
1SLAA801–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Optimizing C Code for Size With MSP430™ MCUs: Tips and Tricks

Application Report
SLAA801–October 2017

Optimizing C Code for Size With MSP430™ MCUs:
Tips and Tricks

Katie Pier.. MSP430 Applications

ABSTRACT
When choosing a microcontroller (MCU), the amount of code space or nonvolatile memory in the device is
often a key consideration. To efficiently fit as much functionality as possible into a device, there are
considerations that can be given when writing and building code to get the most optimized code size. This
application note outlines a number of optimization settings for Code Composer Studio™ (CCS) and IAR
Embedded Workbench® (IAR EW430) compilers that can make a big impact on code size, as well as
coding techniques for user code to build with optimal size.

Contents
1 Introduction ... 2
2 C Compiler Optimization .. 2

2.1 CCS... 2
2.2 IAR.. 6

3 Coding Techniques .. 9
3.1 Use Smallest Possible Types for Variables and Constants ... 9
3.2 Avoid Multiply and Divide .. 10
3.3 Use Lookup Tables Instead of Calculating... 10
3.4 Use Word Accesses to Registers ... 10
3.5 Write to Registers Only Once (Where Possible) .. 10
3.6 Use the __even_in_range() Intrinsic .. 11
3.7 Use Functions Judiciously and Write for Reuse and Commonality... 11

4 Summary .. 12
5 References .. 12

Trademarks
Code Composer Studio, MSP430 are trademarks of Texas Instruments.
IAR Embedded Workbench is a registered trademark of IAR Systems.
All other trademarks are the property of their respective owners.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA801
http://www.ti.com/tool/CCSTUDIO-MSP
http://www.ti.com/tool/iar-kickstart
http://www.ti.com/tool/iar-kickstart

Introduction www.ti.com

2 SLAA801–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Optimizing C Code for Size With MSP430™ MCUs: Tips and Tricks

1 Introduction
Changing just a few key lines of code and a few compiler settings can make a big difference when it
comes to code size. The code sizes used as an example in this application report are using the code
example Msp430fr211x_euscia0_uart_03.c, which can be built for the MSP430FR2000 MCU, which
contains only 0.5KB of FRAM. Code sizes listed were built with CCS version 7.3 with compiler 16.9.4.LTS
or IAR EW430 version 7.10.4.

2 C Compiler Optimization
While working in C is typically preferred over assembly for its easy readability, writing in C can add some
overhead that starts to become non-trivial when using a device with limited code space. However, through
careful usage of compiler settings and features like global variables, programming in C can become close
to assembly programming in efficiency (and still allowing for the compiler to do the heavy code
optimization work rather than hand-optimizing assembly code).

No matter which IDE is used, the compiler already includes many tools for optimizing C code.
Understanding the settings available and what they mean allows the user to work with the compiler to get
the best code optimization results.

2.1 CCS

2.1.1 Optimization Settings
The main control of the compiler optimization is through the optimization settings accessible within the
IDE. The settings allow the user to select how aggressive they want the compiler to apply optimization
(which kinds of optimizations it is allowed to use) and the desired balance of optimizing for code size vs
execution speed.

In CCS, the optimization settings are found in Project > Properties > Build > MSP430 Compiler >
Optimization. There are two main optimization settings: Optimization level, and Speed vs size trade-offs
(see Figure 1).

Figure 1. CCS Optimization Settings

The optimization level determines what types of optimizations the compiler is allowed to make. Speed vs
size setting tells the compiler if trade-offs should be made more in the favor of size or speed, with 0 being
optimizing with the most focus on size, and level 5 being the most focus on speed. Settings between 0
and 5 instruct the compiler to take a more balanced approach. For more information, see the MSP430
Optimizing C/C++ Compiler User’s Guide.

