
Application Report
SLAA550–September 2012

Capacitive Touch Sensing, SYS/BIOS
Chris Sterzik..

ABSTRACT

SYS/BIOS is designed for use in embedded applications that need real-time scheduling, synchronization,
and instrumentation. It provides preemptive multitasking, hardware abstraction, and memory management.
This application report uses an adaptation of the capacitive touch library to interface with SYS/BIOS. This
interface abstracts the capacitive touch interface, promoting use of the graphical configuration tool within
SYS/BIOS to define the scheduling of capacitive touch sensing as another task in the system. This
document is written for the MSP430F5529 experimenter’s board but can be expanded to other devices
with the COMPB peripheral.

Project collateral and source code discussed in this application report can be downloaded from the
following URL: http://www.ti.com/lit/zip/slaa550.

Contents
1 Introduction .. 2
2 Capacitive Touch Sensing ... 2
3 Firmware Design .. 4
4 Summary ... 12
5 References ... 12
Appendix A Interface Setup Instructions Instructions .. 13
Appendix B Register Definitions ... 16
Appendix C Modifying the Number of Elements .. 19
Appendix D Modifying the number of Sensors .. 22

List of Figures

1 Increase in Capacitance Introduced by a Finger ... 3

2 Measuring Capacitance .. 3

3 Firmware, Interface, and Configuration .. 4

4 Physical Definition .. 5

5 Example Description of Measurement Sequence .. 8

6 SYS/BIOS Clock Setting for tickPeriod .. 9

7 SYS/BIOS Clock setting for TickMode ... 9

8 Clock Instance of initSensorBaseline ... 10

9 Visual Representation of Touch ... 11

10 CCSv5.1; Advanced Options; Language Options ... 13

11 CCSv5.1, Include Options.. 13

12 eport Array Relationship to Sensor Configuration... 19

13 Example Sensor Configuration and Relationship to eport Array ... 21

List of Tables

1 Example measureTime Settings .. 6

2 Clock Instance of measureSensor .. 10

3 Clock Instance of Display Update ... 11

Code Composer Studio is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

1SLAA550–September 2012 Capacitive Touch Sensing, SYS/BIOS
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/lit/zip/slaa550
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

Introduction www.ti.com

4 Sensor Register 2, sRegister2... 12

5 Capacitive Touch SYS/BIOS File List .. 13

6 Swi Instance, deglitchSensor .. 14

7 Swi instance, setupCTSdbnce ... 14

8 Swi instance, measureElement.. 14

9 Hwi instance, wdta .. 15

10 Semaphore, ctsSem .. 15

11 Task, postProcessTask ... 15

12 Element Configuration .. 16

13 Filter Settings .. 16

14 driftComp Settings... 16

15 baseUpdate Settings .. 17

16 Sensor Register 0, sRegister0... 17

17 Sensor Register 1, sRegister1... 17

18 Sensor Register 2, sRegister2... 18

1 Introduction

This application report implements five capacitive touch buttons with the COMPB, TIMERA1, and WDTA
peripherals. The detection of a touch is indicated by the LEDs found in the center of the touch electrodes,
while raw measurement data and baseline tracking information are displayed upon the LCD screen.

The application (and firmware) can be divided into three pieces. The first piece is taken from the
MSP430F5529 Experimenter’s Board User Experience code [1]. The MSP430F5529 Experimenter’s
Board is the hardware and the firmware from the user experience is reused in this application. This
includes the drivers for the LCD. The second piece is an adaptation of the capacitive touch library [2]. The
capacitive touch portion includes additional features not found in the traditional library but is also very
specific in the capacitive touch implementation using the COMPB, TIMERA1, and WDTA peripherals. The
capacitive touch portion is also adapted to interface with the third portion of this application, SYS/BIOS.

SYS/BIOS provides a handy graphical user interface (GUI) for defining real-time scheduling. The purpose
of this application report is to use SYS/BIOS to integrate capacitive touch sensing with another simple
function that updates the LED indicators and the display.

2 Capacitive Touch Sensing

Capacitive touch sensing is achieved on the MSP430F5529 experimenter’s board (and more generally
with 5xx family devices) by creating a relaxation oscillator with the COMPB peripheral. The oscillation
frequency changes as the electrode capacitance changes. The oscillation is fed into TIMERA1 and the
number of oscillations within a WDTA interval is compared with previous measurements. A decrease in
the number of oscillations indicates an increase in capacitance while an increase indicates a decrease in
capacitance. The firmware is designed to treat gradual changes as changes in the environment while
instantaneous increases in capacitance are reported as detections.

2.1 Changes in Capacitance

All copper structures on a PCB, either traces or planes, have a capacitance. This capacitance is a function
of the coupling between neighboring structures (other planes and traces) and these structures coupling
back to earth ground. As shown in Figure 1, the introduction of a human finger is simply another structure
that increases the capacitance from its original untouched value.

2 Capacitive Touch Sensing, SYS/BIOS SLAA550–September 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

COMPB

TIMERA1

+

-

Vref

CBx

CBy

CBOUT/TIMERA1

Time

V
o

lt
a
g

e

Vref- (0.5V)

Vref+ (2.6V)

WDTA

Time0 2ms

TA1CCR1 ~ 550

F ~ 275Khz

text

www.ti.com Capacitive Touch Sensing

Figure 1. Increase in Capacitance Introduced by a Finger

2.2 Measuring Changes in Capacitance

The capacitive touch implementation is a relaxation oscillator created with the COMPB peripheral. The
frequency of the oscillator changes with the capacitance of the electrode. In the MSP430F552x, the
CBOUT and TA1CLK signals are internally tied together, so TACCR1 is used to capture the number of
relaxation oscillator cycles within a measurement period. The measurement period is defined by the
WDTA peripheral used in interval mode.

Figure 2. Measuring Capacitance

Figure 2 shows the peripheral implementation of the relaxation oscillator and typical values for the
MSP430F5529 Experimenter’s board. Without a touch, the oscillation is approximately 275 KHz resulting
in 550 oscillations (timer counts) during the measurement period of 2 ms. A touch causes the oscillation
frequency to decrease to about 100 KHz resulting in 200 counts.

