Functional Safety Information

TPS715-Q1

Functional Safety FIT Rate and FMD

Table of Contents

1 Overview	
2 Functional Safety Failure In Time (FIT) Rates	
3 Failure Mode Distribution (FMD)	
4 Revision History	

Trademarks

All trademarks are the property of their respective owners.

Overview www.ti.com

1 Overview

This document contains information for TPS715-Q1 (SC-70 package) to aid in a functional safety system design. Information provided are:

- Functional safety failure in time (FIT) rates of the semiconductor component estimated by the application of industry reliability standards
- Component failure modes and their distribution (FMD) based on the primary function of the device

Figure 1-1 shows the device functional block diagram for reference.

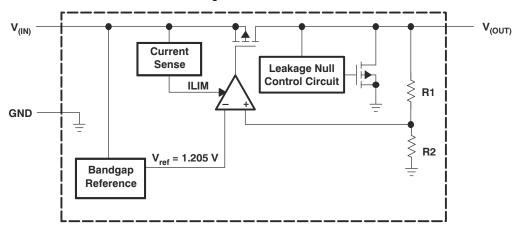


Figure 1-1. Functional Block Diagram

TPS715-Q1 was developed using a quality-managed development process, but was not developed in accordance with the IEC 61508 or ISO 26262 standards.

2 Functional Safety Failure In Time (FIT) Rates

This section provides functional safety failure in time (FIT) rates for TPS715-Q1 based on two different industry-wide used reliability standards:

- Table 2-1 and Table 2-2 provide FIT rates based on IEC TR 62380 / ISO 26262 part 11
- Table 2-3 and Table 2-4 provide FIT rates based on the Siemens Norm SN 29500-2

Table 2-1. Component Failure Rates per IEC TR 62380 / ISO 26262 Part 11, Legacy Die

		, , ,	
	FIT IEC TR 62380 / ISO 26262	FIT (Failures Per 10 ⁹ Hours)	
	Total component FIT rate	8	
	Die FIT rate	6	
	Package FIT rate	2	

Table 2-2. Component Failure Rates per IEC TR 62380 / ISO 26262 Part 11, New Die

FIT IEC TR 62380 / ISO 26262	FIT (Failures Per 10 ⁹ Hours)
Total component FIT rate	6
Die FIT rate	5
Package FIT rate	1

The failure rate and mission profile information in Table 2-1 and Table 2-2 come from the reliability data handbook IEC TR 62380 / ISO 26262 part 11:

- · Mission profile: Motor control from table 11 or figure 16
- Power dissipation: 100mW
- Climate type: World-wide table 8 or figure 13
- Package factor (lambda 3): Table 17b or figure 15
- Substrate material: FR4
- EOS FIT rate assumed: 0 FIT

Table 2-3. Component Failure Rates per Siemens Norm SN 29500-2, Legacy Die

Table	Category	Reference FIT Rate	Reference Virtual T _J
4	Power amplifier and regulator ≤ 1 Watt	20 FIT	70°C

Table 2-4. Component Failure Rates per Siemens Norm SN 29500-2, New Die

Table	Category	Reference FIT Rate	Reference Virtual T _J
4	Power amplifier and regulator ≤ 1 Watt	40 FIT	70°C

The reference FIT rate and reference virtual T_J (junction temperature) in Table 2-3 and Table 2-4 come from the Siemens Norm SN 29500-2 tables 1 through 5. Failure rates under operating conditions are calculated from the reference failure rate and virtual junction temperature using conversion information in SN 29500-2 section 4.

3 Failure Mode Distribution (FMD)

The failure mode distribution estimation for TPS715-Q1 in Table 3-1 comes from the combination of common failure modes listed in standards such as IEC 61508 and ISO 26262, the ratio of sub-circuit function size and complexity, and from best engineering judgment.

The failure modes listed in this section reflect random failure events and do not include failures resulting from misuse or overstress.

Table 3-1. Die Failure Modes and Distribution

Die Failure Modes	Failure Mode Distribution (%)
V _{OUT} high (following V _{IN})	10
V _{OUT} not in specification - voltage or timing	60
V _{OUT} low (no output)	30

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (June 2020) to Revision A (March 2025)

Page

Added information for new die and updated formatting......3

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated