
Application Note
Design Considerations When Using MSP430 Graphics
Library

Michael Stein

ABSTRACT

LCDs are a growing commodity in today’s market with products as diverse as children’s toys to medical devices.
Modern LCDs, along with the graphics displayed on them, are growing in complexity. A graphics library can
simplify and accelerate development while creating the desired user experience. TI provides the MSP430
Graphics Library for use in developing products with the MSP430™ MCU. This application report describes
design considerations when using the MSP430 Graphics Library, and provides an example of implementation
and optimization. Project collateral discussed in this application report can be downloaded from the following
URL: www.ti.com/lit/zip/SLAA548.

Table of Contents
1 Introduction to the MSP430 Graphics Library..2
2 System Overview.. 2
3 Hardware Implementation - LCD Bus Type.. 4

3.1 Parallel Bus.. 4
3.2 SPI Bus.. 4

4 Software Implementation- LCD Display Driver Layer..5
4.1 Driver Layer Components.. 5
4.2 Creating New LCD Driver Files.. 5
4.3 Optimizing the LCD Display Driver Layer for Speed.. 5
4.4 Images in the MSP430 Graphics Library... 6

5 Design Example.. 14
5.1 Hardware Implementation.. 14
5.2 Bus Comparison...15
5.3 Software Implementation... 15

6 References.. 15
7 Revision History... 15

List of Figures
Figure 2-1. System Overview Block Diagram.. 2
Figure 2-2. System Overview Stack Diagram..3
Figure 4-1. Image Format – Coordinate Systems..7
Figure 4-2. Image Format - Example 16 Pixel Figure..8
Figure 4-3. Image Conversion – Original Leaf Image..9
Figure 4-4. Image Conversion – Converted Leaf Image With 256 Color Palette...9
Figure 4-5. Image Conversion – Original Frog Image... 10
Figure 4-6. Image Conversion – Converted Frog Image With 16 Color Palette.. 10
Figure 4-7. MSP430 Image Reformer – Image Reformer Screenshot...11
Figure 4-8. MSP430 Image Reformer – Example 7x8 Pixel Image... 12

List of Tables
Table 3-1. Tradeoffs of Using Parallel and SPI Bus...4
Table 4-1. Tradeoffs of Palette Sizing Options...11
Table 4-2. Tradeoffs of RLE4, RLE8, and Uncompressed Image Formats..13
Table 5-1. Performance of Parallel Bus... 15

www.ti.com Table of Contents

SLAA548A – OCTOBER 2012 – REVISED AUGUST 2023
Submit Document Feedback

Design Considerations When Using MSP430 Graphics Library 1

Copyright © 2023 Texas Instruments Incorporated

http://www.ti.com/lit/zip/SLAA548
https://www.ti.com
https://www.ti.com/lit/pdf/SLAA548
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA548A&partnum=MSP430FR4133

Trademarks
MSP430™ and MSP430Ware™ are trademarks of Texas Instruments.
Stellaris® is a registered trademark of Texas Instruments.
All trademarks are the property of their respective owners.

1 Introduction to the MSP430 Graphics Library
Texas Instruments’ (TI) MSP430 Graphics Library is an open source set of graphics primitives for creating
graphical user interfaces. The MSP430 Graphics Library is built into TI’s MSP430Ware™ software suite. The
graphics primitives include functions to draw individual pixels, lines, rectangles, circles, text, and images.

The MSP430 Graphics Library provides the flexibility to interface any dot matrix LCD to any MSP430. It is
compatible with a wide variety of LCDs through customization of a low-level abstraction layer. Up to 16-bit color
is supported, as well as grayscale. There is no inherent limit to resolution; an MSP430 running the graphics
library performs well on a QVGA, and this is the display used in this document’s example.

Interfacing with dot matrix displays is made possible by the faster processing speeds of the MSP430 along with
the efficiency of the MSP430 Graphics Library. As an integral part of an MSP430 Graphics Library application,
efficiency must be maintained throughout the design. This efficiency has a direct impact on the application’s
drawing speed.

This document provides guidelines for designing an application with the MSP430 Graphics Library. An example
implementation is provided to help illustrate some of the key decisions and their impact on the performance.

2 System Overview
Dot matrix LCD displays are often controlled with an embedded LCD driver or controller, typically called a chip-
on-glass. These LCD modules have embedded RAM for the display and handle synchronization, pixel control,
and pixel signal conversion. The chip-on-glass LCD controllers support standard communication protocols for
easy connection with microcontrollers. The MSP430 Graphics Library is intended to interface to LCD display
modules equipped with a chip-on-glass LCD controller.