2.3 Interpreting Changes in Capacitance

The example in the previous section is a straight forward interpretation of a change in capacitance. When
the counts decrease by more than 100 counts, the threshold for this application, this change is treated as
a possible touch. The change in counts is always relative to a baseline value. The baseline value
represents the current untouched capacitance of the electrode. Initially this baseline value can be
determined by sampling the electrode and assuming there is no touch or by loading a calibrated value
from Flash.

3SLAA550–September 2012 Capacitive Touch Sensing, SYS/BIOS
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

CTS_SYSBIOS

sensorRegister0

sensorRegister1

Sensor0

portInfo

eRegister0

threshold

Element0

maxResponse

measure

baseline

ePort[0]

portInfo

eRegister0

threshold

Element4

maxResponse

measure

baseline

ePort[4]

sensorRegister2

Sensor0

TI_CTS_SYSBIOS_WDTa_Interrupt()

Hwi

TI_CTS_SYSBIOS_Measure_Element()

Swi

TI_CTS_SYSBIOS_Deglitch_Sensor()

TI_CTS_SYSBIOS_Deglitch_Element()

TI_CTS_SYSBIOS_Task()

Task

TI_CTS_SYSBIOS_Measure_Sensor()

Clock Functions (Swi)

TI_CTS_SYSBIOS_Baseline_Init()

Capacitive Touch Configuration

Results

SYSBIOS Configuration

Firmware Design www.ti.com

The detection of a touch is a straight forward comparison between the current measurement and the
baseline value. The magnitude of change must exceed the threshold and the change must be a decrease
in counts (increase in capacitance). Increasing counts (decreasing capacitance) or decreasing counts that
do not meet the threshold criteria are treated as environmental changes. These changes are typically
associated with temperature but can also be due to changes in the power supply or noise. The drift
compensation algorithm tracks these changes and updates the baseline value appropriately. In the
configuration section more detail will be provided on how to adjust how the baseline is updated.

3 Firmware Design

The capacitive touch sensing firmware has been written specifically to interface with SYS/BIOS. In
addition to interfacing with SYS/BIOS the capacitive touch sensing uses a custom register structure to
describe the physical and performance parameters of a capacitive touch sensor. As shown in Figure 3, the
capacitive touch portion is intended to be a black box to the application. The interface with the
CTS_SYSBIOS black box consists of three parts that are described in the following three sections: the
capacitive touch configuration, the SYS/BIOS configuration, and the result information that the application
uses. For example, in this application the result information is used to illuminate an LED and update a
display. The SYS/BIOS configuration describes the steps to setup the application as well as the parameter
in the configuration that dictates the sensor scan rate. The capacitive touch configuration section
describes how both the physical orientation and performance parameters are represented in various
software structures.

Figure 3. Firmware, Interface, and Configuration

4 Capacitive Touch Sensing, SYS/BIOS SLAA550–September 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

P
6
.0

/C
B

0

P
6
.1

/C
B

1

P
6
.2

/C
B

2

P6.3/CB3

P6.4/CB4

P1.6/CBOUT/TA1CLK

MSP430F5529

eport[0].inputs = CBIMSEL_0; //CB0

eport[1].inputs = CBIMSEL_1; //CB1

eport[2].inputs = CBIMSEL_2; //CB2

eport[3].inputs = CBIMSEL_3; //CB3

eport[4].inputs = CBIMSEL_4; //CB4

// CB0 through CB4

compbTaxConfig .cbpdBits =

(BIT0 + BIT1+BIT2+BIT3+BIT4);

// P1.6 Provides feedback path

compbTaxConfig.cboutTAx DirRegister = &P1DIR;

compbTaxConfig.cboutTAxS elRegister = &P1SEL;

compbTaxConfig.cboutTAxBits = BIT6;

// 5 Elements, eport[0] through eport[4]

sConfigFlash[0].sRegister0 = NUM_OF_ELEMENTS_5

+ (EPORT4+EPORT3+EPORT2+EPORT1+EPORT0);

Element Definitions

Sensor Definitions

www.ti.com Firmware Design

3.1 Capacitive Touch Configuration

3.1.1 Physical Definition

The physical definition is divided into element and sensor definitions. The element definition defines which
COMPB input is being used to measure the electrode capacitance. The sensor definition defines the
feedback path for the relaxation oscillator as well as the elements the sensor is comprised of.

Elements are defined within the PortInfo structure eport found in the file structure.c. The definition is
simply the inverting input channel selection, CBIMSEL, for control register CBCTL0. For a more detailed
description of the control register and its function, see the MSP430x5xx and MSP430x6xx Family User's
Guide (SLAU208).

The sensor definition is also found in structure.c. The structure combTaxConfig identifies the COMPB
inputs that are applied to the COMPB register CBCTL3. This structure also identifies CBOUT pin for the
feedback path to the electrode via a resistor. As shown in Figure 2, the CBOUT pin has a shared
functionality and is also the input to a Timer. For this example with the MSP430F5529, the
CBOUT/TA1CLK signal on P1.6 is used. The port mapping feature of this device can be used to move the
signal to another pin, but that is beyond the scope of this document. Another structure, in structure.c, is
sConfigFlash. In this structure, the number of elements is explicitly defined as well as which elements from
the element definition make up the sensor.

Figure 4 shows the definitions found in structure.c for this five button application.

Figure 4. Physical Definition

3.1.2 Performance Settings

The performance settings are divided into three categories: sensitivity, baseline tracking, and noise
countermeasures.

3.1.2.1 Sensitivity

The sensitivity of each element is a function of the measurement time and the threshold setting. As
previously mentioned, the measurement time is established with the WDTA peripheral in interval mode.
The WDTA can be sourced from ACLK or SMCLK and then divided by one of the pre-configured values
found in the WDTA control register, WDTCTL [3]. Table 1 shows some example measurement times for
various configurations of SMCLK and ACLK.

