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ABSTRACT 

Interfacing FPGAs to high speed digital-to-analog converters (DAC) and analog-to-digital converters (ADC) 
can be confusing, especially with so many interface formats available. This application note specifically 
looks at interfacing Altera FPGAs to the Texas Instrument’s (TI) ADS4249 and DAC3482. Code examples 
are provided that are tested and verified using the TSW1400 evaluation platform which interfaces 
seamlessly with TI high speed ADCs and DACs. An example of a simple repeater application is shown 
which is used as a starting point for a full digital design. The design and timing constraints are discussed in 
detail to aid the digital designer in closing timing between the FPGA and the data converters. Project 
collateral discussed in this application report can be downloaded from the following URL: 
http://www.ti.com/lit/zip/SLAA545. 
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Introduction 
 

Interfacing FPGAs to high-speed digital-to-analog converters (DAC) and analog-to-digital 
converters (ADC) can be confusing, especially with so many interface formats available. This 
application note is meant to clarify the interface between the Altera FPGAs and TI’s ADS4249 
and DAC3482. The concepts shown in this application note extend to other TI high-speed data 
converters with similar interface formats. 

The ADS4249 is a dual-channel, 14-bit, 250-MSPS ADC with a dual-bus, byte-wise digital 
interface.1 The ADS4249 interface example is applicable to many TI high-speed ADCs including 
the following families: ADS41XX, ADS42XX, and ADS62PXX. 

The DAC3482 is a dual-channel, 16-bit, 1.25-GSPS DAC with a single-bus, sample-wise digital 
interface.2 The code example is designed for a data rate of 250 MSPS to the DAC allowing a 
simple interface between the ADC and DAC. The same concepts extend to cover most of TI’s 
LVDS, high-speed DACs at varying data rates. 

The provided code examples are tested and verified using the TSW1400 evaluation platform 
which is designed to interface seamlessly with TI’s high-speed ADC and DAC evaluation 
modules (EVMs).3 An example of a simple repeater application is shown which can be used as a 
starting point for a full digital design. The design and timing constraints are discussed in detail to 
aid the digital designer in closing timing between the FPGA and data converters. 

 
1 Hardware Setup 

The following sections describe the three main pieces of hardware. Figure 1 shows a block 
diagram of the hardware setup with the TSW1400, ADS4249, and DAC3482EVMs and the clock 
and signal sources. 
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Figure 1. Block Diagram of the Hardware 

 
1.1 TSW1400EVM 

The code examples discussed in this application note are tested and verified on the TSW1400 
data capture and pattern generation card. The TSW1400 captures digital data from ADCs and 
sources digital data to DACs. The TSW1400 contains connections for both ADC and DAC 
evaluation modules from TI. At the heart of the TSW1400 is the powerful Altera Stratix IV FPGA 
that supports sourcing and receiving 16-bit parallel LVDS samples at rates up to 1600 MSPS. 
The LVDS receive lines are brought over to an HSMC connector that interfaces directly with TI’s 
high-speed ADC EVMs. Similarly, the LVDS transmit pins connect to an HSMC connector to 
interface with the TI high-speed DAC EVMs. Additionally, CMOS inputs and outputs are 
available on the TSW1400 for use with any of the TI high-speed CMOS ADCs or DACs. 

The TSW1400 also has a 1-GB DDR2 memory module onboard that can store up to 512 M 
samples during data capture or for pattern sourcing. The example code discussed here does not 
make use of the memory. However, the High Speed Data Converter Pro (HSDCPro) software 
GUI makes full use of the memory interface for both DAC and ADC evaluation. 
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1.2 ADS4249EVM 

The ADS4249EVM allows evaluation of the ADS4249, a dual, 14-bit, 250-MSPS ADC. The 
ADS4249EVM allows the use of a single-ended analog input that is converted to a differential 
signal by transformers. This allows for evaluation over a wide range of input frequencies from 
various signal sources. Additionally, the TSW1265EVM4 is available as a full receiver solution 
with a dual-channel downconverter, LMH6521 DVGA, and LMK04800 low-noise clock jitter 
cleaner for full system evaluation. For this application note, a 250-MHz clock is provided to the 
ADS4249EVM from a signal generator through the CLKIN SMA connector. The ADS4249 then 
creates a 250-MHz output clock that is synchronous with the output data. Both the clock and 
data are sent through the HSMC connector on the ADS4249EVM to the TSW1400. 