Figure 2-1. System Overview Block Diagram

The MSP430 Graphics Library is split into two main layers: the LCD display driver and the graphics primitives.
The LCD display driver layer is the hardware abstraction layer that controls how the MSP430 communicates
with the LCD. The graphics primitives layer contains functions to draw pixels, lines, rectangles, circles, text, and
images.

Trademarks www.ti.com

2 Design Considerations When Using MSP430 Graphics Library SLAA548A – OCTOBER 2012 – REVISED AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__ALXbOOW-H7aBpLDVCD5.tQ__msp430ware__IOGqZri__LATEST
https://www.ti.com
https://www.ti.com/lit/pdf/SLAA548
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA548A&partnum=MSP430FR4133

Figure 2-2. System Overview Stack Diagram

www.ti.com System Overview

SLAA548A – OCTOBER 2012 – REVISED AUGUST 2023
Submit Document Feedback

Design Considerations When Using MSP430 Graphics Library 3

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAA548
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA548A&partnum=MSP430FR4133

3 Hardware Implementation - LCD Bus Type
Selecting the bus connection of the LCD is an important step. There are several LCD types supporting multiple
methods of connectivity, but the most common bus types are parallel and serial peripheral interface (SPI).
Understanding the tradeoffs allows the bus type to be chosen to fit the application.

3.1 Parallel Bus
The parallel bus will most likely be the best option for speed if fast drawing is required. This is due to the bit
banging operations that allow for rapid drawing. The Motorola 6800 and Intel 8080 buses have a specific signal
to indicate if a command or data is being sent. This allows for faster data transactions to occur because there is
often no built in protocol around a data write requiring additional bytes to be transferred.

If performance is not essential, a parallel bus may not be the best choice. It requires a lot of general-purpose
input/output (GPIO) pins to implement, and LCD controllers that accept a parallel bus require more board space
to connect to the MSP430.

3.2 SPI Bus
The SPI bus pairs well with smaller LCDs because they contain far less pixels and, therefore, can tolerate lower
data throughput. This type of interface requires significantly less GPIO resources from the MSP430 and can use
integrated SPI hardware modules on the MSP430. The SPI bus is flexible as it can be implemented on a number
of various SPI capable ports on the MSP430.

The SPI bus has limitations depending on the selected LCD and corresponding LCD controller. The limitations
include the clock speed and protocol. For instance, a very fast SPI bus does not increase performance if
the protocol requires a larger number of bytes to be transferred. The protocol is very important; in particular
the number of bytes that need to be transferred for a data write. The data write is the operation called most
frequently for all functions, and the speed at which it can be executed will significantly impact data throughput.

Table 3-1. Tradeoffs of Using Parallel and SPI Bus
SPI Bus Parallel Bus

Advantages • Fewer I/O required
• Flexible

• Fast write speeds
• Standard data protocol

Disadvantages • Varying LCD command protocols
• Varying write speeds

• Requires more I/O pins

Hardware Implementation - LCD Bus Type www.ti.com

4 Design Considerations When Using MSP430 Graphics Library SLAA548A – OCTOBER 2012 – REVISED AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAA548
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA548A&partnum=MSP430FR4133

4 Software Implementation- LCD Display Driver Layer
Customization of the LCD display layer is what allows the graphics library to be used with a wide variety of LCD
modules, accounting for the variety in interface timings, resolutions, command protocols, and individual features.
Each LCD requires careful customization of this layer. The efficiency of the code in this layer has perhaps more
impact on draw times than even the library itself does, because the low-level functions it contains are executed
for each pixel drawn. For this reason, it is important to get to know the LCD controller well at an early stage so
that the best choices can be made in implementing these functions.

4.1 Driver Layer Components
The LCD display driver layer should be made up of several basic functions required by the MSP430 Graphics
Library: color translation, draw pixel, draw horizontal line, draw vertical line, draw filled rectangle, draw image,
draw compressed image, and flush. The upper levels of the graphics library derive all functions from these
basic LCD operations. Additionally the display driver should provide display dependent operations such as
initialization, and may include operations for backlight control or contrast control.

