peripheral Use Notes

SPI Peripheral SPI Called SPI_INST in code.

I2C Controller I2C Called I2C_INST in code. Default
100kHz transmission rate.

3 Compatible Devices
Any MSPM0 device and EVMs or Launchpads can use this subsystem if the required peripherals are present.

4 Design Steps
1. The subsystem project can be found in the M0 SDK under MSP Subsystems folder.
2. Set up the I2C module in SysConfig. Set the device in Controller Mode and leave the rest of the settings by

default. Now navigate to the Interrupt configuration tab and enable the TX Done and RX_FIFO_TRIGGER
interrupts.

3. Set up the SPI module in SysConfig. Put the device in SPI Peripheral mode and leave the rest of the settings
on default. Now, navigate to the Interrupt configuration tab and enable the Receive and Transmit interrupts.

4. Define the maximum packet size to the desired package size.

www.ti.com Design Description

SLAAES5 – FEBRUARY 2025
Submit Document Feedback

SPI to I2C Bridge 1

Copyright © 2025 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__ALyPeNcgTQHHgrTzIpVMFA__MSPM0-SDK__a3PaaoK__LATEST
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAES5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAES5&partnum=

5 Design Considerations
1. Communication speed.

a. Increasing both interface speeds increases data throughput and decreases chances of data collisions.
b. Adjusting external pull-up resistors according to I2C specifications is necessary to allow for

communication if I2C speeds are increased. As a general guideline, 10kΩ is appropriate for 100kHz.
Higher I2C bus rates require lower valued pullup resistors. For 400kHz communications, use resistors
closer to 4.7kΩ.

c. Additional optimization of this code can be necessary to meet increased bridge utilization. Additional
optimizations include higher device operating speeds, multiple transfer buffers, or state machine
simplification.

Note
Figure 1-1 example was only tested with default speed of 100kHz (I2C) speeds.

2. Check the pins being used for both peripherals. There are some pins who require special considerations like
being open drained.

Design Considerations www.ti.com

2 SPI to I2C Bridge SLAAES5 – FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAES5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAES5&partnum=

6 Software Flowchart
Figure 6-1 shows the code flow diagram for this example and explains how the device fills the data buffers with
received SPI data, then transfers the data out through I2C.

Initializes variables

and states

M0L Initialization/Main()

Enables SPI & I2C

Interrupts

Bridge()

Bridge()

Switch:

States

Fill SPI TX FIFO,

waits for SPI

Controller to

request the data,

enables the SPI

RX Interrupt, and

restarts bridge

SPI_RX_STATE

Is SPIRxCount

equal or more than

MAX Size?

Stores I2C Tx

Buffer with SPI Rx

values and the SPI

Rx Count is

restarted

Fills I2C TX FIFO,

waits for I2C

Controller to be

idle, and Sends

data to the I2C

Target

Waits for the I2C

Controller

Transmission to be

over, and makes the

I2C status back to

idle

I2C Master

request data from

the I2C Target and

waits for all bytes

to be received

Is I2CRxCount

equal or more than

MAX Size?

I2C_TX_STATE I2C_RX_STATE SPI_TX_STATE

Stores SPI Tx Bu�er

with I2C Rx values, the

SPI RX Count is

restarted, and makes

I2C status back to idle

NO

REPEAT

FOREVER

YES

NO

YES

SPI IRQ Handler

SPI Rx

Stores received SPI

message into a temp

variable and stores it in SPI

RX Buffer (in respect with

SPI RX Counter)

Is SPIRxCount equal or

more than MAX Size?

Increase

SPI RX

Counter

Disable

SPI RX

Interrupt

EXIT Handler

I2C IRQ Handler

RX FIFO Trigger

Sets I2C Status to

RX in progress

While RX FIFO is

not Empty

Store I2C RX data

into I2C RX Buffer

EXIT Handler

TX Done

Sets I2C

Status TX

Complete

Is gI2CRxCount

less than MAX

Size?

Doesn’t store data

coming from I2C RX

YES NO

NOYES

Figure 6-1. Application Software Flowchart

Figure 6-1 shows a high-level diagram of how the communication works. X bytes here represent the Maximum
package of bytes found in the communication process.

www.ti.com Software Flowchart

SLAAES5 – FEBRUARY 2025
Submit Document Feedback

SPI to I2C Bridge 3

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAES5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAES5&partnum=

SPI PICO

SPI_RX_STATE

SPI POCI

I2C Bus

I2C_TX_STATE I2C_RX_STATE SPI_TX_STATE

RX: X Bytes

TX: X Bytes RX: X Bytes

TX: X Bytes

No Bytes No Bytes

No Bytes

No Bytes

Figure 6-2. High Level Communication Diagram

7 Device Configuration
This application makes use of the TI System Configuration Tool (SysConfig) graphical interface to generate the
configuration code of the device peripherals. Using a graphical interface to configure the device peripherals
streamlines the application prototyping process.

The code for what is described in Figure 6-1 is found in the beginning of main() in the spi_to_i2c_bridge.c file.

8 Application Code
The initialization of the buffers, counters, enum, and flag are shown here. To change the specific values used by
the SPI and I2C maximum packet size, modify the #defines in the beginning of the document, as demonstrated
in the following code block.

#include "ti_msp_dl_config.h"
/* Delay for 5ms to ensure SPI TX is idle before starting transmission */
#define SPI_TX_DELAY (160000)

/*Define max packet sizes*/
#define MAX_PACKET_SIZE 4

/*SPI Buffers & Variables*/
uint8_t gSPITxData[MAX_PACKET_SIZE];
uint8_t gSPIRxData[MAX_PACKET_SIZE];
volatile uint8_t gSPIRxCount = 0; // Variable to track # of bytes SPI Received
/*I2C Controller Buffers & Variable*/
uint8_t gI2CTxData[MAX_PACKET_SIZE];
uint8_t gI2CRxData[MAX_PACKET_SIZE];
volatile uint8_t gI2CAddress = 0x48; // Target Address to communicate to
volatile uint8_t gI2CTxCount = 0; // Variable to track # of bytes I2C
Transmitted
volatile uint8_t gI2CRxCount = 0; // Variable to track # of bytes I2C Received
volatile uint8_t rxTemp = 0;
/* Indicates status of Bridge */
enum BridgeStates {
 SPI_RX_STATE = 0,
 I2C_TX_STATE,
 I2C_RX_STATE,
 SPI_TX_STATE
} gBridgeStates;
/* Indicates status of I2C Controller */
enum I2cControllerStatus {
 I2C_C_STATUS_IDLE = 0,
 I2C_C_STATUS_TX_COMPLETE,
 I2C_STATUS_RX_STARTED,
 I2C_C_STATUS_RX_INPROGRESS,
 I2C_STATUS_RX_COMPLETE
} gI2cControllerStatus;

void bridge(void);

Device Configuration www.ti.com

4 SPI to I2C Bridge SLAAES5 – FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/tool/SYSCONFIG
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAES5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAES5&partnum=

The main body of the application code is relatively short. First, the device peripherals and interrupts get
initialized. Then, a delay occurs for the SPI TX, which is idle before starting transmission, while also the state
and flag values are initialized. Following up, the main loop, which contains the bridge function, runs.

int main(void)
{
 SYSCFG_DL_init();
 /* Activate Interrupts */
 NVIC_ClearPendingIRQ(SPI_INST_INT_IRQN);
 NVIC_EnableIRQ(SPI_INST_INT_IRQN);
 NVIC_EnableIRQ(I2C_INST_INT_IRQN);

 /* Optional delay to ensure SPI TX is idle before starting transmission */
 delay_cycles(SPI_TX_DELAY);

 /*Initial states*/
 gBridgeStates = SPI_RX_STATE;
 gI2cControllerStatus = I2C_C_STATUS_IDLE;

 /* Start bridge */
 while (1) {
 bridge(); // Runs bridge
 }
}

The bridge has four states. The first state focuses on transferring the data from the SPI RX buffer to the I2C
TX buffer while clearing the SPI RX buffer after the maximum package size has been received by the SPI
Peripheral. The second state transmits the data from the I2C TX buffer to an I2C Target. Then, the third state
makes the I2C Controller send a request data signal to the I2C target, and after recollecting the data, transfers
the I2C RX Buffer to the SPI TX Buffer while clearing the I2C RX buffer. The final state fills the SPI Target with
the contents of SPI TX Buffers, waits for the FIFOs to be empty (Controller asks for the data,) enables the SPI
RX to Interrupt again, and restarts the bridge.