5SLAA550–September 2012 Capacitive Touch Sensing, SYS/BIOS
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAU208
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

Firmware Design www.ti.com

Table 1. Example measureTime Settings

measureTime Value Source Frequency Measurement Time

SOURCE_ACLK + 0x0027 ACLK (REFO) REFO = 32 Khz 2 ms
SOURCE_DIVIDE_64

SOURCE_SMCLK + 0x0005 SMCLK(DCO/8) DCO = 8 Mhz, SMCLK = 1 Mhz 512 µs
SOURCE_DIVIDE_512

SOURCE_SMCLK + 0x0005 SMCLK(DCO/2) DCO = 8 Mhz, SMCLK = 4 Mhz 128 µs
SOURCE_DIVIDE_512

Increasing the measurement time increases sensitivity. The sensitivity should be increased to provide a
signal to noise ratio in the range of 10:1 to 15:1. Both the signal and the noise are the deviation from the
normal or average capacitance of the system with and without a touch, respectively.

The threshold setting should be set below signal levels used to determine the measurement time. The
threshold setting to noise ratio should be on the order of 5:1. In this application, the typical deviation due
to a touch is more than 200 counts and the noise is ~2 counts (100:1). The threshold is set at 100 (50:1).

The WDTA settings for the measurement time and the threshold values are found in the
FlashElementConfig structure, eConfigFlash. As shown in the code snippet below, the WDTA settings are
bit settings within eRegister0 and the threshold is a value.

// P6.0, CB0
FlashElementConfig eConfigFlash[TOTAL_NUMBER_OF_ELEMENTS] = {
{

.eRegister0 = (EREGISTER0_BASEUP_7+EREGISTER0_FILTER_3
+EREGISTER0_DRIFT_4+SOURCE_ACLK+SOURCE_DIVIDE_64),

.threshold = 100,

.baseline = 350,
},

This structure definition is also found in the structure.c file along with the physical definition.

3.1.2.2 Baseline Tracking Settings

The basis of detection is the magnitude of the current measurement exceeding a reference by a certain
magnitude (threshold). This reference is called the baseline and there is a separate baseline value
associated with each element.

The firmware provides two mechanisms for initializing the baseline value for each element. The first is the
TI_CTS_SYSBIOS_Baseline_Init API. This function measures each element within the sensor and the
measured value is used as the baseline. The second is to use the TI_CTS_Copy_Flash_to_RAM API,
which copies the baseline value found in Flash to the RAM variables. The first mechanism is useful in
applications where the environment changes significantly (supply voltage or temperature) during sleep
modes or unpowered periods. The drawback of the first mechanism is that if a finger or other object is
present during the initialization these objects (and there associated capacitance) is considered part of the
baseline and will not register detection. Once the finger or object is removed, the system recognizes the
decrease in capacitance and adjusts the baseline appropriately, and normal operation will resume. The
second mechanism does not have this startup limitation since a preprogrammed intial value is used as the
baseline. The drawback of the second mechanism is that if there is a large deviation in the environment
from the preprogrammed initial baseline the element may report a false detection (1) or appear insensitive
until the baseline adjusts to the new environmental conditions.

The baseline needs to accurately represent the ‘untouched’ environment including any changes over time
associated with the environment. How the changes are applied to the baseline is managed through the
sensor sampling rate and the control bits found in the element definition.

(1) If a false detection occurs, then this halts the baseline update mechanism and the sensor will be ‘stuck’. It is important to select a
sufficiently large threshold value to prevent such a condition. To account for variations in oscillation frequencies over temperature and
VCC, and set the thresholds accordingly, see the device-specific data sheet tolerances.

6 Capacitive Touch Sensing, SYS/BIOS SLAA550–September 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

www.ti.com Firmware Design

The sensor scan rate and the base update control bits define how often the baseline is updated. A fast
baseline update has the benefit of tracking changes in the environment quickly and therefore preserving
sensitivity. The cost of tracking changes quickly is the inadvertent tracking of slowly approaching objects
or objects that ‘hover’ around the threshold region. In these cases the baseline tracking can cause the
element to become insensitive and only respond to fast approaching objects.

A typical sensor scan rate is on the order of 10 to 20Hz. This application measures the sensor at a 10Hz
rate (2), which is discussed in the SYSBIOS section. The baseline is updated every 8th consecutive
measurement without a sensor detection.

The other two bit settings that control the baseline update are the filter and drift compensation settings. As
the name implies, the filter setting applies a filter to the measured data. For this application, the filter limits
the current measurement to a range of half the threshold above or below the current baseline and then
averages the current measurement with the previous three measurements. After the filtering, the drift
compensation is applied.

The drift compensation is a weighting of the filtered response and the current baseline to establish a new
baseline. The baseline update rate and filter settings are intended to heavily dampen the response of the
baseline tracking. The drift compensation is different in that the response is only heavily damped if the
capacitance is increasing. In the case of an increasing capacitance the baseline is given the larger
weighting (7/8) while in the case of a decreasing capacitance the filtered response is given the larger
weighting.

The following code snippet shows where the bit settings are found in structure.c. These settings are
recommended for most human interaction applications. There are applications that require the baseline
tracking to be more agile and, therefore, the baseline update cannot be so heavily damped. Section B.1
further describes the element definition settings.

// P6.0, CB0
FlashElementConfig eConfigFlash[TOTAL_NUMBER_OF_ELEMENTS] = {
{

.eRegister0 = (EREGISTER0_BASEUP_7+EREGISTER0_FILTER_3
+EREGISTER0_DRIFT_4+SOURCE_ACLK+SOURCE_DIVIDE_64),

.threshold = 100,

.baseline = 350,
},

3.1.2.3 Noise Countermeasures

The heavy damping provided by the baseline tracking also provides protection from noise corrupting the
baseline value. This protection is only applied to measurements that do not meet the detection criteria.
Once a threshold crossing is detected, the sensor can perform repeated measurements to confirm the
detection and prevent false triggers due to noise. The number of repeated measurements performed to
confirm a detection is found in the structure sConfigFlash and are the deglitch bits of senor register1
(sConfigFlash.sRegister1). As shown in the code snippet, the deglitch setting is two. This requires three
consecutive measurements (the initial measurement plus two verification measurements) that meet the
threshold criteria before detection is indicated. Section B.2 describes the sensor register and the settings.

const FlashSensorConfig sConfigFlash[TOTAL_NUMBER_OF_SENSORS] = {
{
.sRegister0 = ((NUM_OF_ELEMENTS_5)
+(EPORT4+EPORT3+EPORT2+EPORT1+EPORT0)),
.sRegister1 = ((0)+REPRESENTATION_0+DEGLITCH_2)

}
};

(2) Each element takes 2 ms to measure. Five elements result in a 10 ms typical measurement time. The remaining 90 ms can be used to
perform other tasks or enter a low-power mode.