Many LCDs represent a pixel using less than a full byte, for example one, two, or four bits per pixel. This
type of interface means that 1 byte of data, or 8 bits, represents multiple pixels on the LCD display. To alter a
single pixel only part of the byte must be altered such that the other pixels represented in the data byte are not
corrupted. In these cases there are two available options: read out the data before altering it and writing it back
or keep a global frame buffer of the current LCD state. The frame buffer requires significant memory resources,
but is easier to implement and often maintains better performance. There is built in support for a frame buffer in
the LCD display driver layer for use with the flush functionality.

4.2 Creating New LCD Driver Files
There are several example LCD display driver files provided in the MSP430 Graphics Library for use or general
reference. Among these drivers is a template driver (Template_Driver.c) that is only missing the lowest level of
the customizable hardware abstraction layer. The template driver functions are all derived from the draw pixel
function. This is not how an optimized driver should be constructed, but it allows for the user to rapidly test the
functionality of the entire LCD driver file by only writing the color translation and draw pixel functions. Once these
functions are implemented, the rest of the pixel level driver operations will be functional because they are all
derived from the draw pixel function.

The template driver accelerates development by creating an easy initial implementation. If fast draw speeds are
not required, the template driver provides a rapid solution to creating a functioning LCD driver file. In most cases,
once the driver is functioning correctly, it should then be optimized for faster drawing speeds.

4.3 Optimizing the LCD Display Driver Layer for Speed
4.3.1 Utilizing LCD Controller Features

To fully optimize the LCD display driver layer, a good understanding of the different options and features of
the LCD controller is required. This step is especially important when interfacing the MSP430 to more complex
graphic LCDs. The efficiency of the LCD display driver has a direct impact on the draw speeds of every graphics
primitive in the MSP430 Graphics Library. Eliminating even a single instruction can have a significant impact on
drawing speed because the LCD driver layer functions are called for every pixel drawn.

An effective technique in optimizing the LCD driver layer is to take advantage of auto incrementing features of
the LCD controller. Not every LCD controller has this functionality, but it is very common.

With the auto increment feature of the LCD controller enabled, the microcontroller can simply stream data rather
than resetting the pixel location before each data write. This sounds like a small change but it has a substantial
impact on the draw speed of functions that take advantage of it.

Looking at a simplified example illustrates how important the auto increment feature is. When drawing a
horizontal line, a simple option would be to sit in a loop and repeatedly call the draw pixel function. This method
works, but the draw pixel function requires setting the cursor location followed by the pixel data write to the LCD.
This implementation is displayed on the left side below. Alternatively, the auto increment feature can be used

www.ti.com Software Implementation- LCD Display Driver Layer

SLAA548A – OCTOBER 2012 – REVISED AUGUST 2023
Submit Document Feedback

Design Considerations When Using MSP430 Graphics Library 5

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAA548
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA548A&partnum=MSP430FR4133

and the cursor location is set only once, as it is automatically incremented by the LCD controller following a pixel
data write. This implementation is displayed on the right side below.

DrawHorizLine(x1, x2, y, color) DrawHorizLineOptimized(x1, x2, y, color)
{ {
 While(x1++ <= x2) SetCursorLocation(x1, y);
 { While(x1++ <= x2)
 SetCursorLocation(x1, y); {
 WriteDataToLCD(color); WriteDataToLCD(color);
 } }
} }

For this example, it is assumed that SetCursorLocation() requires 20 clock cycles and WriteDataToLCD()
requires 5 clock cycles.

Total clock cycles = (x2 – x1 + 1) * 25 Total clock cycles = 20 + (x2 – x1 + 1) * 5

Neglecting the small overhead of the initial SetCursorLocation(), the right side is five times as fast as the left
side. With a small and simple change, all horizontal lines now draw at five times the speed. Although this is
a simplified example, it illustrates realistic gains that can be made by taking advantage of the auto increment
feature of the LCD controller. This feature should be used throughout the LCD display driver whenever possible.

The auto increment feature is a great optimizing tool, but many LCDs have other built in features to take
advantage of. Additional features include clearing the screen, flipping the pixel polarity, turning the screen
orientation, and many more. These features are built into some LCD controllers because their common use
provides functionality that would otherwise need to be written into the application or driver layer, thus consuming
more cycles per pixel and slowing drawing times.