 
1.3 DAC3482EVM 

The DAC3482 is a dual, 16-bit, 1.25 GSPS DAC. The EVM allows evaluation of the DAC3482 
with transformer coupled outputs and the CDCE62005 clock generator. Additionally, the 
TSW3085EVM5 is available, allowing the evaluation of the full transmit solution consisting of the 
DAC3482 driving the TRF3705 quadrature modulator and also includes the LMK04800 clocking 
solution. For the example code, a 1-GHz clock is applied to the DAC3482EVM through the 
EXT_REF_CLK SMA input. The CDCE62005 receives the clock and distributes a 1-GHz clock to 
the DAC and also divides the clock by four to send a 250-MHz clock to the FPGA to create the 
transmit clock domain. The DAC3482 is setup with an interpolation of four and a data rate of 250 
MSPS for a final DAC output rate of 1 GSPS. 

 
2 Example Code Explained 

The following sections will breakdown the example code in detail. A simplified block diagram of 
the example code is shown below in Figure 2. 

 

 
Figure 2. Block Diagram of FPGA Architecture and Clock Domains 
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2.1 Input Clocks and Clock Domains 

There are two clocks sent to the FPGA in the example code which form two clock domains 
within the FPGA. The ADS4249 provides a 250-MHz input clock for the receive domain from its 
source-synchronous data clock. The transmit side of the FPGA receives a 250-MHz clock from 
the DAC3482EVM that is divided down by four from the 1-GHz DAC output clock using the 
CDCE62005. Figure 2 shows the external clock sources and the clocks used throughout the 
design. 

Both input clocks are brought into phase-locked loops (PLL) which generate the internal clocks. 
On the RX side, the ADS4249 provides a center-aligned source-synchronous data and clock. 
For a source-synchronous interface, the goal of the FPGA is to keep the clock-to-data phase 
relationship seen at the input pins the same at the internal I/O registers, to maintain the 
maximum timing margin. Therefore, the RX PLL is setup to simply recreate the input clock using 
source-synchronous compensation mode and a 0° phase shift. Source-synchronous 
compensation mode maintains the phase relationship between the clock and data coming from 
the ADS4249 inside of the FPGA by matching the delay from the clock input pin to the I/O 
registers and the delay from the data input pins to the I/O registers.6 Note that a clock phase 
shift is not needed inside of the FPGA because the ADS4249 already provides a center-aligned 
data clock and the source-synchronous compensation of the FPGA’s PLL maintains this 
relationship. Figure 3 shows a block diagram of source-synchronous compensation in the FPGA. 

The TX side receives a clock from the DAC3482EVM that does not have data associated with it 
so source-synchronous mode is not needed, since there is no data-to-clock phase relationship to 
maintain. Therefore, the PLL on the TX side recreates the TX input clock with 0° phase shift, but 
normal compensation mode is used since there is no data associated with this clock. Normal 
compensation mode compensates for the delay introduced by the global clock network from the 
input pin to the register that is being clocked as shown in Figure 3. The 0° phase shift clock is 
used to clock data out of the RX-to-TX FIFO and to clock data out of the FPGA to be sent to the 
DAC. The DAC3482 expects center-aligned data so the PLL is also used to create a clock that 
has a 90° phase shift relative to the 0° phase shift clock. The 90° phase shifted clock is used to 
create the TX output clock so that a 90° phase difference exists between the data and data 
clock. This creates a source-synchronous, center-aligned interface between the FPGA and DAC. 

 

 
Figure 3. Source-Synchronous Compensation Versus Normal Compensation in ALTPLL 
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The clocks are supplied by lab signal generators that are synchronized by their 10-MHz 
references so both RX and TX domains are frequency locked. Still, the phase relationship 
between the two clock sources is not known so a FIFO is needed to transfer the data between 
the clock domains. Realistically, the RX PLL could be used to create the clocks for the TX 
domain since both are running at 250 MHz. In this case, a FIFO is not needed because the 
phase relationship between the RX and TX clocks would be known. However, two separate 
clocks were chosen for this design because the FIFO provides an easy breaking point in the 
code to separate the interfaces. 

 
2.2 Interface Architectures 

 
2.2.1 ADC Data Input Architecture 

The ADC input interface is created by the ALTDDIO_IN Altera Megafunction. This block has 
double data rate (DDR) input registers that capture data on both the rising edge and falling edge 
of the input clock. Single data rate (SDR) data is clocked out of the block on the rising edge of 
the input clock where dataout_l contains the data clocked in on the previous falling edge and 
dataout_h contains the data clocked in on the current rising edge. Figure 4 shows the block 
diagram for the ALTDDIO_IN function. For more information on the ALTDDIO_IN function, see 
the user’s guide.7 The rx_pll_clk clock shown in Figure 4 should be used as the SDR clock for 
the rest of the design. 

 

Figure 4. Block Diagram of the ALTDDIO_RX Instance of ALTDDIO_IN 
 

The default timing diagram for the ALTDDIO_IN function is shown in Figure 5 for the odd and 
even bits of the ADS4249. This timing diagram assumes that there has been no phase shift of 
the clock between the ADS4249 and the ALTDDIO_IN function. This timing diagram shows that 
on the rising edge of the input clock the output dataout_l has the odd bits from the previous 
sample (sample N-1) and the output dataout_h has the even bits of the current sample (sample 
N). This means that the odd and even bits at the output of the function for each clock cycle are 
not from the same ADC sample. This creates a problem when trying to compile the DDR data 
into a single sample for processing. The problem is illustrated in Figure 5. 
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Figure 5. Default ALTDDIO_IN Timing Diagram 
 

There are two ways to fix this problem; the first is to invert the input clock by applying a 180° 
phase shift in the PLL. The timing diagram for the inverted input clock is shown in Figure 6. The 
new diagram shows that the even and odd bits for the same sample are clocked out on the rising 
edge of the input clock with the even bits on dataout_l and the odd bits on dataout_h. Notice that 
the even and odd bits have swapped outputs from the previous default case. This is the method 
used in the example code. 

Note that the PLL implementation in the example code does not have a 180° phase shift as 
mentioned above. This phase shift is actually done external to the FPGA by physically swapping 
the differential traces on the layout of the EVM such that the positive output of the ADC goes to 
the negative input of the FPGA. Swapping the differentially traces is the same as inverting the 
signal (or applying a 180° phase shift) so that the clock coming into the FPGA is already 
inverted. Therefore, a 0° phase shift in the FPGA is sufficient to provide an inverted clock to the 
ALTDDIO_IN function. Without the physical inversion, the PLL needs to perform the phase shift. 

The second option is to delay the even bits on dataout_h from the previous sample by one clock 
cycle. This can be easily accomplished by creating a register that clocks in the even bits on the 
rising edge of the SDR clock. Once the even bits are delayed by one clock cycle, the matching 
odd bits will come out of the ALTDDIO_IN block on the next rising edge of the SDR clock. These 
can then be combined to form one ADC sample. 
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Figure 6. ALTDDIO_IN Timing Diagram with Inverted clockin 
 