CCS provides a tool called the Optimizer Assistant (View > Optimizer Assistant) that can be used to
decide the optimal set of compiler settings for a particular project to fit in its target device (see Figure 2).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA801
http://dev.ti.com/tirex/#/?link=Software%2FMSP430Ware%2FDevices%2FMSP430FR2XX_4XX%2FMSP430FR2111%2FPeripheral%20Examples%2FRegister%20Level%2Fmsp430fr211x_euscia0_uart_03.c
http://www.ti.com/lit/pdf/SLAU132
http://www.ti.com/lit/pdf/SLAU132

www.ti.com C Compiler Optimization

3SLAA801–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Optimizing C Code for Size With MSP430™ MCUs: Tips and Tricks

Figure 2. Optimizer Assistant

After clicking Start Analysis, select which build option to vary: speed vs size trade-offs or optimization
level. The analysis then runs, varying the selected build option accordingly. The other build option uses
whatever is currently in the project settings and remains constant through the test. For example, if the tool
varies size vs speed setting, it uses whichever optimization level is currently selected in the project
settings for all of the builds (see Figure 3).

Figure 3. Varying Size vs Speed in Optimizer Assistant

The Optimizer Assistant displays the code size for the different settings. Red indicates if the code cannot
fit in the selected device for the project, yellow indicates that the code fits the device but a better option is
available, and green indicates the recommended option for best execution speed performance while still
fitting into the target device memory. The check mark indicates the current selection in the project settings.
For more information about using Optimizer Assistant, see
http://processors.wiki.ti.com/index.php/Optimizer_Assistant

NOTE: After running the Optimizer Assistant, set the desired optimization settings in Project >
Properties > Build > MSP430 Compiler > Optimization to apply them in subsequent builds.

2.1.2 Code and Data Model
MSP430™ microcontrollers have a 16-bit architecture. However, larger MSP430 devices have code space
that extends to addresses 10000h and beyond, requiring 20 bits to store the full address. The MSP430X
CPU architecture featured on these devices includes an extended instruction set to support operations on
these 20-bit addresses. These extended instructions can take additional CPU cycles and increased
program space due to requiring an extension word for double-operand instructions (see the appropriate
family user’s guide chapter on CPUX for more information on the extended instruction set). Therefore, on
small memory devices where no addresses above 10000h exist in the device, it is important to ensure that
only the base 16-bit instruction set is used to build with the smallest possible code size. This can be
controlled by selecting the correct code and data model in the IDE project settings.

In CCS, go to Project > Properties > Build > MSP430 Compiler > Processor Options. Then select Small
Code Memory Model and Small Data Memory Model (see Figure 4).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA801
http://processors.wiki.ti.com/index.php/Optimizer_Assistant

C Compiler Optimization www.ti.com

4 SLAA801–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Optimizing C Code for Size With MSP430™ MCUs: Tips and Tricks

Figure 4. Code and Data Memory Model in CCS

The build takes several minutes the very first time after changing the code and data model, because the
runtime support (RTS) library is built. Subsequent builds are much faster, because the library is not rebuilt.
Changing code and data model can have a huge effect on the code size. Building the
msp430fr211x_euscia0_uart_03.c with large code model and full optimization for code size builds to 928
bytes (see Figure 5).

Figure 5. msp430fr211x_euscia0_uart_03.c With Large Memory Model

After changing the code and data model to small, the code size builds to 572 bytes - a 38% reduction (see
Figure 6).

Figure 6. msp430fr211x_euscia0_uart_03.c With Small Memory Model

2.1.3 Global Variables and Initialization Settings
The C-compiler inserts some initialization code from the runtime support (RTS) library that runs every time
the device starts up. This code does prepares the C environment by setting up the stack and initializing
variables in RAM. The initialization routines used by the C-compiler by default use a compressed table of
global variable initialization data, which makes sense for large projects with large numbers of global
variables, large arrays, and other data that need to be initialized in the RAM at device start-up. However,
for small devices that contain simple code containing a small number of global variables, this code is no
longer space efficient. The crossover point is where the C-initialization code takes up more space than
directly initializing the variables with user code (not using compression).

To understand how much space the C-start-up code is taking up in the part, look at the .map file (found in
the Debug folder after building). Under the Section Allocation Map portion of the linker file, find ".text".
Here, you can see the start address and length for all functions in your project, including functions inserted
by the compiler from the RTS library. Functions from the RTS library are all marked as from
rts430x_xx_xx_eabi.lib (the xx differs depending on code and data memory model selection). The boxed
functions in Figure 7 are all used for global variable initialization – copy tables and decompression code
including multiplication functions. These functions require significant code space if working with a very
code-limited part, such as the MSP430FR2000 or MSP430G2001 MCU with only 512 bytes of FRAM or
flash.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA801

www.ti.com C Compiler Optimization

5SLAA801–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Optimizing C Code for Size With MSP430™ MCUs: Tips and Tricks

Figure 7. Default Global Variable Initialization in CCS

Therefore, for small devices in which code size is a concern, the following methods should be employed to
control the initialization of global variables.

