
Subsystem Design
I2C IO Expander

1 Description
This subsystem example demonstrates how to configure an IO expander with MSPM0 along with a controller.
The configuration procedure sets PIN direction, state, and reads state.

MSPM0 Controller

IO Expander

I2C I2C

VCC

LED

I/O

I/O

Switch

LED

I/O I/O

IRQ_IN IRQ_OUT

PIN 0

PIN 1

PIN 2

PIN 3

PIN 4

PIN 5

PIN 6

PIN 7

Figure 1-1. Subsystem Functional Block Diagram

2 Required Peripherals
Table 2-1 and Table 2-2 describe the required integrated peripherals.

Table 2-1. Required Peripherals for Controller
Subblock Functionality Peripheral Use Notes

LED and Interrupt Pin (2 ×) GPIO Shown as LED and IRQ_IN in code

I2C Controller (1 ×) I2C Shown as I2C in code

Table 2-2. Required Peripherals for IO Expander
Subblock Functionality Peripheral Use Notes

GPIO and Interrupt Pin (9 ×) GPIO
Shown as PIN_0, PIN_1, PIN_2, PIN_3,

PIN_4, PIN_5, PIN_6, PIN_7, and IRQ_OUT
in code

I2C Target (1 ×) I2C Shown as I2C in code

3 Design Steps
1. Configure the controller and peripheral I2C instance, GPIO pins, GPIO switches, and GPIO LEDs in

SysConfig.
2. Set I2C clock speed in SysConfig. Default is 400kHz for LaunchPad™ development kits with external

pullups.
3. Define the required I2C packet for proper communication.
4. Create a demonstration that toggles IO expander outputs and an input from a switch that toggles an LED on

the controller.

www.ti.com Description

SLAAEL4 – SEPTEMBER 2025
Submit Document Feedback

I2C IO Expander 1

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/tool/SYSCONFIG
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEL4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEL4&partnum=

4 Design Considerations
1. Detecting pin state changes: The IO expander utilizes an interrupt to notify the controller to request a read

if an input pin changes state. The IO expander also updates the locally saved pin state any time a GPIO pin
observes a rising or falling edge.

2. Changing GPIO direction: Because MSPM0 can enable GPIO input and output at the same time, GPIO
input is always enabled. Direction bytes are set to enable or disable GPIO output. The bit position within
each byte determines output control. This allows for all pins to use the rising and falling edge interrupt and
the ability to read all pin states.

5 Software Flow Chart
Figure 5-1 shows the main function code for the IO expander. The main function initializes the peripherals and
then enters a loop to handle received I2C communication.

Main

Set output pins state

I2C R/W?

Set IO direction

Send current pin
state to ControllerCOMMAND

While(1)

Initialization

Write Read

0x1

0x2

Clear Interrupt pin

Pin State Change

Update locally stored
state

Input pin?

Set Interrupt pin

End

Yes

No

Figure 5-1. IO Expander Software Flow Chart

Figure 5-2 shows the main function code for the controller. The main function initializes the peripherals, sends
the I2C command to set the IO direction, and enters a loop that toggles the output pins on the IO expander.

Design Considerations www.ti.com

2 I2C IO Expander SLAAEL4 – SEPTEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEL4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEL4&partnum=

Main

Initialization

Set IO Direction

While(1)

Set all pins HIGH

Update Controller
LED

Delay

Set all pins LOW

Update Controller
LED

Delay

IRQ_IN pulled LOW

Request Read from
IO Expander

End

Figure 5-2. Controller Software Flowchart

6 Required I2C Packet
Figure 6-1 and Figure 6-2 show the required I2C packet for proper communication using the I2C interface.

• COMMAND: byte containing command to either change IO direction or set output pin state.
– 0x1: set GPIO direction
– 0x2: set output pin state

• DATA: byte containing pin configuration
– COMMAND = 0x1: 1 represents output, 0 represents input
– COMMAND = 0x2: 1 represents output HIGH, 0 represents output LOW

Table 6-1. I2C Packet Breakdown
Function COMMAND DATA

Set GPIO direction 0x1
1: Output

0: Input

www.ti.com Required I2C Packet

SLAAEL4 – SEPTEMBER 2025
Submit Document Feedback

I2C IO Expander 3

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEL4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEL4&partnum=

Table 6-1. I2C Packet Breakdown (continued)
Function COMMAND DATA

Set output pin state 0x2
1: High

0: Low

START R/W ACK

Device (IO Expander) Address (7 bits)

S A6 A5 A4 A3 A2 A1 A0 1 A

ACK

COMMAND (8 bits)

C7 C6 C5 C4 C3 C2 C1 C0 A

ACK

DATA (8 bits)

D7 D6 D5 D4 D3 D3 D1 D0 A

Controller controls SDA line

IO Expander controls SDA line

P

STOP

Figure 6-1. I2C Write Packet

START R/W ACK

Device (IO Expander) Address (7 bits)

S A6 A5 A4 A3 A2 A1 A0 0 A

Controller controls SDA line

IO Expander controls SDA line

DATA (8 bits)

D7 D6 D5 D4 D3 D2 D1 D0 NA

NACK

P

STOP

Figure 6-2. I2C Read Packet

7 Application Code
The code example updates the stored GPIO state any time a pin observes a rising or falling edge. The
IRQ_OUT pin is only pulled low when an input pin observes a rising or falling edge, and is pulled high once the
controller requests a read. The TX FIFO is filled upon receiving an I2C Start and is flushed upon an I2C Stop:

