
Subsystem Design
CAN to SPI Bridge

Design Description

This subsystem demonstrates how to build a CAN-SPI bridge. CAN-SPI bridge allows a device to send or
receive information on one interface and receive or send the information on the other interface Download the
code for this example. The subsystem supports SPI to work in controller mode or peripheral mode.

Figure 1-1 shows a functional diagram of this subsystem.

MSPM0 MCU

CANFDSignal Processing &
FIFO (in software)

CAN TX

I/O

I/O

CAN
Transceiver

SPI CAN RX

SPI SCLK

SPI PICO

SPI POCI

SPI CS

Figure 1-1. Subsystem Functional Block Diagram

Required Peripherals

This application requires CANFD and SPI.

Table 1-1. Required Peripherals
Sub-block Functionality Peripheral Use Notes

CAN interface (1x) CANFD Called MCAN0_INST in code

SPI interface (1x) SPI Called SPI_0_INST in code

Design Steps
1. Determine the basic setting of CAN interface, including CAN mode, bit timing, message RAM configuation

and so on. Consider which setting is fixed and which setting is changed in the application. In example code,
CANFD is used with 250kbit/s arbitration rate and 2Mbit/s data rate.
a. Key features of the CAN-FD peripheral include:

i. Dedicated 1KB message SRAM with ECC
ii. Configurable transmit FIFO, transmit queue and event FIFO (up to 32 elements)
iii. Up to 32 dedicated transmit buffers and 64 dedicated receive buffers. Two configurable receive

FIFOs (up to 64 elements each)
iv. Up to 128 filter elements

b. If CANFD mode is enabled:
i. Full support for 64-byte CAN-FD frames
ii. Up to 8Mbit/s bit rate

c. If CANFD mode is disabled:
i. Full support for 8-byte classical CAN frames
ii. Up to 1Mbit/s bit rate

www.ti.com

SLAAEJ3A – JANUARY 2024 – REVISED AUGUST 2025
Submit Document Feedback

CAN to SPI Bridge 1

Copyright © 2025 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?a=a3PaaoK__1.10.01.05&node=A__AApZpCjtbe883ezQ6Nx55w__MSPM0-SDK__a3PaaoK__LATEST
https://dev.ti.com/tirex/explore/node?a=a3PaaoK__1.10.01.05&node=A__AApZpCjtbe883ezQ6Nx55w__MSPM0-SDK__a3PaaoK__LATEST
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEJ3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEJ3A&partnum=

2. Determine the CAN frame, including data length, bit rate switching, identifier, data and so on. Consider which
part is fixed and which part need to be changed in the application. In example code, identifier, data length
and data can change in different frames, while others are fixed. Note that users need to modify the code if
protocol communication is required.

/**
 * @brief Structure for MCAN Rx Buffer element.
 */
typedef struct {
 /*! Identifier */
 uint32_t id;
 /*! Remote Transmission Request
 * 0 = Received frame is a data frame
 * 1 = Received frame is a remote frame
 */
 uint32_t rtr;
 /*! Extended Identifier
 * 0 = 11-bit standard identifier
 * 1 = 29-bit extended identifier
 */
 uint32_t xtd;
 /*! Error State Indicator
 * 0 = Transmitting node is error active
 * 1 = Transmitting node is error passive
 */
 uint32_t esi;
 /*! Rx Timestamp */
 uint32_t rxts;
 /*! Data Length Code
 * 0-8 = CAN + CAN FD: received frame has 0-8 data bytes
 * 9-15 = CAN: received frame has 8 data bytes
 * 9-15 = CAN FD: received frame has 12/16/20/24/32/48/64 data bytes
 */
 uint32_t dlc;
 /*! Bit Rat Switching
 * 0 = Frame received without bit rate switching
 * 1 = Frame received with bit rate switching
 */
 uint32_t brs;
 /*! FD Format
 * 0 = Standard frame format
 * 1 = CAN FD frame format (new DLC-coding and CRC)
 */
 uint32_t fdf;
 /*! Filter Index */
 uint32_t fidx;
 /*! Accepted Non-matching Frame
 * 0 = Received frame matching filter index FIDX
 * 1 = Received frame did not match any Rx filter element
 */
 uint32_t anmf;
 /*! Data bytes.
 * Only first dlc number of bytes are valid.
 */
 uint16_t data[DL_MCAN_MAX_PAYLOAD_BYTES];
} DL_MCAN_RxBufElement;

3. Determine the basic setting of SPI interface, including SPI mode, bit rate, frame size, FIFO, and so on.
Consider which setting is fixed and which setting is changed in the application. In example code, SPI can be
set as controller or peripheral. SPI operates at 500k bit rate in controller mode.
a. Key features of the SPI include:

i. Configurable as a controller or a peripheral
ii. Programmable clock bit rate and prescaler
iii. Separate transmit (TX) and receive (RX) first-in first-out buffers (FIFOs);
iv. Supports PACKEN feature and single bit parity
v. Programmable data frame size and programmable SPI mode
vi. Interrupts for transmit and receive FIFOs, overrun and timeout interrupts, and DMA done