4.3.2 Coding Optimizations

The built in features of the LCD controller are a powerful speed optimizing tool, but there are other simple coding
techniques to increase speed of the low-level driver functions. Using macros instead of functions increases
performance by reducing overhead. This is especially apparent for functions that are called most often. In the
example shown above, making SetCursorLocation() and WriteDataToLCD() macros will reduce the overhead of
repeatedly calling a function and instead place the necessary code directly in the loop. This method increases
code size, but if macros are only used for the simple functions, little code size is sacrificed for the increase in
performance.

Modern compilers also offer features to help shape the application. If fast draw times are desired, compiler
settings can be changed to use high amounts of optimization for speed. After all optimizations are made, the
disassembly can be viewed to verify that all functions are optimized to the highest possible level. Instruction
cycle counts can be found in the device-specific MSP430 Family User’s Guide.

4.4 Images in the MSP430 Graphics Library
4.4.1 Image Format

Images can be presented in many different formats. For images to be drawn onto any LCD screen, they must
first be converted into a format that is read by the MSP430 Graphics Library. The library is accompanied by a
GUI, the MSP430 Image Reformer, which does this automatically; the output is formatted as C code and can
be added to the application project. As a result, the process is automated. However, it is advantageous for the
developer to understand the format to assist in optimizing performance.

The library uses a palette-based approach where each pixel in an image is represented by an index to a
common color palette, rather than containing the data for the color itself. This approach divides the image into
an information section, color palette section, and a pixel data section, each requiring a specific format to be read
properly.

The information section of the image contains information for the graphics library about the image. This section
contains six elements that describe: bits per pixel (BPP) and compression, x size, y size, number of colors in the
palette, a pointer to the color palette section, and a pointer to the pixel data section. This section is interpreted by
the library for proper image drawing no matter what image options are selected.

Software Implementation- LCD Display Driver Layer www.ti.com

6 Design Considerations When Using MSP430 Graphics Library SLAA548A – OCTOBER 2012 – REVISED AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAA548
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA548A&partnum=MSP430FR4133

The color palette section of data contains all colors used in a particular image. The MSP430 Graphics Library
supports palette sizes of 2, 16, and 256 colors. These palette sizes correspond to the number of bits per pixel
required to store the index to the palette, or 1BPP, 4BPP, and 8BPP, respectively. The color of each pixel is
represented in a 24-bit form with 8 bits each for red, green, and blue. This is a typical method of conveying pixel
color information and looks like 0xRRGGBB. For instance, a blue pixel would be represented by 0x0000FF while
a red pixel would be represented by 0xFF0000.

The pixel data section is comprised of information for each pixel in the image. This data is organized according
to the size of the color palette or bits per pixel. In an 8BPP image each pixel data byte indexes to a single pixel.
In the other BPP configurations, multiple pixels represent one pixel data byte.

The coordinate system for pixel matrices is different than a standard Cartesian coordinate system. Pixel data
for images is ordered across rows from left to right, starting with the top row and working downward. Figure
4-1 shows the difference between the standard x-y Cartesian coordinate system and the pixel matrix coordinate
system where r and c denote rows and columns, respectively.

Figure 4-1. Image Format – Coordinate Systems

Figure 4-2 illustrates how images are converted into an acceptable format for the MSP430 Graphics Library. This
16 pixel image consists of 4 pixels each of blue, green, red and white.

www.ti.com Software Implementation- LCD Display Driver Layer

SLAA548A – OCTOBER 2012 – REVISED AUGUST 2023
Submit Document Feedback

Design Considerations When Using MSP430 Graphics Library 7

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAA548
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA548A&partnum=MSP430FR4133

Figure 4-2. Image Format - Example 16 Pixel Figure

In a generic bitmap form, this image is represented by a color string of 48 total bytes.
Blue = 0x0000FF

Green = 0x00FF00

Red = 0xFF0000

White = 0xFFFFFF

0x0000FF, 0x0000FF, 0x00FF00, 0x00FF00,

0x0000FF, 0x0000FF, 0x00FF00, 0x00FF00,

0xFF0000, 0xFF0000, 0xFFFFFF, 0xFFFFFF,

0xFF0000, 0xFF0000, 0xFFFFFF, 0xFFFFFF

After converting this image to the palette and index format used by the graphics library, the format will look like
the following palette and pixel sections. In this form, the image saves space by using the indices to repeatedly
represent the same colors.

0x0000FF,

0x00FF00,
Palette

0xFF0000,

0xFFFFFF

ü
ï
ï
ý
ï
ïþ

0x00, 0x00, 0x01, 0x01,

0x00, 0x00, 0x01, 0x01,
Per-Pixel Palette Indices

0x02, 0x02, 0x03, 0x03,

0x02, 0x02, 0x03, 0x03

ü
ï
ï
ý
ï
ïþ

The image above has only four colors and could use 4BPP storage instead of 8BPP storage. This would merge
the 8BPP indices together so that 1 byte represents 2 pixels of 4 bits each. The transition from 8BPP to 4BPP
converts the first and second rows of pixels 0x00, 0x00, 0x01, 0x01 to 0x00, 0x11. The third and fourth rows of
pixels 0x02, 0x02, 0x03, 0x03 become 0x22, 0x33. This alters the pixel data section as shown below.

0x0000FF,

0x00FF00,
Palette

0xFF0000,

0xFFFFFF

ü
ï
ï
ý
ï
ïþ

0x00, 0x11,

0x00, 0x11,
Per-PixelPalette Indices

0x22, 0x33,

0x22, 0x33

ü
ï
ï
ý
ï
ïþ

Software Implementation- LCD Display Driver Layer www.ti.com

8 Design Considerations When Using MSP430 Graphics Library SLAA548A – OCTOBER 2012 – REVISED AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAA548
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA548A&partnum=MSP430FR4133

The palette and index method saves a considerable amount of space over the direct color string method,
especially as the image grows in size. The image is now fully optimized for storage size and has reduced from
48 bytes down to 20 bytes, a 42% size savings.

4.4.2 Image Conversion

Most images imported into the MSP430 Graphics Library undergo some lossy compression because the largest
palette size is 256 colors. The difference between an image containing thousands of colors and 256 colors is
quite palatable as shown in Figure 4-3 and Figure 4-4.

Figure 4-3. Image Conversion – Original Leaf Image

Figure 4-4. Image Conversion – Converted Leaf Image With 256 Color Palette

After the image transformation, some loss of color information is evident; however, the image remains vibrant
and distinguished. The converted image utilizes 256 colors in the palette to emulate the thousands of colors
present in the original image.

www.ti.com Software Implementation- LCD Display Driver Layer

SLAA548A – OCTOBER 2012 – REVISED AUGUST 2023
Submit Document Feedback

Design Considerations When Using MSP430 Graphics Library 9

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAA548
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA548A&partnum=MSP430FR4133

When the amount of memory required to store an image is an important consideration, simpler images can be
converted to a 4BPP format to utilize only 16 colors. These 4BPP images have even less color information but
only require half of the storage space of the 8BPP image.

Figure 4-5. Image Conversion – Original Frog Image

Figure 4-6. Image Conversion – Converted Frog Image With 16 Color Palette

Software Implementation- LCD Display Driver Layer www.ti.com

10 Design Considerations When Using MSP430 Graphics Library SLAA548A – OCTOBER 2012 – REVISED AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAA548
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA548A&partnum=MSP430FR4133

In this converted image, some fine details are lost and color banding is prevalent, but this image is stored in a
4BPP format at a small fraction of the size of the original. The frog is still easily discernible with only 16 unique
colors in the image.

4.4.3 MSP430 Image Reformer

The MSP430 Image Reformer is a PC application provided by TI to convert images (.bmp, .jpg, .gif, .tif) to
an appropriate format for use with the MSP430 Graphics Library. The Image Reformer tool is designed to be
simple and imports images and converts them directly as is. Resizing of images is supported but other image
manipulation, such as cropping, is not supported. If some image manipulation is required, image editing software
must be used before importing the image into the MSP430 Image Reformer tool.

Figure 4-7. MSP430 Image Reformer – Image Reformer Screenshot

The two main steps in the tool to convert an image are palette size selection and image compression. The
palette size determines the image quality and has a large impact on the image size and draw speed. The image
compression helps fine-tune the image size and draw speed to an application.

4.4.4 Palette Conversion

The initial image conversion is lossy if the image contained more colors than the palette it is being transformed
to. Once this step is complete, the exact bytes of the image are finalized and the converted image is displayed
on the right hand side of the tool. The original image is kept on the left hand side for direct reference.

Image conversion offers the choice of 2, 16, or 256 colors in the palette. Depending on the amount of color
content, the image size scales as the colors do. Given the same image, the uncompressed 8BPP option will be
8 times larger than the uncompressed 1BPP option. The 1BPP option requires less storage space, but all of
the logical operations required to read each individual pixel from a byte cause an inverse relationship between
palette size and draw times.

Table 4-1. Tradeoffs of Palette Sizing Options
1BPP 4BPP 8BPP

Advantages • Smallest storage size
• Supports RLE4 and RLE8

compression

• Small storage size for images
of moderate complexity

• Fast drawing speeds
• Supports RLE4 and RLE8

compression

• Fastest drawing speed (byte
and sec)

• Can display the most
complex images

Disadvantages • Slowest draw speed (byte
and sec)

• Only two colors in image

• Complex images cannot be
represented in 16 colors

• Largest storage size
• Only supports RLE8

compression

www.ti.com Software Implementation- LCD Display Driver Layer

SLAA548A – OCTOBER 2012 – REVISED AUGUST 2023
Submit Document Feedback

Design Considerations When Using MSP430 Graphics Library 11

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAA548
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA548A&partnum=MSP430FR4133

In most cases, the palette size is easily determined by the quality of the image needed for the application. If
a simple black and white image is needed, 1BPP is used, and if a complex colorful image is needed, 8BPP is
used. The Image Reformer tool provides the output of what is shown on the LCD so that image quality can easily
be assessed and palette size quickly determined.

4.4.5 Compression Types

Run length encoding (RLE) is a type of compression that thrives when long runs of pixels are present. The
algorithm is simple to understand and can drastically reduce storage size and draw speeds. There are two
different types of run length encoding used in the GUI to compress images: 4-bit run length encoding (RLE4) and
8-bit run length encoding (RLE8).

Run length encoding an image results pixel data being compressed into two components: run length and pixel
index. This replaces the string of consecutive pixel data bytes with encoded bytes. This compression is not lossy,
meaning it does not change the contents of the image data, it simply stores the data in a different format. Storing
the data differently can allow for various size and speed tradeoffs for the image to be drawn.

The difference between RLE4 and RLE8 is the number of bits reserved for both the run length and the pixel
value. RLE4 uses 4 bits for run length and 4 bits for the pixel index. RLE4 encoding limits run length to 16 pixels
and can only be used for 1BPP or 4BPP images with 16 pixels or less in the palette. Run length has a minimum
length of 1 pixel, so the value 0x00 for run length indicates a run of 1, 0x01 indicates a run of 2, and so on.

Figure 4-8 is a 7x8 pixel image consisting of five different colors. This image is used to compare multiple types of
compression supported in the MSP430 Graphics Library.

Figure 4-8. MSP430 Image Reformer – Example 7x8 Pixel Image

Image data with all available compression options is presented below. The palette remains the same for all types
of image compression.

Software Implementation- LCD Display Driver Layer www.ti.com

12 Design Considerations When Using MSP430 Graphics Library SLAA548A – OCTOBER 2012 – REVISED AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAA548
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA548A&partnum=MSP430FR4133

For uncompressed pixel data each line of the image must end on an even byte boundary. The uncompressed
4BPP pixel data below illustrates how the bytes are padded with extra zeroes on the last byte of the line to
achieve this. This padding occurs when 4BPP images have a width that is not a multiple of 2, and 1BPP images
have width that is not a multiple of 8. Run length encoded images do not require a line to end on an even byte
boundary, and runs can extend onto the next line if the pixel color is still the same.

 Color Palette
 0x0000FF, (Blue)
 0x00FF00, (Green)
 0xFF0000, (Red)
 0xFF00FF, (Purple)
 0xFFFFFF (White)
0x00, 0x04, 0x11, 0x10, 0x20, 0x04, 0x21, 0x10, 0x24, 0x11,
0x00, 0x44, 0x41, 0x10, 0x00, 0x14, 0x03, 0x14, 0x01, 0x14,
0x04, 0x43, 0x44, 0x10, 0x23, 0x24, 0x43, 0xF4, 0x04, 0x22,
0x44, 0x33, 0x34, 0x40, 0x14
0x43, 0x33, 0x33, 0x40,
0x44, 0x44, 0x44, 0x40,
0x44, 0x44, 0x44, 0x40,
0x44, 0x22, 0x24, 0x40
Uncompressed 4BPP Pixel Data RLE4 Compressed Pixel Data

 Color Palette
 0x0000FF, (Blue)
 0x00FF00, (Green)
 0xFF0000, (Red)
 0xFF00FF, (Purple)
 0xFFFFFF (White)
0x00, 0x00, 0x00, 0x04, 0x01, 0x01, 0x01, 0x02, 0x00, 0x00, 0x04, 0x02, 0x01,
0x00, 0x00, 0x04, 0x04, 0x04, 0x01, 0x01, 0x01, 0x00, 0x02, 0x04, 0x01, 0x01,
0x00, 0x04, 0x04, 0x03, 0x04, 0x04, 0x01, 0x00, 0x00, 0x01, 0x04, 0x00, 0x03,
0x04, 0x04, 0x03, 0x03, 0x03, 0x04, 0x04, 0x01, 0x04, 0x00, 0x01, 0x01, 0x04,
0x04, 0x03, 0x03, 0x03, 0x03, 0x03, 0x04, 0x02, 0x03, 0x02, 0x04, 0x04, 0x03,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x10, 0x04, 0x02, 0x02, 0x01, 0x04
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x02, 0x02, 0x02, 0x04, 0x04
Uncompressed 8BPP Pixel Data RLE8 Compressed Pixel Data

Each type of run length encoding has tradeoffs. RLE4 is better with shorter runs because it requires 1 byte to
encode the run + data where RLE8 requires 2 bytes to encode. However, RLE8 is much better with longer runs
because it supports runs up to 256 pixels long where RLE4 supports runs up to only 16 pixels long. In this
example image, there were several short runs leading the RLE8 method to require twice the number of bytes.
There was one long run of 17 white pixels where RLE4 required two separate runs to produce. The amount the
image pixel data is compressed is very image dependent because of these tradeoffs.

Table 4-2. Tradeoffs of RLE4, RLE8, and Uncompressed Image Formats
1BPP 4BPP 8BPP

Advantages • Typically best compression
with 4BPP images

• Much faster byte and second
drawing speeds than RLE4
(approximately 1.5-4x faster)

• Only option that supports
image clipping for images
extending beyond the bounds
of the LCD

• Works best with very complex
images such as photographs

Disadvantages • Can become larger than
uncompressed image

• Contains unused bits with
1BPP images

• Cannot use with 8BPP
images

• Image must stay within LCD
boundary

• Can become larger than
uncompressed image

• Contains unused bits with
1BPP and 4BPP images

• Image must stay within LCD
boundary

• Sometimes larger and
slower than its compressed
counterpart

www.ti.com Software Implementation- LCD Display Driver Layer

SLAA548A – OCTOBER 2012 – REVISED AUGUST 2023
Submit Document Feedback

Design Considerations When Using MSP430 Graphics Library 13

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAA548
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA548A&partnum=MSP430FR4133

4.4.5.1 Compressing Images With 16 Colors or Less

Images that are 4BPP (16 colors) or 1BPP (two colors) can be compressed with RLE4 or RLE8. In most cases,
the RLE4 compression method compresses to a smaller image size. Given the variability of images, there will be
cases in which RLE8 will be the optimal choice. These images will be very simple, lending themselves to long
runs.

4.4.5.2 Compressing 256 Color Images

8BPP images can only be compressed with RLE8. The image draw time is very fast, but the storage size can
become larger than the uncompressed format for more complex images that contain short pixel runs. Typically
images that require the 256 color palette are considered complex. Simple images can be used and stored in this
format for the fastest draw speeds.

4.4.5.3 Choosing a Compression Type

Due to the nature of run length encoding, the compressed image may require more storage space than
an uncompressed image. This is important to keep in mind so that the uncompressed image option is
not overlooked. Uncompressed images also make use of image boundary clipping. This functionality is not
supported on compressed images and will draw incorrectly if the image is not placed completely inside the
bounds of the LCD.

Even though the RLE4 method typically compresses images into less total bytes does not mean it is always the
best choice. All image decisions are a tradeoff of image size vs. drawing speed. The RLE8 images draw much
faster than the RLE4 images. This varies with the LCD interface and how the LCD display driver is written, but
an RLE8 image generally draws around twice as fast on a byte per second basis. An application optimized for
storage size or speed often chooses the RLE4 or RLE8 options, respectively. These options tailor the image to
the application.

The MSP430 Image Reformer is made to be easy to use and incorporate the output file into a project. If the
application is constrained for storage space or drawing speed, multiple schemes can be tried to see which
creates the best results specific to the application.

5 Design Example
The goal of this design was to interface a large color LCD to be driven by the MSP430. This design was to
be optimized for speed so that the draw times on the large graphic LCD display would be acceptable. The
schematics and associated gerber files, along with software demo are attached in the associated files folder that
can be downloaded from http://www.ti.com/lit/zip/slaa548.

