
Application Brief
USB-to-UART Bridge Made Simple With MSP430 MCUs

USB and UART are common communication 
interfaces utilized in microcontrollers and when 
devices need to transfer data across both, a 
USB-to-UART bridge is constructed. The USB-to-
UART bridge acts like a translator between the 
two interfaces to allow a device to send/receive 
information on one interface and receive/send the 
information on the other interface. This document 
explains the software and hardware solutions used 
in creating and using the USB-to-UART bridge. 
The MSP430F5529 microcontroller (MCU) can 
be used as a solution by providing USB and 
UART communication interfaces while operating at 
low power. The accompanying demo uses the 
MSP430F5529 running at a 24MHz clock speed and 
9600 baud rate to demonstrate transceiving data 
between channels.

Implementation

The implementation uses the USB Library provided 
in the USB Developer's Package Library and the 
UART Library which uses the UART backchannel in 
the MSP430F5529. The USB will receive data from 
the UART and send it to the USB COM port. The 
UART will receive data from the USB and send it to 
the UART COM port. The hardware configuration is 
a USB connection to the PC and the jumper block 
layout shown in Figure 1. The first step to the USB-to-
UART bridge is initializing all the required ports and 
clocks. In this demo, the clock used is the SMCLK 
at a frequency of 24 MHz. The Hardware Abstraction 
Layer (HAL) uses the Unified Clock System (UCS), 
the clock system for the MSP430F5529 device, to 
initialize the given clock frequency. To increase or 
decrease the clock speed, just change the value 
in the USBHAL_initClocks(uint32_t) parameter. The 
clock ranges from 20 MHz to 25 MHz, so any values 
lower than that could cause issues when receiving or 
sending data.

Note
If using a device other than the 
MSP430F5529, the HAL file will need to 
be changed. Frequencies, clock systems, 
baud rates, and ports vary per device. 
The USB-to-UART bridge only works on a 
device that support both a UART and USB 
communication interface.

Figure 1. Isolation Jumper Block

A baud rate of 9600 was used in this application; 
to find the baud rate configuration, the TI Baud 
Rate Calculator can be used. The USB part of this 
solution does not need a configured baud rate, so 
the baud rate configuration can be found in the 
UART initialization. The ranges for the baud rate are 
9600 to 115200, and any other values could cause 
communication issues when sending or receiving 
data. The SMCLK is also chosen in the UART 
initialization, so if a different clock is used, it needs 
to be changed in the UART.c file as well.

Note
If using terminals to test the USB-to-UART 
bridge, pay attention to the baud rate and 
COM ports used on your PC.

www.ti.com Application Brief

SLAAE31 – SEPTEMBER 2021
Submit Document Feedback

USB-to-UART Bridge Made Simple With MSP430 MCUs 1

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/store/ti/en/p/product/?p=MSP-EXP430F5529LP
https://dev.ti.com/tirex/explore/node?node=AGpmEEUqhP6-Sre2PqpC9g__IOGqZri__LATEST
http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSP430BaudRateConverter/index.html
http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSP430BaudRateConverter/index.html
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE31
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE31&partnum=


The main purpose of the bridge is a communication 
path between the two communication interfaces. 
When receiving data using either UART or USB, it will 
be stored into the appropriate array. This allows the 
program to hold the data it is receiving, and then it will 
send it to the other interface. The process is similar 
to an echo, but instead of sending the data back to 
its origin, the data is sent to the other communication 
interface. The main program loops through an infinite 
while loop and checks if there is data received on 
the UART or USB. When data is received, it is 
stored into a buffer array and then sent to the other 
communication interface. This process continues until 
the user forces the program to end or disconnects the 
USB.

Included UART Library

The UART library was created to group all the UART 
functions in their own files. The UART.h file contains 
defined constants for the baud rate registers and can 
be changed to change the baud rate. The receive 
buffer size is configured here and can be adjusted to 
be larger or smaller to transfer different data amounts. 
A wake threshold variable is also defined here, 
increasing the threshhold will increase the number of 
bytes needed to receive before waking up main(). To 
calculate baud rate go to the Baud Rate Calculator 
or check the MSP430F5529 Family User's Guide for 
further baud rate information.

Table 1. UART Library Variables
Constant Definition
UCA1_OS Oversampling constant; 0 = No 

oversampling, 1 = Oversampling

UCA1_BRx Clock prescalar

UCA1_BRF First mod register

UCA1_BRS Second mod register

BC_RXBUF_SIZE Set the size of the buffer that 
receives data across the UART

BC_RX_WAKE_THRESH Threshold value that is set to 
wake the main application

The C file for the UART contains all the functions 
that the UART part of the bridge will use. This file 
also contains the interrupt service routine (ISR) for the 
UART interrupts. The main purpose of the interrupt is 
to receive and store the data from the UCA1RXBUF 
into a separate array so it can be used later. If a clock 
other than the SMCLK is needed, then the clock can 
be changed in the UartInit() function.