7SLAA550–September 2012 Capacitive Touch Sensing, SYS/BIOS
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

Hwi, wdta

Swi, measureSensor0

Swi, measureElement

Swi, deglitchSensor

Swi, deglitchElement

Task, postProcessTask

Idle Task

Measure Elements 0-4

Confirm Element 0 is
touched (2x)

Update result
information for

elements 0-4

Firmware Design www.ti.com

3.2 SYS/BIOS Configuration

A great description of SYS/BIOS can be found in the TI SYS/BIOS v6.33 Real-time Operating System
User's Guide (SPRUEX3). The threading model provides for a variety of situations. Hardware interrupts
(Hwis), software interrupts (Swis), tasks, idle functions, and periodic functions are all supported. Again, the
intent is to provide a capacitive touch solution that integrates with SYS/BIOS and ultimately other
application tasks.

The Hwi, Swi, and task instances are static and configured using the XGCONFIG tool in Code Composer
Studio™. The configuration is broken into two sections, the general setup and the application specific
setup. The general setup is presented as a set of instructions to be followed to provide the correct
measurement functionality for any capacitive touch applicaiton. The application specific setup will address
the timing of the system and specifically the scan rate of the capacitive touch sensing which can vary from
application to application.

3.2.1 General Setup

There are three Swis, one Hwi, one semaphore, and one task that need to be setup within SYS/BIOS to
provide the capacitive touch functionality. The main goal of this setup is to enable the real time operating
system control of the CPU during the measurement phase. Traditionally the MSP430 is held in a low
power state during the measurement. With this application the CPU can still be held in a low power state
or used for other tasks. The instructions for setup can be found in Appendix A.

Figure 5 shows the Hwi, Swis, and tasks associated with the measurement of all five keys. In Figure 5, the
following sequence is shown: the keys are measured, detection was made on the first key, the first key is
re-measured twice, and the sensor result fields are updated. The Idle task time between the Swis and
Hwis represents the measurement time, which for this application is 2 ms. The Hwis and Swis are
significantly shorter but are artificially lengthened in this diagram to improve visibility.

Figure 5. Example Description of Measurement Sequence

The sequence found in Figure 5 is handled by SYS/BIOS and ‘hidden’ from the application. The start of
the sequence is found in the application and discussed in the next section.

3.2.2 Application Specific Setup

The application specific settings in SYS/BIOS are related to timing. Two clock instances are needed to
perform the initialization and sensor measurements. The initialization is a ‘one-shot’ event that initializes
the RAM variables for baseline tracking. The measurements are performed periodically after initialization
to achieve a scan rate of 10Hz. The following sections describe the SYS/BIOS clock settings and the
settings for the initialization and measurement clock instances.

8 Capacitive Touch Sensing, SYS/BIOS SLAA550–September 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRUEX3
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

www.ti.com Firmware Design

3.2.2.1 Clock Settings

For most SYS/BIOS Clock settings the default values can be used. The exceptions are the settings for
tickPeriod and tickMode. Figure 6 shows a tickPeriod of 10 ms. Therefore the period of 10 ticks associated
with the measurement clock instance (Section 3.2.2.3) represents a 10Hz sampling rate. Adjusting the
sampling rate can be done through the SYS/BIOS configuration tool by editing either the Tick period or the
period of the measurement.

Figure 6. SYS/BIOS Clock Setting for tickPeriod

As shown in Figure 7, the default value of TickMode_DYNAMIC must be updated with
TickMode_PERIODIC.

Figure 7. SYS/BIOS Clock setting for TickMode

3.2.2.2 Initialization

There are two capacitive touch clock instances, initSensorBaseline and measureSensor. The
initSensorBaseline calls the appropriate function which performs a single measurement and loads this
value into the baseline tracking algorithm. This is the ‘starting’ point for the baseline tracking and all
successive measurements are compared to the baseline. As an alternative to performing a measurement
to update the baseline, the baseline value can be preprogrammed in Flash and loaded at power up. This
is done in the TI_CTS_Copy_Flash_to_Ram() function which is not part of the SYS/BIOS setup but found
in the main application.

Figure 8 shows that for this example the initSensorBaseline is called one time, 5 clock ticks (50ms) after
the initial start. Argument passed is ‘0’ to indicate which sensor is to be initialized. The argument passed
corresponds to the index in the array sConfig.

9SLAA550–September 2012 Capacitive Touch Sensing, SYS/BIOS
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

Firmware Design www.ti.com

Figure 8. Clock Instance of initSensorBaseline

3.2.2.3 Scan Rate

The measureSensor clock instance settings will be influenced by the measurement time and the number
of elements. In this application the measurement time is 2ms and the number of elements is 5.
Additionally if any element is touched it is re-measured 2 times to validate the touch or ‘debounce’ the key.
This could lead to a total measurement time of about 30ms (5*2ms + 5*2*2ms). This provides a maximum
sampling rate of about 30Hz. Most applications require 10-20Hz, so this does leave a fair amount of
margin. This margin can decrease as thick laminates are added and the measurement time needs to be
increased for sensitivity.

The measureSensor clock instance has a number of implications. First, this clock instance determines the
scan rate of the sensor. Second, the measureSensor instance calls the functions which sets up and uses
HW peripherals to perform the capacitive touch measurement. It is important to ensure that there are no
conflicts with peripheral allocation. An example of a conflict would be a clock instance of measureSensor
occurring before the system is finished measuring the capacitive touch elements from a previous
initSensorBaseline instance.