5.1 Hardware Implementation
The Kitronix K350QVG-V2-F, which is featured in the Stellaris® Graphics Library demo was chosen as the
display. The Kitronix display is a full color QVGA LCD screen with 320 x 240 pixels capable of displaying over
250,000 unique colors.

To meet the design goals that require acceptable drawing times on the Kitronix LCD, an MSP430F5529 was
selected. The MSP430F5529 supports system clock speeds of up to 25 MHz for fast drawing operations, and
has enough GPIO pins to implement a large parallel interface. The MSP430F5529 also has 8KB of RAM along
with 128KB of Flash memory to store large images for drawing to the display.

Software Implementation- LCD Display Driver Layer www.ti.com

14 Design Considerations When Using MSP430 Graphics Library SLAA548A – OCTOBER 2012 – REVISED AUGUST 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

http://www.ti.com/lit/zip/slaa548
https://www.ti.com
https://www.ti.com/lit/pdf/SLAA548
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA548A&partnum=MSP430FR4133

5.2 Bus Comparison
The SSD2119 LCD controller IC integrated into the Kitronix display supports several different bus types including
multiple types of parallel and SPI. The SPI bus has slower bus speeds and requires loops to wait and check for
status flags. The parallel bus was chosen for this application because it has fast and deterministic write times.
The parallel bus was implemented with jumper selectable 8-bit parallel bus or 16-bit parallel bus. This allowed for
the evaluation of both types of parallel buses.

Table 5-1. Performance of Parallel Bus
8-Bit Parallel Bus Speed 16-Bit Parallel Bus Speed

8 BPP Uncompressed Full Screen Image 120 ms 77 ms

4 BPP Uncompressed Full Screen Image 126 ms 83 ms

Full Screen Filled Rectangle 82 ms 53 ms

For 320 x 240 pixel full screen writes, the 16-bit bus requires about 65% of the drawing time compared to the
8-bit bus. This is a significant decrease in drawing time, but this needs to be evaluated against the need for
additional GPIO pins.

5.3 Software Implementation
The LCD display driver was written with speed as the main consideration. Macros were used frequently to
deliver faster draw times. The auto incrementing feature was used wherever possible, including changing the
incrementing direction for use with vertical lines. Compiler directives were written to support rotating the display
into any orientation for flexibility of use. This LCD display driver can be found in the associated application demo
for this design.

The overall optimization of the hardware and software on this design took the original drawing speed of
a full screen uncompressed image from over 700 ms to under 100 ms. Careful optimization can have an
overwhelming impact on the application.

6 References
SSD2119 LCD Controller Data Sheet: http://www.crystalfontz.com/controllers/SSD2119.pdf

7 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (October 2012) to Revision A (August 2023) Page
• Updated the numbering format for tables, figures, and cross references throughout the document..................1
• Added hyperlink to Graphics Library.. 2

www.ti.com Design Example

SLAA548A – OCTOBER 2012 – REVISED AUGUST 2023
Submit Document Feedback

Design Considerations When Using MSP430 Graphics Library 15

Copyright © 2023 Texas Instruments Incorporated

http://www.crystalfontz.com/controllers/SSD2119.pdf
https://www.ti.com
https://www.ti.com/lit/pdf/SLAA548
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA548A&partnum=MSP430FR4133

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction to the MSP430 Graphics Library
	2 System Overview
	3 Hardware Implementation - LCD Bus Type
	3.1 Parallel Bus
	3.2 SPI Bus

	4 Software Implementation- LCD Display Driver Layer
	4.1 Driver Layer Components
	4.2 Creating New LCD Driver Files
	4.3 Optimizing the LCD Display Driver Layer for Speed
	4.3.1 Utilizing LCD Controller Features
	4.3.2 Coding Optimizations

	4.4 Images in the MSP430 Graphics Library
	4.4.1 Image Format
	4.4.2 Image Conversion
	4.4.3 MSP430 Image Reformer
	4.4.4 Palette Conversion
	4.4.5 Compression Types
	4.4.5.1 Compressing Images With 16 Colors or Less
	4.4.5.2 Compressing 256 Color Images
	4.4.5.3 Choosing a Compression Type

	5 Design Example
	5.1 Hardware Implementation
	5.2 Bus Comparison
	5.3 Software Implementation

	6 References
	7 Revision History

