
Subsystem Design
I2C IO Expander

1 Description
This subsystem example demonstrates how to configure an IO expander with MSPM0 along with a controller. 
The configuration procedure sets PIN direction, state, and reads state.
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Figure 1-1. Subsystem Functional Block Diagram

2 Required Peripherals
Table 2-1 and Table 2-2 describe the required integrated peripherals.

Table 2-1. Required Peripherals for Controller
Subblock Functionality Peripheral Use Notes

LED and Interrupt Pin (2 ×) GPIO Shown as LED and IRQ_IN in code

I2C Controller (1 ×) I2C Shown as I2C in code

Table 2-2. Required Peripherals for IO Expander
Subblock Functionality Peripheral Use Notes

GPIO and Interrupt Pin (9 ×) GPIO
Shown as PIN_0, PIN_1, PIN_2, PIN_3, 

PIN_4, PIN_5, PIN_6, PIN_7, and IRQ_OUT 
in code

I2C Target (1 ×) I2C Shown as I2C in code

3 Design Steps
1. Configure the controller and peripheral I2C instance, GPIO pins, GPIO switches, and GPIO LEDs in 

SysConfig.
2. Set I2C clock speed in SysConfig. Default is 400kHz for LaunchPad™ development kits with external 

pullups.
3. Define the required I2C packet for proper communication.
4. Create a demonstration that toggles IO expander outputs and an input from a switch that toggles an LED on 

the controller.
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4 Design Considerations
1. Detecting pin state changes: The IO expander utilizes an interrupt to notify the controller to request a read 

if an input pin changes state. The IO expander also updates the locally saved pin state any time a GPIO pin 
observes a rising or falling edge.

2. Changing GPIO direction: Because MSPM0 can enable GPIO input and output at the same time, GPIO 
input is always enabled. Direction bytes are set to enable or disable GPIO output. The bit position within 
each byte determines output control. This allows for all pins to use the rising and falling edge interrupt and 
the ability to read all pin states.

5 Software Flow Chart
Figure 5-1 shows the main function code for the IO expander. The main function initializes the peripherals and 
then enters a loop to handle received I2C communication.
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Figure 5-1. IO Expander Software Flow Chart

Figure 5-2 shows the main function code for the controller. The main function initializes the peripherals, sends 
the I2C command to set the IO direction, and enters a loop that toggles the output pins on the IO expander.
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Figure 5-2. Controller Software Flowchart

6 Required I2C Packet
Figure 6-1 and Figure 6-2 show the required I2C packet for proper communication using the I2C interface.

• COMMAND: byte containing command to either change IO direction or set output pin state.
– 0x1: set GPIO direction
– 0x2: set output pin state

• DATA: byte containing pin configuration
– COMMAND = 0x1: 1 represents output, 0 represents input
– COMMAND = 0x2: 1 represents output HIGH, 0 represents output LOW

Table 6-1. I2C Packet Breakdown
Function COMMAND DATA

Set GPIO direction 0x1
1: Output

0: Input
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Table 6-1. I2C Packet Breakdown (continued)
Function COMMAND DATA

Set output pin state 0x2
1: High

0: Low

START R/W ACK

Device (IO Expander) Address (7 bits)

S A6 A5 A4 A3 A2 A1 A0 1 A

ACK

COMMAND (8 bits)

C7 C6 C5 C4 C3 C2 C1 C0 A

ACK

DATA (8 bits)

D7 D6 D5 D4 D3 D3 D1 D0 A

Controller controls SDA line

IO Expander controls SDA line

P

STOP

Figure 6-1. I2C Write Packet

START R/W ACK

Device (IO Expander) Address (7 bits)

S A6 A5 A4 A3 A2 A1 A0 0 A

Controller controls SDA line

IO Expander controls SDA line

DATA (8 bits)

D7 D6 D5 D4 D3 D2 D1 D0 NA

NACK

P

STOP

Figure 6-2. I2C Read Packet

7 Application Code
The code example updates the stored GPIO state any time a pin observes a rising or falling edge. The 
IRQ_OUT pin is only pulled low when an input pin observes a rising or falling edge, and is pulled high once the 
controller requests a read. The TX FIFO is filled upon receiving an I2C Start and is flushed upon an I2C Stop:

//I2C INT
void I2C_INST_IRQHandler(void)
{
    switch (DL_I2C_getPendingInterrupt(I2C_INST)) {
        case DL_I2C_IIDX_TARGET_START: 
            /* Fill TX FIFO with current pin state */
            DL_I2C_fillTargetTXFIFO(I2C_INST, &gGpioState, 1);
            break;
        case DL_I2C_IIDX_TARGET_RXFIFO_TRIGGER: 
            /* Store received data in buffer */
            while (DL_I2C_isTargetRXFIFOEmpty(I2C_INST) != true) {
                receivePacket(DL_I2C_receiveTargetData(I2C_INST)); 
            }
            break;
        case DL_I2C_IIDX_TARGET_TX_DONE: 
            /* Pull interrupt pin high when Controller reads from IO Expander */
            DL_GPIO_setPins(GPIO_GRP_0_PORT, GPIO_GRP_0_IRQ_OUT_PIN);
            break;
        case DL_I2C_IIDX_TARGET_STOP: 
            /* Flush TX FIFO */
            DL_I2C_flushTargetTXFIFO(I2C_INST);
            break;
        default:
            break; 
    }
}

void GPIOA_IRQHandler(void)
{ 
    /* Store the current pin state */
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    gGpioState = (DL_GPIO_readPinStatus(GPIO_GRP_0_PIN_7_PIN) << 7) |
                 (DL_GPIO_readPinStatus(GPIO_GRP_0_PIN_6_PIN) << 6) | 
                 (DL_GPIO_readPinStatus(GPIO_GRP_0_PIN_5_PIN) << 5) | 
                 (DL_GPIO_readPinStatus(GPIO_GRP_0_PIN_4_PIN) << 4) | 
                 (DL_GPIO_readPinStatus(GPIO_GRP_0_PIN_3_PIN) << 3) | 
                 (DL_GPIO_readPinStatus(GPIO_GRP_0_PIN_2_PIN) << 2) | 
                 (DL_GPIO_readPinStatus(GPIO_GRP_0_PIN_1_PIN) << 1) | 
                 (DL_GPIO_readPinStatus(GPIO_GRP_0_PIN_0_PIN)); 

    /* Loop through all pins */
    for (int i = 0; i < 8; i++) { 
        /* Check if the current pin state changed */
        if (((gGpioState >> i) & 0x1) != ((gLastGpioState >> i) & 0x1)) { 
            /* If the pin is an Input */
            if (((gGpioDirection >> i) & 0x1) == 0) { 
                /* Pull interrupt pin LOW when an input pin state changes */
                DL_GPIO_clearPins(GPIO_GRP_0_PORT, GPIO_GRP_0_IRQ_OUT_PIN); 
            } 
        } 
    }
    gLastGpioState = gGpioState;
}

The controller IRQ_IN interrupt is triggered upon a detected falling edge, where a read to the IO expander is 
requested:

void GPIOA_IRQHandler(void)
{ 
    /* Set LED HIGH */
    DL_GPIO_clearPins(GROUP0_PORT, GROUP0_LED_PIN); 

    /* Request a read from the IO Expander */
    gRxLen = I2C_RX_PACKET_SIZE;
    gRxCount = 0; 

    /* Wait until the I2C bus is idle */
    while (!(DL_I2C_getControllerStatus(I2C_INST) & DL_I2C_CONTROLLER_STATUS_IDLE)); 

    /* Start a read operation */
    gI2cControllerStatus = I2C_STATUS_RX_STARTED;
    DL_I2C_startControllerTransfer(I2C_INST, I2C_IO_EXPANDER_ADDRESS,
                                    DL_I2C_CONTROLLER_DIRECTION_RX, gRxLen); 
    /* Enable RX FIFO trigger interrupt */
    DL_I2C_enableInterrupt(I2C_INST, DL_I2C_INTERRUPT_CONTROLLER_RXFIFO_TRIGGER);
}

8 Additional Resources
• Texas Instruments, Download the MSPM0 SDK
• Texas Instruments, Learn more about SysConfig
• Texas Instruments, MSPM0C LaunchPad™ Development Kit
• Texas Instruments, MSPM0L LaunchPad™ Development Kit
• Texas Instruments, MSPM0G LaunchPad™ Development Kit
• Texas Instruments, MSPM0 Academy

9 E2E
See the TI E2E™ support forums to view discussions and post new threads to get technical support for utilizing 
MSPM0 devices in designs.
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