Option 1: If it is possible in the application, simply eliminate use of global variables. This eliminates the
overhead for initializing global variables at start-up.

Option 2: Use a limited number of global variables. Set up these variables such that they are not
preinitialized by the RTS library, using compiler settings. Instead, initialize the global variables in main()
with user code. Section 2.1.3.1 includes steps to address this.

2.1.3.1 Controlling Global Variable Initialization
Controlling global variable initialization to save code space involves both modifications to user code and
using some compiler settings available in the IDE to tell the compiler not to automatically initialize the
variables.

First, move the initialization of the global variables into main(). In the example
msp430fr211x_euscia0_uart_03.c, there are only two global variables: RXData and TXData, that are both
initialized. Figure 8 shows an example of moving the initialization for these variables to main().

Figure 8. Moving Global Variable Initialization to main() in CCS

From our optimization settings and small data model usage before, the code built at 572 bytes. By simply
moving the initialization into main, the code size shrinks to 468 bytes, or an 18% reduction in code size.

Looking at the .map file, observe how some of the RTS library functions have been eliminated. However,
others like copy_zero_init have been added (and some others like mult16 and memcpy are still there) (see
Figure 9).

Figure 9. RTC Library Global Variable Zero-Initialization

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA801

C Compiler Optimization www.ti.com

6 SLAA801–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Optimizing C Code for Size With MSP430™ MCUs: Tips and Tricks

By default, projects built in the EABI format automatically initialize any uninitialized global variables to 0.
This is to protect users from using a variable before it has a real value in it, which would cause a read of
random values from RAM. However, as long as all global variables are initialized before usage, this
problem does not occur. Because the code performs this initialization in main, zero-initialization can be
turned off. To disable zero-initialization in CCS, click Project > Properties > MSP430 Linker > Advanced
Options > Miscellaneous, and set the Zero initialize ELF uninitialized sections option to Off (see
Figure 10).

Figure 10. Disable Zero-Initialization in CCS

Before disabling zero-initialization, the code built at 468 bytes. After disabling zero-initialization, the code
builds at 178 bytes – a huge 62% reduction, saving more than half of the memory size of a 512 byte
device!

2.2 IAR

2.2.1 Optimization Settings
The main control of the compiler optimization is through the optimization settings accessible within the
IDE. The settings allow the user to select how aggressively the compiler should apply optimization (which
kinds of optimizations it is allowed to use) and the desired balance of optimizing for code size vs execution
speed.

In IAR, the optimization settings are found in the Project > Options > C/C++ Compiler > Optimizations tab.
There are two main optimization settings: optimization level, and speed vs size trade-offs (see Figure 11).

Figure 11. Optimization Settings in IAR

The optimization level determines what types of optimizations the compiler is allowed to make. Speed vs
size setting tells the compiler if trade-offs should be made more in the favor of size or speed, with speed,
size, and balanced options. There are also options for what types of optimizations to allow under enabled
transformations. For more information, see the IAR C/C++ Compiler User’s Guide included with IAR under
Help.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA801

www.ti.com C Compiler Optimization

7SLAA801–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Optimizing C Code for Size With MSP430™ MCUs: Tips and Tricks

2.2.2 Code and Data Model
MSP430 microcontrollers have a 16-bit architecture. However, larger MSP430 devices have code space
that extends to addresses 10000h and beyond, requiring 20 bits to store the full address. The MSP430X
CPU architecture featured on these devices includes an extended instruction set to support operations on
these 20-bit addresses. These extended instructions can take additional CPU cycles and increased
program space due to requiring and extension word for double-operand instructions (see the appropriate
family user’s guide chapter on CPUX for more information on the extended instruction set). Therefore, on
small memory devices where no addresses above 10000h exist in the device, it is important to ensure that
only the base 16-bit instruction set is used to build with the smallest possible code size. This can be
controlled by selecting the correct code and data model in the IDE project settings.

In IAR, go to Project > Options > General Options > Target tab. Then select Small for Code Model and
Small for Data Model (see Figure 12).

