
Subsystem Design
IO Expander With SPI, I2C, and UART

1 Description

Note
TI is transitioning to use more inclusive terminology. Some language contained in this document is
possibly different than previously-used terms for certain technology areas.

This subsystem demonstrates how to use MSPM0 to achieve IO expander function through the communication
command from serial peripheral interface (SPI), I2C, or universal asynchronous receiver-transmitter (UART)
by the host. This expansion is helpful when the number of GPIOs on the host is inadequate. In addition to
supporting control of the GPIO output, the subsystem can also read back the GPIO status through SPI, I2C, or
UART. The figure below shows the basic architecture of the subsystem and the modules which are used in this
case.

Main Peripheral

I2C Module

SPI Module

UART Module

MSPM0

MCU GPIO(8)

Figure 1-1. Subsystem Functional Block Diagram

Table 1-2 has links to the example code. In this demonstration, the IO control number is limited to eight.
However, users can do further IO expansion by referring to this demonstration.

2 Required Peripherals
Table 2-1 shows the required peripherals and function modules in this application.

Table 2-1. Required Peripherals
Subblock Functionality Peripheral Use Notes

Serial Peripheral Interface (1 ×) SPI Called SPI_0_INST in code

I2C interface (1 ×) I2C Called I2C0_INST in code

UART interface (1 ×) UART Called UART_0_INST in code

GPIO (8 ×) GPIO Called GPIO_GRP_0 in code

3 Hardware Setup
The following hardware elements are required to evaluate the IO expander based on MSPM0:

• MSPM0 LaunchPad™ development kit shown in Required Devices
• A computer with Microsoft® Windows® 7 or later, and .NET Framework 4.5. (or real device as primary)
• USB2ANY and compatible GUI

www.ti.com Description

SLAAEL9A – OCTOBER 2024 – REVISED AUGUST 2025
Submit Document Feedback

IO Expander With SPI, I2C, and UART 1

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEL9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEL9A&partnum=MSPM0

In this subsystem, the customer can flexibly choose different communication interfaces, including I2C, SPI, or
UART. This can greatly increase the flexibility of the customer system design. Figure 3-1 shows the hardware
connection in this design, using LP-MSPM0C1104 as an example.

Peripheral

PC as Primary
SPI/I2C/UART

USB2ANY

LP-MSPM0C1104

GPIO(8)

Figure 3-1. Hardware Connection

Table 3-1 shows the pin configuration, you can also change the configuration following your requirements. The
SPI communication is configured as three-wire mode to save GPIO resources. The pin configuration is the same
for MSPM0L1306 and MSPM0C1104.

Table 3-1. Pin Configuration
Module Function Pin Configuration Comment

I2C interface
SDA PA0

Address: 0x48, I2C clock freq: 400kHz
SDL PA1

Serial Peripheral Interface

POSI PA25

SPI clock freq: 500kHzPISO PA26

CLOCK PA17

UART interface
RX PA18

Baud rate: 9600bps
TX PA23

GPIO GPIO

BIT0:PA2, BIT1:PA27,
BIT2:PA17, BIT3:PA24,
BIT4:PA4, BIT5:PA6,

BIT6:PA16, BIT7:PA22

Hardware Setup www.ti.com

2 IO Expander With SPI, I2C, and UART SLAAEL9A – OCTOBER 2024 – REVISED AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEL9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEL9A&partnum=MSPM0

4 Software Introduction
Figure 4-1 shows the software project, developed in CCS. The project mainly consists of three parts. Other files
are the default files for the MSPM0 project.

Figure 4-1. Software Project View

The ti_msp_dl_config part is generated by SysConfig (graphic code generation tool), the MSPM0 initialization is
for system initialization of MCU power, system controller, system clock, enabled peripherals and GPIOs.

The expander part declares the basic variables, GPIO configuration function, and interrupt function, and
expander also contains some basic functions for SPI, I2C and UART protocol.

The main part includes the highest system function code, after system initialization, the MCU waits for
commands from the primary and executes the corresponding GPIO operation.

www.ti.com Software Introduction

SLAAEL9A – OCTOBER 2024 – REVISED AUGUST 2025
Submit Document Feedback

IO Expander With SPI, I2C, and UART 3

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/tool/SYSCONFIG
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEL9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEL9A&partnum=MSPM0

4.1 Code Introduction
Figure 4-2 shows the main function code in this design. The main function initializes the system configuration
and then enters a loop to handle IO control. The code supports three functions for IO control: gpioDirectionSet,
gpioOutputCtl, and gpioStateRead. See also Protocol Introduction.

Figure 4-2. Main Function

UART, I2C, and SPI are enabled by default. Uncomment the definition in the expander.h file for real
implementation, as Figure 4-3 shows.

Figure 4-3. Communication Enable and Disable

All the communication command reception is done in the relative interrupts. Using UART, command transmission
is done in the gpioStateRead() function. Command transmission is done in the relative interrupts for SPI and
I2C.