Table 2 shows the setup for the measurement instance. Like the baseline update instance the argument
passed represents the index in the sensor array sConfig. In this application there is only one sensor and
the index is 0. The startup delay is 11 clock ticks (110ms) and then the instance occurs periodically every
10 clock ticks (100ms). The initSensorBaseline instance has a delay of 5 clock ticks (50ms) while the
measureSensor instance has a delay of 11 ticks. The 6 tick delay (60ms) provides sufficient time to
complete the necessary measurements associated with initSensorBaseline.

Table 2. Clock Instance of measureSensor

Name Value Summary

name measureSensor0 Name of the Instance

Create Args

clockFxn TI_CTS_SYSBIOS_Measure_Sensor Function that runs upon timeout

timeout 11 One-shot timeout or initial start delay (in clock ticks)

Params

startFlag True Start Immediately after instance is created

period 10 Period of this instance (in clock ticks)

Arg 0 Uninterpreted argument passed to instance function

3.3 MSP430F5529 Experimenter’s Board Application

The final portion of this application is the visual representation shown in Figure 9: a touch indicator and a
display showing the current baseline value and how the current measurement has deviated from the
baseline.

10 Capacitive Touch Sensing, SYS/BIOS SLAA550–September 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

www.ti.com Firmware Design

Figure 9. Visual Representation of Touch

3.3.1 LED and Display Update Clock Instance

Another clock instance is added to update the LEDs as well as the display. This clock instance is offset
from the measurement and given the same period of 100ms; see Table 3.

Table 3. Clock Instance of Display Update

Name Value Summary

name ledUpdate Name of the Instance

Create Args

clockFxn F5529_LED_Display_Update Function that runs upon timeout

timeout 16 One-shot timeout or initial start delay (in clock ticks)

Params

startFlag True Start Immediately after instance is created

period 10 Period of this instance (in clock ticks)

Arg Null Uninterrupted argument passed to instance function

The function F5529_LED_Display_Update (found in main.c) pulls the baseline and measurement data
directly from the element configuration structure (eConfig[i]). This information is used to calculate the
difference between the baseline and the measurement and displayed as the delta in two’s complement.

The LEDs are updated based upon the detail field found in register two of the sensor configuration.

11SLAA550–September 2012 Capacitive Touch Sensing, SYS/BIOS
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

Summary www.ti.com

3.3.2 Sensor Register 2: Detail and Detection

The LED_Update function found in led.c uses the detail information in sensor register 2. The least
significant bits in the detail field represent which key in the sensor has been pressed while the detect field
simply indicates that at least one of the elements in the sensor has registered a detection.

Table 4. Sensor Register 2, sRegister2

Field Description

Bit representation of which button in the sensor (group of buttons) is being touched. Location along slider orDetail wheel, (0-points)

Detect Indicates that the sensor has detected a valid touch

4 Summary

Integration of capacitive touch into an existing solution can be made easier with the help of SYS/BIOS.
The capacitive touch example code is specifically written to interface with SYS/BIOS so that SYS/BIOS
can be used to control the sensor sampling rate. While the code is written specifically for the
MSP430F5529 experimenter’s board, the code is reusable and can be ported to other 5xx/6xx MSP430
product families and board configurations.

5 References
1. TI SYS/BIOS v6.33 Real-time Operating System User's Guide (SPRUEX3)

2. Capacitive Touch Library (SLAA490)

3. MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208)

4. MSP430F551x, MSP430F552x Mixed Signal Microcontroller Data Manual (SLAS590)

5. MSP-EXP430F5529 Experimenter Board User's Guide (SLAU330)

12 Capacitive Touch Sensing, SYS/BIOS SLAA550–September 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRUEX3
http://www.ti.com/lit/pdf/SLAA490
http://www.ti.com/lit/pdf/SLAU208
http://www.ti.com/lit/pdf/SLAS590
http://www.ti.com/lit/pdf/SLAU330
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

www.ti.com

Appendix A Interface Setup Instructions Instructions

Instructions on how to create a SYS/BIOS project can be found in the Creating a SYS/BIOS Project
section in the TI SYS/BIOS v6.33 Real-time Operating System User's Guide (SPRUEX3). The folder CTS
(and all of its contents) need to be copied into the workspace folder. The files found in this folder are listed
in Table 5.

Table 5. Capacitive Touch SYS/BIOS File List

File Name Description

structure.c/.h Configuration files describing elements and sensors

CTS_SYSBIOS_HAL.c/.h Hardware abstraction layer specific to single implementation with the MSP430F552x

CTS_SYSBIOS_Layer.c/.h Post processing of measured data. Representation of buttons, sliders, and wheels.
Update of baseline tracking algorithm.

CTS_SYSBIOS_Interface.c/.h Function definitions to be pointed to by Hwis, Swis, and Tasks in SYS/BIOS.

The project settings need to be updated to enable support for GCC extensions. The include settings
should also include the CTS folder. Figure 10 and Figure 11 shows the properties dialog box and the
appropriate additions for CCSv5.1.

Figure 10. CCSv5.1; Advanced Options; Language Options

Figure 11. CCSv5.1, Include Options

13SLAA550–September 2012 Capacitive Touch Sensing, SYS/BIOS
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRUEX3
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

Appendix A www.ti.com

Once the files have been included and the appropriate project settings are made, then the SYS/BIOS
configuration tool can be used to setup the capacitive touch functions.

The other Swis in the capacitive touch solution are deglitchSensor, deglitchElement, and
measureElement. The deglitchSensor helps manage the transition from initial measurement to debouncing
keys that may have detected a possible touch.

Table 6. Swi Instance, deglitchSensor

Name Value Summary

name deglitchSensor Name of the Instance

Create Args

fxn TI_CTS_SYSBIOS_Deglitch_Sensor Swi Function

Params

arg0 0 Swi function argument 0

arg1 0 Swi function argument 1

priority 13 Swi priority

trigger 0 Initial Swi trigger value

The deglitchElement Swi calls the function which determines if the threshold criterion has been met by all
of the repeated measurements of an element and sets or clears the appropriate bits in the sensor register
to indicate touch or no-touch.

Table 7. Swi instance, setupCTSdbnce

Name Value Summary

name deglichElement Name of the Instance

Create Args

fxn TI_CTS_SYSBIOS_Deglitch_Element Swi Function

Params

arg0 0 Swi function argument 0

arg1 0 Swi function argument 1

priority 12 Swi priority

trigger 0 Initial Swi trigger value

The setupmeasureSensor Swi calls the function that sets up the measurement cycle for both a regular
measurement and a baseline initialization.

Table 8. Swi instance, measureElement

Name Value Summary

name measureElement Name of the Instance

Create Args

fxn TI_CTS_SYSBIOS_Measure_Element Swi Function

Params

arg0 0 Swi function argument 0

arg1 0 Swi function argument 1

priority 14 Swi priority

trigger 0 Initial Swi trigger value

There is one Hwi for the capacitive touch sensing. This Hwi is the WDTA peripheral. The parameters are
all left at the default setting. In the MSP430F5529 the interrupt number for the watch dog timer is 57. For
more information, see the MSP430F551x, MSP430F552x Mixed Signal Microcontroller Data Manual
(SLAS590).

14 Capacitive Touch Sensing, SYS/BIOS SLAA550–September 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAS590
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

www.ti.com Appendix A

Table 9. Hwi instance, wdta

Name Value Summary

name wdta Name of the Instance

Create Args

intNum 57 Interrupt number

hwiFxn wdta_interrupt Pointer to ISR function

Params (default)

There is one task and one semaphore for the capacitive touch sensing. The semaphore is ctsSem and the
task is ctsTask. The task is posted once all the measurements have been completed. This serves as a
transition point between the critical and non-critical portions of the capacitive touch sensing. The task
performs post measurement algorithms for baseline tracking as well as representation algorithms for
wheels, sliders, and groups of buttons.

Table 10. Semaphore, ctsSem

Name Value Summary

name ctsSem Name of the instance

Create Args

count 0 Initial semaphore count

Params

event null Event instance to use it non-NULL

eventId 1 eventide if using events

mode Mode_BINARY Semaphore mode

Table 11. Task, postProcessTask

Name Value Summary

name postProcessTask Name of the Instance

Create Args

fxn 0 Task function

Params

arg0 0 Task function argument. Default is 0.

arg1 0 Task function argument. Default is 0.

priority 1 Task priority (0 to numPriorities-1 or -1). Default is 1.

stack null Task stack pointer. Default is null.

stackSize 512 Task stack size in MAUs

stackSection .bss:taskStackSection Mem section used for statically created task stacks

stackHeap null Mem heap used for dynamically created task stack

Env null Environment data struct

vitalTaskFlag true Exit system immediately when the last task with this flag is set to
TRUE has terminated

15SLAA550–September 2012 Capacitive Touch Sensing, SYS/BIOS
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

www.ti.com

Appendix B Register Definitions

B.1 Element Registers

There are two sets of data associated with each element. One set is found in Flash and is used as the
starting point at power up. The other set is found in RAM and is used during run time. The
TI_CTS_Copy_Flash_to_RAM () function loads the Flash values into the corresponding RAM locations.
Table 12 shows the different fields found in the element configuration.

Table 12. Element Configuration

Field Description

portInfo Pointer to the port definition, in this case the definition is the comparator input mux setting

eRegister0 Contains bit fields defining settings for the drift compensation, filtering and measurement time

Threshold The value the measured data must exceed (relative to the baseline) inorder to declare a possible touch.

maxResponse The maximum expected response from a touch

Measure The current measurement value

Baseline The current baseline value

The port information, portInfo, points to port configuration for the element. This port information is used to
configure the COMPB multiplexer appropriately to measure the element.

eRegister0 contains four fields: measureTime, driftComp, filter, and baseUpdate. The measureTime
defines the WDTA interval and is a function of the source selected and the divider. The filter and
driftComp fields define how the measured data is used to update the baseline. The filter simply represents
different filters that are applied to the measured data and the driftComp determines the weight or
significance of that filtered data when updating the baseline.

Table 13. Filter Settings

Filter ValueF Description

EREGISTER0_FILTER_0 0x0000 The filtered response equals the measurement

EREGISTER0_FILTER_1 0x0400 The filtered response is an average of the current and previous
measurements

EREGISTER0_FILTER_2 0x0800 The filtered response is an average of the current and previous 4
measurements

EREGISTER0_FILTER_3 0x0C00 The current measurement is limited so that the difference between the
baseline and measured value does not exceed threshold/2 in magnitude. The
filtered response is an average of the current (limited) measurement and
previous 4 measurements.

Once the measured data has been filtered, a weighted average of the current baseline and the filtered
response are used to update the baseline.

Table 14. driftComp Settings

Filter Value Description

EREGISTER0_DRIFT_0 0x0000 No drift compensation. The new baseline equals the filtered response.

EREGISTER0_DRIFT_1 0x0080 The new baseline is an average of the current baseline and the filtered
response.

EREGISTER0_DRIFT_2 0x0100 The new baseline is a weighted average: 3/4 current baseline, 1/4 filtered
response

EREGISTER0_DRIFT_3 0x0180 The new baseline is a weighted average: 7/8 current baseline, 1/8 filtered
response

EREGISTER0_DRIFT_4 0x0200 If the filtered response is greater than the current baseline then the weighted
average is 1/8 current baseline, 7/8 filtered response. Else the weighted
average is 7/8 current baseline, 1/8 filtered response.

16 Capacitive Touch Sensing, SYS/BIOS SLAA550–September 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

www.ti.com Sensor Registers

Table 14. driftComp Settings (continued)

Filter Value Description

EREGISTER0_DRIFT_5 0x0280 If the filtered response is greater than the current baseline then the weighted
average is 1/4 current baseline, 3/4 filtered response. Else the weighted
average is 7/8 current baseline, 1/8 filtered response.

For the relaxation oscillator implementation used in this application an increase in counts represents a
decrease in capacitance. The ‘direction of interest’ or direction associated with an increase in capacitance
(and possible touch) is a decrease in counts. If the filtered response is greater than the current baseline
then this represents a decrease in capacitance. In the case of settings 4 and 5 the filtered response is
given a larger weighting allowing the tracking algorithm to more quickly ‘track’ or follow the decrease in
capacitance. In the event the filtered response is less than the baseline then this represents an increase in
capacitance. This increase may be the result of environmental changes or an approaching finger. In this
case the heavier weighting is applied to the current baseline. This ‘slows’ down the update to help
differentiate between slow moving objects and environmental changes.

The update rate to the baseline can also be reduced by adjusting the updateBase field in eRegister0. This
value represents the number of measurements in between baseline updates (when no threshold detection
has occurred). Setting updateBase to 0, the baseline will update with each measurement (that does not
meet the threshold criteria). The maximum value of updateBase is 7; therefore, the minimum baseline
update rate is 1/8 the scan rate.

Table 15. baseUpdate Settings

Filter Value Description

EREGISTER0_BASEUP_0 0x0000 Baseline update rate equals element scan rate

EREGISTER0_ BASEUP _1 0x2000 Baseline update rate equals (element scan rate) /2

EREGISTER0_ BASEUP _2 0x4000 Baseline update rate equals (element scan rate) /3

EREGISTER0_ BASEUP _3 0x6000 Baseline update rate equals (element scan rate) /4

EREGISTER0_ BASEUP _5 0xA000 Baseline update rate equals (element scan rate) /6

EREGISTER0_ BASEUP _7 0xE000 Baseline update rate equals (element scan rate) /8

B.2 Sensor Registers

There are three sensor registers created to describe each sensor. Sensor registers 0 and 1 define the
sensor configuration while register 2 contains the result information.

Table 16. Sensor Register 0, sRegister0

Field Description

elementLocation This identifies at the bit level which elements are part of the sensor.

numberOfElements Indicates the number of elements within the sensor

Sensitivity For wheels and sliders, this value determines how ‘centered’ a touch needs to be on the wheel or
slider to be considered a valid touch.

Table 17. Sensor Register 1, sRegister1

Field Description

Points When ‘0’, this indicates a button or group of buttons; any non-zero value will be the number of
points represented along a slider or wheel.

Representation When points = 0, this value determines how a group of buttons is represented. When points is >
0; 0 = wheel, 1 = slider

Deglitch Number of successful retries before a touch is declared

17SLAA550–September 2012 Capacitive Touch Sensing, SYS/BIOS
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

Sensor Registers www.ti.com

Table 18. Sensor Register 2, sRegister2

Field Description

Detail Bit representation of which button in sensor (group of buttons) is being touched
Location along slider or wheel, (0-points)

Detect Indicates that the sensor has detected a valid touch

18 Capacitive Touch Sensing, SYS/BIOS SLAA550–September 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

www.ti.com

Appendix C Modifying the Number of Elements

C.1 Modifying structure.c

eport

The eport array defines which inputs to the COMPB multiplexer are being used. The order is not
significant but the relationship with the variable elementLocation found in the sensor definition (sRegister0)
must be understood.

Figure 12. eport Array Relationship to Sensor Configuration

Adding and removing elements involves adding or removing values from the array eport. Once the
modifications are made to the eport array the definition, TOTAL_NUMBER_OF_ELEMENTS, must be
updated in structure.h.

// P6.0, CB0
PortInfo eport[TOTAL_NUMBER_OF_ELEMENTS] = {
{

.inputBits = CBIMSEL_0,
},
// P6.1, CB1
{

.inputBits = CBIMSEL_1,
},
// P6.2, CB2
{

.inputBits = CBIMSEL_2,
},
// P6.3, CB3
{

.inputBits = CBIMSEL_3,
},
// P6.4, CB4
{

.inputBits = CBIMSEL_4,
}
};

compbTaxConfig

The compbTaxConfig,cbpdBits field needs to be updated to reflect the all of the inputs used by the
comparator. These bits are directly transferred into the port disable register, CBCTL3, to disable the digital
logic on those pins. BIT0 corresponds to CB0, BIT1 CB1, and so on.

CompbTaxInfo compbTaxConfig =
{

// These bits disable the digital IO on the corresponding CBx bits
//BIT0->CB0-> P6.0 on the F5529
//BIT4->CB4-> P6.4 on the F5529
// ...
// BIT8->CB8-> P7.0 on the F5529
// Please note that CB8,9,10, and 11 are not available on

all
// package types.

.cbpdBits = (uint16_t)(BIT0+BIT1+BIT2+BIT3+BIT4),
// CBOUT/TA1CLK is found on P1.6
// CBOUT/TA1CLK can also be port mapped to port4 (P4.0-P4.7) but
// this is beyond the scope of this application.

19SLAA550–September 2012 Capacitive Touch Sensing, SYS/BIOS
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

Modifying structure.c www.ti.com

.cboutTAxDirRegister = (uint8_t *)&P1DIR, // PxDIR

.cboutTAxSelRegister = (uint8_t *)&P1SEL, // PxSEL

.cboutTAxBits = BIT6, // P1.6
};

eConfigFlash

The eConfigFlash array contains the configuration data for each element. If an element is added or
removed the appropriate indices should be added or removed. Note that eConfigFlash[0] corresponds to
eport[0], eConfigFlash[1] to eport[1], and so on.