The ADS4249 uses two 7-bit data buses where each bus contains one ADC channel with the 
even and odd bits for that channel interleaved so they are output on the rising and falling edge of 
the data clock, respectively. The example code uses a single ALTDDIO_IN function with 14 
LVDS input pairs such that dataout_l and dataout_h each contain 7 bits from channel A and 7 
bits from channel B for 28 total bits output from the ALTDDIO_IN function on each clock rising 
edge. The arrangement of these bits is shown in Figure 7 for the inverted clock case. For signal 
processing, these bits need to be rearranged into separate 14-bit samples for channels A and B. 
A simple assign statement is used to put them in the correct order. The function of the assign 
statement is shown in Figure 7. Note that the ADS4249 is 14 bits while the DAC3482 is 16 bits. 
Two zeros are padded to the end of each 14-bit sample so the 14 most significant bits of the 
DAC are used. If the delay method is used, the even and odd bits will be on dataout_h and 
dataout_l, respectively. 
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Figure 7. Arrangement and Reordering of ADC Bits out of the ALTDDIO_IN Function 
 

2.2.2 DAC Data Output Architecture 

For the DAC, two ALTDDIO_OUT Altera Megafunctions are used.7 One of the instances simply 
outputs the data and sync signals and the other instance creates the DDR output clock. The 
block diagram for the data output ALTDDIO_OUT function is shown in Figure 8. The datain_h 
port takes in the sample for channel A of the DAC and datain_l takes in the sample for channel B 
such that channel A is output on the rising edge of the clock and channel B on the falling edge. 
These samples come from the FIFO separating the RX and TX clock domains. There is an 
additional input for the DAC sync signal that is generated by pushing PUSHBUTTON1 with 
debounce code to prevent multiple sync instances. Notice that there is a zero as the last input bit 
which is necessary because a 17-bit ALTDDIO_OUT function is not allowed. Therefore, an 18- 
bit function is created and a dummy bit is used to allow the code to compile. 

 

 

Figure 8. Block Diagram of the ALTDDIO_TX Instance of ALTDDIO_OUT 
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There is a second ALTDDIO_OUT instance that generates the output clock shown in Figure 9. 
ALTDDIO_CLK_OUT simply takes in a 1 and 0 that it outputs on the rising and falling edge of 
tx_pll_output_clk, respectively. The output of this block becomes the data clock for the data 
transmitted to the DAC. Note that the clock for this block is the PLL clock that has a 90° phase 
shift compared to the data clock. This creates a center-aligned, source-synchronous interface as 
required by the DAC. 

 

 
Figure 9. Block Diagram of the ALTDDIO_CLK_OUT Instance of ALTDDIO_OUT 

 
The timing diagram for these two blocks is shown in Figure 10, illustrating that tx_pll_output_clk 
has a 90° phase shift compared to tx_pll_data_clk. The data is clocked out on tx_pll_data_clk 
and the output clock is created from tx_pll_output_clk. At the bottom of the diagram, it is obvious 
that the data and output clock form a center-aligned source-synchronous output. The output 
clock is created using an ALTDDIO_OUT block, instead of using the PLL clock directly, because 
the DDR output blocks have more tightly matched delays to the output pins than the global clock 
network to the DDR output block. This eases the timing closure. 
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tx_pll_data_clk 

 
 

tx_pll_output_clk 
 
 
 

tx_chA_sample 
 
 
 

tx_chB_sample 

 
 

PUSHBUTTON1 

 
 

lvds_tx_data_clk_p 
 
 
 

lvds_tx_port_p 

 
 

lvds_tx_sync_p 
 

An = channel A sample n 
Bn = channel B sample n 

 
Figure 10. Timing Diagram of ALTDDIO_TX and ALTDDIO_CLK_OUT 

 
2.3 Timing Constraints 

The purpose of timing constraints is to describe the data to clock skew of an external device that 
is interfacing with the FPGA. These constraints give the code synthesizer a valid clock-to-data 
skew target for the internal timing of the FPGA. The most important thing to remember is that it 
is the external interface that is being defined. This section only discusses timing constraints for 
source-synchronous interfaces such as those used with TI ADCs and DACs. 

For a device that is transmitting data to the FPGA, such as an ADC, the timing constraints define 
the amount of variation in skew that could exist between the data and data clock. First the latch 
and launch clocks are defined, where the launch clock represents the data transition edge and 
the latch clock represents the data clock. The clock definitions set the initial ideal timing between 
the data and clock. Then, minimum and maximum delays are defined that represent the 
maximum possible delay variation of the data lines. These delays essentially specify the valid 
data window around the latch clock. 