//I2C INT
void I2C_INST_IRQHandler(void)
{
 switch (DL_I2C_getPendingInterrupt(I2C_INST)) {
 case DL_I2C_IIDX_TARGET_START:
 /* Fill TX FIFO with current pin state */
 DL_I2C_fillTargetTXFIFO(I2C_INST, &gGpioState, 1);
 break;
 case DL_I2C_IIDX_TARGET_RXFIFO_TRIGGER:
 /* Store received data in buffer */
 while (DL_I2C_isTargetRXFIFOEmpty(I2C_INST) != true) {
 receivePacket(DL_I2C_receiveTargetData(I2C_INST));
 }
 break;
 case DL_I2C_IIDX_TARGET_TX_DONE:
 /* Pull interrupt pin high when Controller reads from IO Expander */
 DL_GPIO_setPins(GPIO_GRP_0_PORT, GPIO_GRP_0_IRQ_OUT_PIN);
 break;
 case DL_I2C_IIDX_TARGET_STOP:
 /* Flush TX FIFO */
 DL_I2C_flushTargetTXFIFO(I2C_INST);
 break;
 default:
 break;
 }
}

void GPIOA_IRQHandler(void)
{
 /* Store the current pin state */

Application Code www.ti.com

4 I2C IO Expander SLAAEL4 – SEPTEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEL4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEL4&partnum=

 gGpioState = (DL_GPIO_readPinStatus(GPIO_GRP_0_PIN_7_PIN) << 7) |
 (DL_GPIO_readPinStatus(GPIO_GRP_0_PIN_6_PIN) << 6) |
 (DL_GPIO_readPinStatus(GPIO_GRP_0_PIN_5_PIN) << 5) |
 (DL_GPIO_readPinStatus(GPIO_GRP_0_PIN_4_PIN) << 4) |
 (DL_GPIO_readPinStatus(GPIO_GRP_0_PIN_3_PIN) << 3) |
 (DL_GPIO_readPinStatus(GPIO_GRP_0_PIN_2_PIN) << 2) |
 (DL_GPIO_readPinStatus(GPIO_GRP_0_PIN_1_PIN) << 1) |
 (DL_GPIO_readPinStatus(GPIO_GRP_0_PIN_0_PIN));

 /* Loop through all pins */
 for (int i = 0; i < 8; i++) {
 /* Check if the current pin state changed */
 if (((gGpioState >> i) & 0x1) != ((gLastGpioState >> i) & 0x1)) {
 /* If the pin is an Input */
 if (((gGpioDirection >> i) & 0x1) == 0) {
 /* Pull interrupt pin LOW when an input pin state changes */
 DL_GPIO_clearPins(GPIO_GRP_0_PORT, GPIO_GRP_0_IRQ_OUT_PIN);
 }
 }
 }
 gLastGpioState = gGpioState;
}

The controller IRQ_IN interrupt is triggered upon a detected falling edge, where a read to the IO expander is
requested:

void GPIOA_IRQHandler(void)
{
 /* Set LED HIGH */
 DL_GPIO_clearPins(GROUP0_PORT, GROUP0_LED_PIN);

 /* Request a read from the IO Expander */
 gRxLen = I2C_RX_PACKET_SIZE;
 gRxCount = 0;

 /* Wait until the I2C bus is idle */
 while (!(DL_I2C_getControllerStatus(I2C_INST) & DL_I2C_CONTROLLER_STATUS_IDLE));

 /* Start a read operation */
 gI2cControllerStatus = I2C_STATUS_RX_STARTED;
 DL_I2C_startControllerTransfer(I2C_INST, I2C_IO_EXPANDER_ADDRESS,
 DL_I2C_CONTROLLER_DIRECTION_RX, gRxLen);
 /* Enable RX FIFO trigger interrupt */
 DL_I2C_enableInterrupt(I2C_INST, DL_I2C_INTERRUPT_CONTROLLER_RXFIFO_TRIGGER);
}

8 Additional Resources
• Texas Instruments, Download the MSPM0 SDK
• Texas Instruments, Learn more about SysConfig
• Texas Instruments, MSPM0C LaunchPad™ Development Kit
• Texas Instruments, MSPM0L LaunchPad™ Development Kit
• Texas Instruments, MSPM0G LaunchPad™ Development Kit
• Texas Instruments, MSPM0 Academy

9 E2E
See the TI E2E™ support forums to view discussions and post new threads to get technical support for utilizing
MSPM0 devices in designs.

www.ti.com Additional Resources

SLAAEL4 – SEPTEMBER 2025
Submit Document Feedback

I2C IO Expander 5

Copyright © 2025 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__AMztb67RYAJCCVC9dL423Q__MSPM0-SDK__a3PaaoK__LATEST
https://www.ti.com/tool/SYSCONFIG
https://www.ti.com/tool/LP-MSPM0C1104
https://www.ti.com/tool/LP-MSPM0L1306
https://www.ti.com/tool/LP-MSPM0G3507
https://dev.ti.com/tirex/global?id=MSPM0-ACADEMY
https://e2e.ti.com/
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEL4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEL4&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	1 Description
	2 Required Peripherals
	3 Design Steps
	4 Design Considerations
	5 Software Flow Chart
	6 Required I2C Packet
	7 Application Code
	8 Additional Resources
	9 E2E