void bridge(){
 uint8_t i=0; uint8_t j=0;uint8_t k=0; // Setting counter
variables
 switch (gBridgeStates) {
 case SPI_RX_STATE:
 if (gSPIRxCount >= MAX_PACKET_SIZE){
 // Storing data from SPI Buffer to message that is addressed to Bridge A
 for(k = 0; k < MAX_PACKET_SIZE; k++){
 gI2CTxData[k] = gSPIRxData[k];
 gSPIRxData[k] = 0;
 }
 // Resetting gSPIRxCount variable
 gSPIRxCount = 0;
 gBridgeStates = I2C_TX_STATE;
 }
 else {
 break;
 }
 case I2C_TX_STATE:
 // Sending the I2C WRITE message to the 9724
 gI2CTxCount = DL_I2C_fillControllerTXFIFO(I2C_INST, &gI2CTxData[0], MAX_PACKET_SIZE);

 /* Send the packet to the target. This function will send Start + Stop automatically. */
 while (!(DL_I2C_getControllerStatus(I2C_INST) & DL_I2C_CONTROLLER_STATUS_IDLE));
 DL_I2C_startControllerTransfer(I2C_INST, gI2CAddress, DL_I2C_CONTROLLER_DIRECTION_TX,
MAX_PACKET_SIZE);

 /* Wait until the Controller sends all bytes AKA the I2C_C_STATUS_TX_COMPLETE to be
true */
 while (gI2cControllerStatus != I2C_C_STATUS_TX_COMPLETE) {
 __WFE();
 }
 while (DL_I2C_getControllerStatus(I2C_INST) & DL_I2C_CONTROLLER_STATUS_BUSY_BUS);

 gI2cControllerStatus = I2C_C_STATUS_IDLE;
 gBridgeStates = I2C_RX_STATE; // Move to next
Bridge stage
 break;
 case I2C_RX_STATE:
 /* Add delay between transfers */

www.ti.com Application Code

SLAAES5 – FEBRUARY 2025
Submit Document Feedback

SPI to I2C Bridge 5

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAES5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAES5&partnum=

 delay_cycles(1000);

 /* Send a read request to Target */
 gI2cControllerStatus = I2C_STATUS_RX_STARTED;
 DL_I2C_startControllerTransfer(I2C_INST, gI2CAddress, DL_I2C_CONTROLLER_DIRECTION_RX,
MAX_PACKET_SIZE);

 /* Wait for all bytes to be received in interrupt */
 while (gI2cControllerStatus != I2C_STATUS_RX_COMPLETE) {
 __WFE();
 }
 while (DL_I2C_getControllerStatus(I2C_INST) &
 DL_I2C_CONTROLLER_STATUS_BUSY_BUS);

 /* Waiting for I2C Rx buffer interrupt to happen AKA When expected package size
 is received from I2C Target */
 if(gI2CRxCount >= MAX_PACKET_SIZE){
 // Extract the received bytes from the I2C read and store them in SPI buffer #2 (Tx)
 for(j = 0; j < MAX_PACKET_SIZE; j++){
 gSPITxData[j] = gI2CRxData[j];
 gI2CRxData[j] = 0;
 }
 // Resetting gI2CRxCount variable
 gI2CRxCount = 0;
 gI2cControllerStatus = I2C_C_STATUS_IDLE;
 gBridgeStates = SPI_TX_STATE; // Move to next
Bridge stage
 }
 break;
 case SPI_TX_STATE:
 DL_SPI_fillTXFIFO8(SPI_INST, &gSPITxData[0], MAX_PACKET_SIZE);
 while(!DL_SPI_isTXFIFOEmpty(SPI_INST));

 DL_SPI_enableInterrupt(SPI_INST, DL_SPI_INTERRUPT_RX);
 gBridgeStates = SPI_RX_STATE;
 break;
 }
}

The next piece of this example is the SPI IRQ Handler. Only one interrupt is used for this example: SPI RX.
When activated, the data is stored in a temporal variable and then stored in the SPI RX FIFO Buffer. Then, if the
SPI RX Counter is less than the maximum package size, the SPI Rx counter increases; otherwise, the SPI RX
FIFO interrupt is disabled.