Figure 12. Small Code Model in IAR

Changing code and data model can have an effect on the code size in some cases. Often, the IAR
compiler already accounts for this, but it is still good practice if no upper memory is available or needed.
The example msp430fr211x_euscia0_uart_03.c builds to 239 bytes in IAR for both large or small code
model, but for some devices or code there can be a difference.

2.2.3 Global Variables and Initialization Settings
The C-compiler inserts initialization code from the support library that runs every time the device starts up.
This code prepares the C environment by setting up the stack and initializing variables in RAM. The
initialization routines used by the C-compiler by default use initialization methods that make sense for
large projects or for the general case. However, for very small devices that contain simple code containing
a small number of global variables, this code is not always the most space efficient. The crossover point is
where the C-initialization code takes up more space than directly initializing the variables with user code.

To understand how much space the C-start-up code uses, look at the .map file (found in the Output folder
after building). Open Project > Options > Linker > List and check Module Summary. Then in the .map file,
under the Module Summary portion near the end of the linker file, see the modules listed. This section lists
he start address and length for the code and the functions inserted by the compiler from the library.
Functions from the library are all marked starting with ?. The boxed functions in Figure 13 are all used for
global variable initialization – memcpy, zero-initialization of memory, C-start-up environment initialization,
and exit routines. These functions require significant code space if working with a very code-limited part,
such as the MSP430FR2000 or MSP430G2001 MCU with only 512 bytes of FRAM or flash.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA801

C Compiler Optimization www.ti.com

8 SLAA801–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Optimizing C Code for Size With MSP430™ MCUs: Tips and Tricks

Figure 13. Default Global Variable Initialization in IAR

Therefore, for small devices where code size is a concern, the following methods should be employed to
control the initialization of global variables.

Option 1: If it is possible in the application, simply eliminate use of global variables. This eliminates the
overhead for initializing global variables at start-up.

Option 2: Use a limited number of global variables. Set up these variables such that they are not
preinitialized by the library, using compiler settings. Instead, initialize the global variables in main() with
user code. Section 2.2.3.1 includes steps to address this.

2.2.3.1 Controlling Global Variable Initialization
Controlling global variable initialization to save code space involves both modifications to user code, as
well as using some compiler settings available in the IDE to tell the compiler not to automatically initialize
the variables.

First, move the initialization of the global variables into main(). In the example
msp430fr211x_euscia0_uart_03.c, there are only two global variables: RXData and TXData, that are both
initialized. Figure 14 shows an example of moving the initialization for these variables to main().

Figure 14. Moving Global Variable Initialization to main() in IAR

From the optimization settings and small data model usage before, the code built at 240 bytes. By simply
moving the initialization into main, the code size shrinks to 210 bytes, or 12.5% reduction in code size.

In the .map file (see Figure 15), observe how some of the library functions (for example, memcpy) have
been eliminated. However, others like memzero are still there. Further, the cstart module has become
smaller.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA801

www.ti.com Coding Techniques

9SLAA801–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Optimizing C Code for Size With MSP430™ MCUs: Tips and Tricks

Figure 15. Global Variable Zero-initialization in IAR

By default, projects built in the EABI format automatically initialize any uninitialized global variables to 0.
This is to protect users from using a variable before it has a real value in it, which would read random
values from RAM. However, as long as all global variables are initialized before usage, this problem does
not occur. Because the code performs this initialization in main, zero-initialization can be turned off. In
IAR, this is done by using the __no_init keyword when declaring global variables (see Figure 16).

Figure 16. Setting Global Variables as No-Init in IAR

Before disabling zero-initialization, the code built at 210 bytes. After disabling zero-initialization, the code
builds at 182 bytes – a further 13% reduction in code size.

3 Coding Techniques
While the C compiler can do a lot to optimize code for size, there are also things the user can do when
writing code to help ensure smaller build size. Some things are essentially hand optimizations, while
others provide hints to the compiler about properties of the code and ways that it is then further allowed to
safely optimize.

3.1 Use Smallest Possible Types for Variables and Constants
Constants are stored in nonvolatile memory, just like code. Therefore, using the smallest possible type
when defining constants helps to reduce wasted code space. For example, if a lookup table contains only
values between 0 and 255, using an unsigned 8-bit type when declaring the constant table reduces the
space by half compared to a 16-bit int type. This concept also applies to variables stored in FRAM using
the PERSISTENT keyword. If a variable is stored in FRAM instead of RAM, it uses FRAM space that
could otherwise be used as code. Therefore, using the smallest type is important in this case as well.