Table 2. UART Library Functions
Function Definition
void UartInit(void) Call once to initialize the UART. 

Sets TXD/RXD ports, clock 
type, baud rate, and enables 
interrupts.

void UartSend(uint8_t* buf, 
uint8_t len)

Sends len bytes stored in buf 
over the UART.

uint16_t UartReceive(uint8_t* 
buf)

Copy bytes from the UART 
receive buffer into buf and 
returns the number of bytes 
copied over.

USCI_A1 Interrupt Service 
Routine

Copies the incoming UART 
bytes in UCA1RXBUF into the 
UART receive buffer.

Performance

This solution uses the USB interrupt service routine 
(ISR) and the UART ISR to wake the MCU and store 
the received bytes. The USB ISR also checks for 
disconnection and other USB errors so the program 
can properly end. The program will transceive the 
data across the appropriate COM ports, which 
can be checked through the device manager on 
your PC, as shown in Figure 2. Under the device 
manager, the UART will show up as MSP Application 
UART1 (COM#) and the USB will show up as USB 
Serial Device (COM#). The USB will only shows up 
when the program is running on the microcontroller, 
because the USB needs to be initialized.

Figure 2. Device Manager displaying COM ports

If running the code in stand alone mode, PC terminals 
programs will need to be opened (for example 
PuTTy, TeraTerm or simliar terminal applications). An 
example of the stand alone is shown in Figure 3. 
Typing on the USB terminal will display the data on 
the UART terminal and vice versa.

Note
There will be noticeable latency on the 
UART when running in stand alone 
mode and using the debugger. Running 
separate from the debugger will remove the 
increased latency.

Application Brief www.ti.com

2 USB-to-UART Bridge Made Simple With MSP430 MCUs SLAAE31 – SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSP430BaudRateConverter/index.html
https://www.ti.com/lit/pdf/slau208
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE31
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE31&partnum=


Figure 3. USB to UART Bridge Stand Alone Demo

For the GUI demo, the GUI is used as a dual-terminal 
display and shown in Figure 4. The GUI has the 
terminals labeled but does not prevent the user from 
changing the COM ports. The COM port selector 
can be used to select the correct COM port. If the 
correct COM port does not show up, click the refresh 
arrow (turning arrow). Remember that the USB COM 
port only shows up when the program is running on 
the microcontroller. If the baud rate was changed 
in the program, match the baud rates in the baud 
rate selector. When the COM port and baud rate 
are correctly selected, click on the connect button 
(depicted as a link) to connect the COM ports to the 
GUI. Type in either terminal the result will then appear 
on the opposite terminal.

Figure 4. USB to UART Bridge GUI Demo

Note
The GUI code and stand alone code are 
the same for this demonstration.

To Get Started

1. Watch the training video USB-to-UART Bridge with 
a Housekeeping MCU to learn how to use the GUI to 
send data across the USB-to-UART bridge.

2. Order a MSP430F5529 LaunchPad kit to evaluate 
the USB-to-UART Bridge example code and GUI.

3. Download and test the USB-to-UART Bridge 
example GUI.

4. Evaluate the USB-to-UART Bridge example code 
for the MSP430F5529 LaunchPad kit.
Part Number Key Features

MSP430F5529 128KB Flash, 8KB RAM, 12-bit 
ADC, UART/SPI/I2C, 5 Timers, 
USB, Up to 25MHz Clock

www.ti.com Application Brief

SLAAE31 – SEPTEMBER 2021
Submit Document Feedback

USB-to-UART Bridge Made Simple With MSP430 MCUs 3

Copyright © 2021 Texas Instruments Incorporated

https://training.ti.com/usb-uart-bridge
https://training.ti.com/usb-uart-bridge
https://www.ti.com/store/ti/en/p/product/?p=MSP-EXP430F5529LP
https://dev.ti.com/gallery/view/TIMSPGC/USB_to_UART_Bridge
https://dev.ti.com/gallery/view/TIMSPGC/USB_to_UART_Bridge
https://dev.ti.com/tirex/explore/node?node=ACSf5SXPXhI5luy.kVT3CA__IOGqZri__LATEST
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE31
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE31&partnum=


IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE 
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” 
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY 
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD 
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate 
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable 
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an 
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license 
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you 
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these 
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with 
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for 
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	1 Application Brief