void SPI_INST_IRQHandler(void)
{
 switch (DL_SPI_getPendingInterrupt(SPI_INST)) {
 case DL_SPI_IIDX_RX:
 rxTemp = DL_SPI_receiveDataBlocking8(SPI_INST);
 gSPIRxData[gSPIRxCount] = rxTemp;
 if (gSPIRxCount >= MAX_PACKET_SIZE){
 DL_SPI_disableInterrupt(SPI_INST, DL_SPI_INTERRUPT_RX);
 }else {
 gSPIRxCount++;
 }
 break;
 default:
 break;
 }
}

The final piece of code in this example is the I2C IRQ Handler. The two interrupts in this example are Controller
TX Done and Controller RX FIFO Trigger. The I2C Controller Status is updated to TX Completed when TX Done
is triggered. When the RX FIFO Trigger is triggered, the I2C Controller Status is updated to RX In Progress; the
I2C Rx buffer receives the message stored in the I2C RX FIFO until is empty and sets the I2C Controller Status
to I2C RX Complete.

void I2C_INST_IRQHandler(void)
{
 switch (DL_I2C_getPendingInterrupt(I2C_INST)) {
 case DL_I2C_IIDX_CONTROLLER_TX_DONE:
 gI2cControllerStatus = I2C_C_STATUS_TX_COMPLETE;
 break;

Application Code www.ti.com

6 SPI to I2C Bridge SLAAES5 – FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAES5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAES5&partnum=

 case DL_I2C_IIDX_CONTROLLER_RXFIFO_TRIGGER:
 gI2cControllerStatus = I2C_C_STATUS_RX_INPROGRESS;
 /* Receive all bytes from target */
 while (DL_I2C_isControllerRXFIFOEmpty(I2C_INST) != true){
 if(gI2CRxCount < MAX_PACKET_SIZE) {
 gI2CRxData[gI2CRxCount++] = DL_I2C_receiveControllerData(I2C_INST);
 }else{
 DL_I2C_receiveControllerData(I2C_INST);
 }
 }
 gI2cControllerStatus = I2C_STATUS_RX_COMPLETE;
 break;
 default:
 break;
 }
}

9 Porting Guide
First, open the project SYSCONFIG file and click on the Show Device View icon at the top right corner of the
SYSCONFIG window.

Figure 9-1. Show Device View Icon Location

After clicking the icon, the current projects target device package shows. Click the SWITCH button to change.

www.ti.com Porting Guide

SLAAES5 – FEBRUARY 2025
Submit Document Feedback

SPI to I2C Bridge 7

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAES5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAES5&partnum=

Figure 9-2. SWITCH Button Location

Next, the Migrate Settings open. Here, you can select the new value for a Board (if a user uses one), device, and
package. Switch the chipset to the desired device in SYSCONFIG. Make sure to select the right MCU model and
package. When you finish setting up the new device, click the CONFIRM button.

Porting Guide www.ti.com

8 SPI to I2C Bridge SLAAES5 – FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAES5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAES5&partnum=

Figure 9-3. Migrate Settings Window

After doing so, SYSCONFIG automatically adjusts the pins and peripherals to the new device (unless the pins
are locked). There is a chance of errors showing up due to invalid values from the previous device in the new
device, such as different pin values or a lack of a feature. The errors show as a red X symbol.

Figure 9-4. Errors After Switching Devices Example

To show all errors, click the Show Problems icon at the top right corner of the SYSCONFIG window. Read the
errors and follow the instructions on how to fix them so the project compiles appropriately.

www.ti.com Porting Guide

SLAAES5 – FEBRUARY 2025
Submit Document Feedback

SPI to I2C Bridge 9

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAES5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAES5&partnum=

Figure 9-5. Show Problem Icon Location and Content Example

Sysconfig, check the pins for the peripheral you want to use so there is no conflict from the previous MCU.
If necessary, change to the desired pins you want to use in the new device running the project. Finally,
build or compile the project in the new device. If done correctly, you see the following message and the
ti_msp_dl_config.c and .h files inside the Debug folder.

Figure 9-6. Pin Peripheral Configuration Example

Figure 9-7. Project Build and File Generation Example

Porting Guide www.ti.com

10 SPI to I2C Bridge SLAAES5 – FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAES5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAES5&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	1 Design Description
	2 Required Peripherals
	3 Compatible Devices
	4 Design Steps
	5 Design Considerations
	6 Software Flowchart
	7 Device Configuration
	8 Application Code
	9 Porting Guide