Code can even be written such that smaller numbers are used for the lookup table, provided that the
precision is still sufficient for the application. One example is a constant array containing values for timer
PWM output. If the timer is sourced from 32768 Hz, but the timer output is only 60 Hz, the highest count
for the timer period or duty cycle could be only 32768 / 60 = 545. This value cannot be stored in an 8-bit
variable. But if the timer source is divided by 4 using the internal clock dividers in the clock module or in
the timer, the highest count for duty cycle would now be 8192 / 60 = 136, which is small enough to store in
an 8-bit value. Providing that this still provides for enough precision in setting duty cycle, making this
simple change halves the size of a const lookup table containing timer count settings. Intelligently
choosing how values are stored can make a big difference in the size of arrays and lookup tables.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA801

Coding Techniques www.ti.com

10 SLAA801–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Optimizing C Code for Size With MSP430™ MCUs: Tips and Tricks

3.2 Avoid Multiply and Divide
Multiply and divide operations take many cycles to perform and and require more code to enable these
operations. Therefore, finding ways to remove unnecessary multiplication or division from code can be a
great way to save on both code space and execution time.

For multiplication or division by powers of 2 (for example, 2, 4, 8, 16, …), bit shifts can be used instead.
To do a bit shift in C, use >> to right shift and << to left shift, then the number of bits to shift. This is much
more efficient than a multiply or divide because there are assembly instructions and hardware in the CPU
for bit shifts.

Another option is to determine if multiplications or divisions truly need to occur at runtime or not. For
example, if multiplication is used on two constants with no variable, then this calculation could be done
ahead and the result used instead of having multiplication or division code that runs on the device every
time, wasting space and execution time.

Even if a variable is part of the multiplication so it cannot all be calculated ahead, if that variable has a
known range of values, a lookup table could be created to contain the possible results. A lookup table
does not always build smaller, because the table must also reside in the nonvolatile memory of the device,
so code should be built both ways to analyze which is the best for code size.

3.3 Use Lookup Tables Instead of Calculating
If a complex calculation must be repeatedly performed for different values, consider whether a lookup
table may be a better alternative – this can be especially true for floating point calculations. If the variable
input to the calculation has a known range of values, a lookup table can be created to contain the possible
results. A lookup table does not always build smaller than using MSPMATHLIB, because the table must
also reside in the nonvolatile memory of the device, so code should be built both ways to analyze which is
the best for code size.

3.4 Use Word Accesses to Registers
Some registers in MSP430 devices have both byte and word versions. If the setting is allowed to be set at
the same time instead of sequentially (that is, if the second write does not require the first write to happen
first), then write both bytes at the same time by using the word form of the register.

A good example is port initialization. Instead of writing:
P1OUT = BIT0;
P2OUT = BIT7;

The following code can be used:
PAOUT = BIT15 | BIT0;

This sets both P1OUT and P2OUT at once instead of generating separate code for two separate
sequential writes. This can save both code space and execution time.

Note how the BITx used for the upper byte needs to be adjusted so make sure to use the mnemonic for
the 16-bit version of any bits for the upper byte of the word. For most registers that have both byte or word
versions, byte-access versions of bits are denoted with _H or _L at the end, versus word-access versions
of bit mnemonics not having this. Other common examples of using word instead of byte registers is using
UCAxBRW instead of UCAxBR0 and UCAxBR1, or RTCCTL13 instead of RTCCTL1 and RTCCTL3.

3.5 Write to Registers Only Once (Where Possible)
Similarly to using word accesses to registers, combine multiple writes to the same register into a single
instruction when possible. Identifying multiple writes to a register (especially when initializing a module)
and combining them into one write can reduce the number of instructions for the application. Some code
and some modules require certain bits to be set or cleared before they can (or should) be modified – for
example, ADC12CTL0 bits that require ADC12ENC to be cleared before modification. However, in many
cases, all of the bits of a register can be written at once without any logical problem.