4. Determine the SPI frame. Typically SPI is transmitted in bytes. To achieve high-level communication, users
can implement frame communication through software. If necessary, users can also introduce specific
communication protocols. In example code, the message format is < 55 AA ID1 ID2 ID3 ID4 Length Data1
Data2 ...>. Users can send data to the CAN bus from the terminal by entering data as the same format. 55

www.ti.com

2 CAN to SPI Bridge SLAAEJ3A – JANUARY 2024 – REVISED AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEJ3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEJ3A&partnum=

AA is the header. ID area is 4 bytes. Length area is 1 byte, indicating the data length. Note that if users need
to modify the SPI frame, the code for frame acquisition and parsing also need to be modified.

Table 1-2. SPI Frame Form
Header Address Data Length Data

0x55 0xAA 4 bytes 1 byte (Data Length) bytes

5. Determine the bridge structure, including what messages need to be converted, how to convert messages
and so on.
a. Consider whether the bridge is one-way or two-way. Typically each interface has two functions: receiving

and sending. Consider whether only some functions need to be included (such as SPI reception and
CAN transmission). In example code, CAN-SPI bridge is a two-way structure.

b. Consider what information to convert and the corresponding carrier(variable, FIFO). In example code,
identifier, data and data length are convert from one interface to the other interface. There are two FIFOs
defined in code as shown inFigure 1-2.

Interrupt

Receive
message
from SPI

Receive
message
from CAN

Main()

Transmit
message to
CAN

Transmit
message to
SPI

S2C_out

0

1

2

34

5

6

7

S2C_in

S2C_count = 2

typedef struct {
 /*! Identifier */
 uint32_t id;
 /*! Data Length Code*/
 uint32_t dlc;
 /*! Data bytes*/
 uint16_t data[64];
} Custom_Element;

S2C_FIFO

C2S_FIFO

S2C_in++
S2C_count++

C2S_out++
C2S_count--

C2S_in++
C2S_count++

S2C_out++
S2C_count--

Figure 1-2. Bridge Structure

6. (Optionally) Consider priority design, congestion situation, error handling and so on.

Design Considerations
1. Consider the information flow in the application to determine the information to be received or sent by

each interface, the protocols to be followed, and design appropriate information transfer carriers to connect
different interfaces.

2. The recommendation is to test the interface separately first, and then implement the overall bridge function.
In addition, consider the handling of abnormal situations, such as communication failure, overload, frame
format error, and so on.

3. The recommendation is to implement interface functions through interrupts to make sure of timely
communication. In example code, interface functions are usually implemented in the interrupt, and the
transfer of information is completed in the main() function.

Software Flowchart

The following figure shows the code flow diagram for CAN-SPI bridge which explains how the messages
received in one interface and sent in the other interface. The CAN-SPI bridge can be divided into four

www.ti.com

SLAAEJ3A – JANUARY 2024 – REVISED AUGUST 2025
Submit Document Feedback

CAN to SPI Bridge 3

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEJ3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEJ3A&partnum=

independent tasks: receive from SPI, receive from CAN, transmit through CAN, transmit through SPI. Two FIFOs
implement bidirectional message transfer and message caching.

Note that SPI is a communication method that sends and receives at the same time. When the controller initiates
sending a byte, the controller expects to receive a byte. In the design of this article, SPI RX interrupt is not only
used for SPI receive, but also used to fill the TX data into SPI TX FIFO. If SPI works in controller mode, SPI
communication starts immediately after SPI TX FIFO is stored by data. If SPI works in peripheral mode, SPI can
wait for the controller to initiate communication after data is stored. In this demo, users can select the mode of
SPI.

Interrupt

Receive message from SPI

Receive message from CAN

Main()

Transit message to CAN

Transit message to SPI

getSpiRxMsg

processSpiRxMsg

getCANRxMsg

processCANRxMsg

S2C_FIFO

C2S_FIFO

Overload control

Overload control

processCANTxMsg

sendCANTxMsg

processSpiTxMsg

Start sendSpiTxMsg

sendSpiTxMsg

Figure 1-3. Application Software Flowchart

www.ti.com

4 CAN to SPI Bridge SLAAEJ3A – JANUARY 2024 – REVISED AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEJ3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEJ3A&partnum=

Device Configuration

This application makes use of TI System Configuration Tool (SysConfig) graphical interface to generate the
configuration code for the CAN and SPI. Using a graphical interface to configure the device peripherals
streamlines the application prototyping process.

The user can configure the SPI to be controller or peripheral in the Sysconfig.

The code for what is described in Figure 1-3 can be found in the files from example code as shown in Figure 1-4.

Figure 1-4. File Structure

Application Code

The following code snippet shows where to modify the interface function. Functions in table are categorized into
different files. Functions for SPI receive and transmit are included in bridge_spi.c and bridge_spi.h. Functions for
CAN receive and transmit are included in bridge_can.c and bridge_can.h. Structure of FIFO element is defined
in user_define.h.

Users can easily separate functions by file. For example, if only SPI functions are needed, users can reserve
bridge_spi.c and bridge_spi.h to call the functions.

See the MSPM0 SDK and DriverLib documentation for the basic configuration of peripherals.

Table 1-3. Functions and Descriptions
Tasks Functions Description Location
SPI receive getSpiRxMsg() Get the received SPI message bridge_spi.c

bridge_spi.hprocessSpiRxMsg() Convert the received SPI message format and store it into
gSPI_RX_Element

SPI transmit processSpiTxMsg() Convert the gSPI_TX_Element format to be sent through SPI

sendSpiTxMsg() Send message through SPI

CAN receive getCANRxMsg() Get the received CAN message bridge_can.c
bridge_can.hprocessCANRxMsg() Convert the received CAN message format and store the message into

gCAN_RX_Element

CAN transmit processCANTxMsg() Convert the gCAN_TX_Element format to be sent through CAN

sendCANTxMsg() Send message through CAN

www.ti.com

SLAAEJ3A – JANUARY 2024 – REVISED AUGUST 2025
Submit Document Feedback

CAN to SPI Bridge 5

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEJ3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEJ3A&partnum=

Custom_Element is the structure defined in user_define.h. Custom_Element is used as the structure of FIFO
element, output element of SPI/CAN transmit and input element of SPI/CAN receive. Users can modify the
structure according to the need.

typedef struct {
 /*! Identifier */
 uint32_t id;
 /*! Data Length Code*/
 uint32_t dlc;
 /*! Data bytes*/
 uint16_t data[64];
} Custom_Element;

For FIFO, there are 2 global variables used as FIFO. 6 global variables are used to trace the FIFO.

Custom_Element S2C_FIFO[S2C_FIFO_SIZE];
Custom_Element C2S_FIFO[C2S_FIFO_SIZE];
uint16_t S2C_in = 0;
uint16_t S2C_out = 0;
uint16_t S2C_count = 0;
uint16_t C2S_in = 0;
uint16_t C2S_out = 0;
uint16_t C2S_count = 0;

Results

By using CAN analyzer, users can send and receive messages on the CAN side. As a demonstration, two
launchpads can be used as two CAN-SPI bridges(one SPI controller and one SPI peripheral) to form a loop.
When the CAN analyzer sends CAN messages through controller launchpad, it will receive CAN messages from
the peripheral launchpad.

Figure 1-5. Demonstration

www.ti.com

6 CAN to SPI Bridge SLAAEJ3A – JANUARY 2024 – REVISED AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEJ3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEJ3A&partnum=

Figure 1-6. Messages Sent and Received by CAN Analyzer for the Demo

Figure 1-7. PC Terminal Program of Logic Analyzer

Additional Resources
• Texas Instruments, Download the MSPM0 SDK
• Texas Instruments, Learn more about SysConfig
• Texas Instruments, MSPM0 G-Series 80-MHz Microcontrollers, technical reference manual
• Texas Instruments, MSPM0G LaunchPad development kit
• Texas Instruments, MSPM0 CAN academy
• Texas Instruments, MSPM0 SPI academy

1 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (January 2024) to Revision A (August 2025) Page
• Removed Compatible Devices section...1

Trademarks

www.ti.com Revision History

SLAAEJ3A – JANUARY 2024 – REVISED AUGUST 2025
Submit Document Feedback

CAN to SPI Bridge 7

Copyright © 2025 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__AMztb67RYAJCCVC9dL423Q__com.ti.MSPM0_SDK__nu1HVN8__LATEST
https://www.ti.com/tool/SYSCONFIG
https://www.ti.com/lit/pdf/slau846
http://www.ti.com/tool/LP-MSPM0G3507
https://dev.ti.com/tirex/explore/node?node=A__AIeATtU8BJIvwb73IOPaMw__MSPM0-ACADEMY__2f1Egw1__LATEST
https://dev.ti.com/tirex/explore/node?node=A__ATVK38.wD6w8se0XEf1NAQ__MSPM0-ACADEMY__2f1Egw1__LATEST
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEJ3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEJ3A&partnum=

All trademarks are the property of their respective owners.

Trademarks www.ti.com

8 CAN to SPI Bridge SLAAEJ3A – JANUARY 2024 – REVISED AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEJ3
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEJ3A&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	1 Revision History
	Trademarks