Software Introduction www.ti.com

4 IO Expander With SPI, I2C, and UART SLAAEL9A – OCTOBER 2024 – REVISED AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEL9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEL9A&partnum=MSPM0

4.2 Protocol Introduction
This section presents the support command for this demonstration. The gpioDirectionSet function is used to
enable or disable GPIO output. Because MSPM0 can enable GPIO input and output at the same time, GPIO
input is always enabled. Then every bit in the direction byte is used to enable or disable GPIO output. A 1 means
enabling GPIO output and input, and a 0 means only enabling GPIO input. See Table 3-1 for the relationship
between the controlled bit and GPIO.

Table 4-1. GPIO Output Enable Command
Type Header Command Direction Checksum

gpioDirectionSet 0x5A 0x01 1 Byte (1: OUT; 0: IN) 1 Byte

The gpioOutputCtl function is used to control GPIO output. Then every bit in the output control byte is used to
set GPIO output high or output low. A 1 means outputting high, and a 0 means outputting low. Remember this
function only works after the primary send gpioDirectionSet function. See Table 3-1 for the relationship between
the controlled bit and GPIO.

Table 4-2. GPIO Output Control Command
Type Header Command Output Control Checksum

gpioOutputCtl 0x5A 0x02 1 Byte(1: High; 0: Low) 1 Byte

The gpioStateRead function is used to read the GPIO status. The primary needs to send this command to the
secondary, and then the secondary sends the GPIO state back to the primary. Then every bit in the pin state
byte sent by the secondary is used to show the GPIO state. A 1 means the GPIO state is high, and a 0 means
the GPIO state is low. This command can also be used to check whether the GPIO control is as expected, after
the primary sends the gpioOutputCtl command. See Table 3-1 for the relationship between the controlled bit and
GPIO.

Table 4-3. GPIO State Read Command
Type Header Command Pin State Checksum

gpioStateRead 0x5A 0x03 1 Byte(1: High; 0: Low) 1 Byte

Figure 4-4 shows the command send conditions on the primary and secondary, see also Section 6.

Figure 4-4. Command Send Conditions

www.ti.com Software Introduction

SLAAEL9A – OCTOBER 2024 – REVISED AUGUST 2025
Submit Document Feedback

IO Expander With SPI, I2C, and UART 5

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEL9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEL9A&partnum=MSPM0

5 Design Steps
Complete the following steps to evaluate the design:

1. Prepare the necessary resource:

Prepare the relevant hardware resources and software code as previously discussed in this document.
Use the real host system to replace the PC with USB2ANY GUI. Pay attention to the I2C setup for
MSPM0C1104, because PA1 is reused as the RESET pin. For software disable the reset function in
SysConfig, for hardware remove the J9 connector to avoid the pulldown capacitor influence and on I2C
communication. Use additional pullup resistors.

2. Choose communication interface:

Choose the appropriate communication interface (UART, SPI, or I2C) by uncommenting the unwanted
communication functions macro in expander.h, shown in Figure 4-3. Now initialize the communication
interface and set the communication parameters such as baud rate, data bits, and stop bits, in the
IO_expander.syscfg (if using UART).

Make sure that the transmitPacket and receivePacket functions are correctly called to send and receive data
packets during communication, and verify the checksum to make sure the communication is correct.

3. Start to use:

Write functions to execute the gpioDirectionSet, gpioOutputCtl, and gpioStateRead commands by referring
to Section 4.2. Send the relevant commands to the expansion module from the host and then you can verify
if the GPIO direction setting, output value, and input value match the expectations.

6 Results
Protocol usage based on I2C: Figure 6-1 shows the usage of four different commands, including GPIO Output
Enable Command, GPIO Output Control Command, GPIO State Read Request Command and GPIO State
Read Response Command. Notice that the read back GPIO state is the same as the settled GPIO state in the
GPIO Output Control Command.

Figure 6-1. I2C Communication 1

Figure 6-2 shows the usage of three different commands, including GPIO Output Enable Command, GPIO State
Read Request Command, and GPIO State Read Response Command. In this test, all the GPIOs are settled to
be the input state.

Figure 6-2. I2C Communication 2

Design Steps www.ti.com

6 IO Expander With SPI, I2C, and UART SLAAEL9A – OCTOBER 2024 – REVISED AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEL9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEL9A&partnum=MSPM0

Protocol usage based on UART: Figure 6-1 shows the usage of four different commands, including GPIO
Output Enable Command, GPIO Output Control Command, GPIO State Read Request Command and GPIO
State Read Response Command.

Figure 6-3. UART Communication

Protocol usage based on SPI: Figure 6-1 shows the usage of four different commands, including GPIO Output
Enable Command, GPIO Output Control Command, GPIO State Read Request Command and GPIO State
Read Response Command.

Figure 6-4. SPI Communication

7 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (October 2024) to Revision A (August 2025) Page
• Removed Compatible Devices section...1

8 Trademarks
LaunchPad™ is a trademark of Texas Instruments.
Microsoft® and Windows® are registered trademarks of Microsoft Corporation.
All trademarks are the property of their respective owners.

www.ti.com Revision History

SLAAEL9A – OCTOBER 2024 – REVISED AUGUST 2025
Submit Document Feedback

IO Expander With SPI, I2C, and UART 7

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEL9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEL9A&partnum=MSPM0

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	1 Description
	2 Required Peripherals
	3 Hardware Setup
	4 Software Introduction
	4.1 Code Introduction
	4.2 Protocol Introduction

	5 Design Steps
	6 Results
	7 Revision History
	8 Trademarks