Sometimes code clears bits and then sets different bits in the same register using two separate bit-wise
register accesses:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA801
http://www.ti.com/tool/mspmathlib

www.ti.com Coding Techniques

11SLAA801–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Optimizing C Code for Size With MSP430™ MCUs: Tips and Tricks

TA0CCTL2 &= ~OUTMOD_7;
TA0CCTL2 |= OUTMOD_4;

But instead these could potentially be done as a single write with a full register write instead:
TA0CCTL2 = OUTMOD_4 | CCIE;

When using =, any other bits in the register that need to remain set should also be written; for example in
this case, CCIE. Careful consideration should always be taken for what bits could be inadvertently cleared
or changed when using = instead of bit-wise operations. Consult the device family user’s guide for default
register settings and be mindful of their reset state.

3.6 Use the __even_in_range() Intrinsic
The __even_in_range(x,NUM) intrinsic provides a hint to the compiler for switch statements that the value
x will always be an even value in the range 0 to NUM inclusive. This allows the compiler to make more
assumptions about the value of x and optimize further than it normally could. This is typically used for
interrupt service routines (ISRs) because interrupt vectors always have a fixed range of values and are
always even (see Figure 17).

Figure 17. Example ISR Using the __even_in_range() Intrinsic

__even_in_range() is not limited to ISRs, however. The intrinsic could also be used on other switch
statements in code, as long as the code ensures that the control variable for the switch is always even
and has an upper limit on its value. An example could be a byte counter variable that increments by 2
instead of by 1, and has a maximum value controlled by code so that it rolls over to 0 or 2.

For more information on the __even_in_range() intrinsic, see MSP430 Optimizing C/C++ Compiler User’s
Guide .

3.7 Use Functions Judiciously and Write for Reuse and Commonality
Functions can make code much easier to read. However, functions can also add overhead in terms of
execution speed and code space. If a function is only called once, especially if it is a small function, the
extra overhead is typically not worth it. You can keep a small function for readability but not incur the extra
overhead by inlining the function using the inline (or __inline) keyword with the function declaration. This
declaration instructs the compiler to insert the contents of the function everywhere it is called, instead of
doing an actual function call. More information on inlining functions is available in MSP430 Optimizing
C/C++ Compiler User’s Guide .

However, there are also cases where something needs to be done several times in the code. In this case,
a function can make for a more code-size efficient solution, because it allows the same code to be reused
in several different places. Writing code intentionally for reusability can make a big difference on code size
as well.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA801
http://www.ti.com/lit/pdf/SLAU132
http://www.ti.com/lit/pdf/SLAU132
http://www.ti.com/lit/pdf/SLAU132
http://www.ti.com/lit/pdf/SLAU132

Summary www.ti.com

12 SLAA801–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Optimizing C Code for Size With MSP430™ MCUs: Tips and Tricks

4 Summary
Experimentation is often the best method of determining the most optimized coding solution. Using version
control software and creating different branches or versions, or making copies or variants of a project,
allows code to be built with different optimization strategies as outlined in this report. The results can then
be compared against each other to find the optimal solution.

5 References
1. MSP430 Optimizing C/C++ Compiler User’s Guide
2. MSP430FR21xx, MSP430FR2000 Code Examples

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA801
http://www.ti.com/lit/pdf/SLAU132
http://www.ti.com/lit/zip/SLAC715

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Optimizing C Code for Size With MSP430™ MCUs: Tips and Tricks
	1 Introduction
	2 C Compiler Optimization
	2.1 CCS
	2.1.1 Optimization Settings
	2.1.2 Code and Data Model
	2.1.3 Global Variables and Initialization Settings
	2.1.3.1 Controlling Global Variable Initialization

	2.2 IAR
	2.2.1 Optimization Settings
	2.2.2 Code and Data Model
	2.2.3 Global Variables and Initialization Settings
	2.2.3.1 Controlling Global Variable Initialization

	3 Coding Techniques
	3.1 Use Smallest Possible Types for Variables and Constants
	3.2 Avoid Multiply and Divide
	3.3 Use Lookup Tables Instead of Calculating
	3.4 Use Word Accesses to Registers
	3.5 Write to Registers Only Once (Where Possible)
	3.6 Use the __even_in_range() Intrinsic
	3.7 Use Functions Judiciously and Write for Reuse and Commonality

	4 Summary
	5 References

	Important Notice