// P6.0, CB0
FlashElementConfig eConfigFlash[TOTAL_NUMBER_OF_ELEMENTS] = {

{
.eRegister0 = (EREGISTER0_BASEUP_7+EREGISTER0_FILTER_3+EREGISTER0_DRIFT_4+

SOURCE_ACLK+SOURCE_DIVIDE_64),
.threshold = 100,
.baseline = 350,
.maxResponse = 255

},
// P6.1, CB1
{

.eRegister0 = (EREGISTER0_BASEUP_7+EREGISTER0_FILTER_3+EREGISTER0_DRIFT_4+
SOURCE_ACLK+SOURCE_DIVIDE_64),

.threshold = 100,

.baseline = 395,

.maxResponse = 290
},
// P6.2, CB2
{

.eRegister0 = (EREGISTER0_BASEUP_7+EREGISTER0_FILTER_3+EREGISTER0_DRIFT_4+
SOURCE_ACLK+SOURCE_DIVIDE_64),

.threshold = 100,

.baseline = 415,

.maxResponse = 320
},
// P6.3, CB3
{

.eRegister0 = (EREGISTER0_BASEUP_7+EREGISTER0_FILTER_3+EREGISTER0_DRIFT_4+
SOURCE_ACLK+SOURCE_DIVIDE_64),

.threshold = 100,

.baseline = 405,

.maxResponse = 315
},
// P6.4, CB4
{

.eRegister0 = (EREGISTER0_BASEUP_7+EREGISTER0_FILTER_3+EREGISTER0_DRIFT_4+
SOURCE_ACLK+SOURCE_DIVIDE_64),

.threshold = 110,

.baseline = 350,

.maxResponse = 275
}
};

sConfigFlash

The fields numberOfElements and elementLocations need to be updated to reflect if the new elements are
used in the sensor. The example in Figure 13 shows a sensor comprised of four elements and the
elements are connected to eport[0], eport[3], eport[4], and eport[5].

20 Capacitive Touch Sensing, SYS/BIOS SLAA550–September 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

www.ti.com Modifying structure.h

Figure 13. Example Sensor Configuration and Relationship to eport Array

NOTE: Having non-consecutive elements in a sensor is only allowed for groups of buttons and is not
supported with the wheel and slider sensor implementations.

As mentioned at the beginning of this section, the relationship between the eport array and the
elementLocation must be noted. Predefined values of eport are provided to help prevent errors when
index of the eport array does not match the comparator input (ie eport[0] connected to CB5). The following
code snippet shows the code associated with the example found in Figure D-2 ??????.
const FlashSensorConfig sConfigFlash[TOTAL_NUMBER_OF_SENSORS] = {

{
.sRegister0 = ((NUM_OF_ELEMENTS_4)+(EPORT5+EPORT4+EPORT3+EPORT0)),
.sRegister1 = ((0)+REPRESENTATION_0+DEGLITCH_2)

}
};

C.2 Modifying structure.h

The definition of TOTAL_NUMBER_OF_ELEMENTS needs to be updated to reflect the new total number
of elements.

21SLAA550–September 2012 Capacitive Touch Sensing, SYS/BIOS
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

www.ti.com

Appendix D Modifying the number of Sensors

The example in this application report is of a single sensor. Similar to modifying the elements, modifying
the sensors requires editing the structure.c and structure.h files. In addition to the structure.c/.h files, clock
instances must be added to address new sensors.

D.1 Modifying structure.c, sConfigFlash

The structure sConfigFlash is an array of configurations, where each index represents a sensor. To add a
new sensor a new index must be added to sConfigFlash. In the following example code two sensors have
been added, each made of one element.
const FlashSensorConfig sConfigFlash[TOTAL_NUMBER_OF_SENSORS] = {
{

// Sensor0
.sRegister0 = ((NUM_OF_ELEMENTS_4)+(EPORT5+EPORT4+EPORT3+EPORT0)),
.sRegister1 = ((0) + REPRESENTATION_0 + DEGLITCH_2)

}
,{

// Sensor1
.sRegister0 = ((NUM_OF_ELEMENTS_1) + (EPORT1)),
.sRegister1 = ((0) + REPRESENTATION_0 + DEGLITCH_2)

}
,{

// Sensor2
.sRegister0 = ((NUM_OF_ELEMENTS_1) + (EPORT2)),
.sRegister1 = ((0) + REPRESENTATION_0 + DEGLITCH_2)

}
};

D.2 Modifying structure.h

The definition of TOTAL_NUMBER_OF_SENSORS needs to be updated to reflect the new total number
of sensors.

D.3 Updating the Clock instances in SYS/BIOS

The instances for the additional sensors need to be added to the System Clock Manager. The clockFxn
remains the same; however, the name, timeout, period, and arg variables need to be updated
appropriately. The setting of the timeout and period must be made to prevent contention with the
measurement of another sensor. Again it is important to remember the timing relationships so that
capacitance measurements are not corrupted. The arg variable represents the index of the sensor array,
sConfig. The name variable is left to the creativity of the user.

NOTE: In the case of the baseline initialization, the period is still 0 indicating a ‘one-shot’ instance.

22 Capacitive Touch Sensing, SYS/BIOS SLAA550–September 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA550

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Capacitive Touch Sensing, SYS/BIOS
	1 Introduction
	2 Capacitive Touch Sensing
	2.1 Changes in Capacitance
	2.2 Measuring Changes in Capacitance
	2.3 Interpreting Changes in Capacitance

	3 Firmware Design
	3.1 Capacitive Touch Configuration
	3.1.1 Physical Definition
	3.1.2 Performance Settings
	3.1.2.1 Sensitivity
	3.1.2.2 Baseline Tracking Settings
	3.1.2.3 Noise Countermeasures

	3.2 SYS/BIOS Configuration
	3.2.1 General Setup
	3.2.2 Application Specific Setup
	3.2.2.1 Clock Settings
	3.2.2.2 Initialization
	3.2.2.3 Scan Rate

	3.3 MSP430F5529 Experimenter’s Board Application
	3.3.1 LED and Display Update Clock Instance
	3.3.2 Sensor Register 2: Detail and Detection

	4 Summary
	5 References
	Appendix A Interface Setup Instructions Instructions
	Appendix B Register Definitions
	B.1 Element Registers
	B.2 Sensor Registers

	Appendix C Modifying the Number of Elements
	C.1 Modifying structure.c
	C.2 Modifying structure.h

	Appendix D Modifying the number of Sensors
	D.1 Modifying structure.c, sConfigFlash
	D.2 Modifying structure.h
	D.3 Updating the Clock instances in SYS/BIOS