A0 A1 A2 

B0 B1 B2 

XX XX A0 B0 A1 B1 A2 B2 
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create_clock -name ADC_DATA_CLK -period 4.00 [get_ports lvds_rx_clk_p] 

create_clock -name ADC_LAUNCH_CLK -period 4.00 -waveform {3 5} 

create_generated_clock -name ADC_LATCH_CLK \ 
-source [get_pins {RX_PLL_inst|altpll_component|auto_generated|pll1|inclk[0]}] \ 
[get_pins {RX_PLL_inst|altpll_component|auto_generated|pll1|clk[0]}] 

For a device that is receiving data from the FPGA, such as a DAC, the timing constraints define 
the minimum time that the receiver requires the data to be valid before and after the latch clock 
edge in order to capture the data correctly. It can be thought of as defining the range of delays 
between the data and clock that the internal paths of the receiving device may introduce. The 
delays define the amount of time that the FPGA must guarantee that the data arrives before or 
after the latch clock to meet timing under all situations. Again, the clocks are defined first to give 
an ideal starting point and then delays are applied to define the time the receiver requires to 
capture valid data. 

The following sections assume familiarity with the Synopsis Design Constraint (SDC) format and 
TimeQuest Timing Analyzer. For an introduction and examples, please see the TimeQuest 
Timing Analyzer documentation on Altera’s website, www.altera.com. 

 
2.3.1 Defining Clocks 

The first step in setting up timing constraints is to define the external clocks for both the RX and 
TX domains. For the RX clock domain, the clock that exists at the actual FPGA input port is the 
data clock that is output from the ADC. This clock is defined as shown in the SDC line below. 
The period is set to 4 ns, assuming the ADS4249 is running at 250 MSPS, and the clock is 
applied to the lvds_rx_clk_p input port defined in the top-level verilog file. 

 

Next, a virtual clock is created defining the ideal launch clock for the data coming out of the 
ADC. Since the ADC is a center-aligned interface, the launch clock needs to be advanced by 90° 
in order to obtain the correct initial setup and hold times. This is shown in the line below, where 
the waveform parameter defines the rising and falling edge position, respectively, where the 
default values are 0 ns and 2 ns for a 250-MHz clock. Advancing the clock by 90° is equivalent 
to having the rising edge occur 1 ns sooner, so a value of –1 ns should work, however, the 
waveform parameter cannot have negative values. Since the waveform parameter understands 
that clocks are periodic, and then a value of 3 ns and 5 ns will be understood as –1 ns and 1ns. 

 

Next, the ADC latch clock is manually created from the PLL output as shown below, rather than 
allowing the tool to do it automatically. This way, the name ADC_LATCH_CLK can be used in 
other statements rather than using the longer, automatically generated PLL clock name. These 
clock definitions must come before the derive_pll_clocks statement mentioned below. 

 

http://www.altera.com/
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derive_pll_clocks 
derive_clock_uncertainty 

 

Adding the two lines below automatically derives the clocks of the PLL that have not already 
been defined and calculates the clock uncertainty. 

 
 

Figure 11 shows the default setup and hold times of the clocks described above. There are four 
possible default setup and hold times that TimeQuest analyzes: 

• rising edge to rising edge 

• rising edge to falling edge 

• falling edge to rising edge 

• falling edge to falling edge 

The desired default setup time should be based on the rising edge to rising edge and falling 
edge to falling edge. The desired default hold time should be based on the rising edge to falling 
edge and falling edge to rising edge. Although TimeQuest analyzes all four cases for both setup 
and hold, only the two most restrictive cases are used to constrain timing. Two of the four cases 
are shown in Figure 11. 

The shorter setup and hold times shown in Figure 11 are used because they are more restrictive 
than the longer setup and hold times. The SDC file in the example code contains set_false_path 
statements between the ADC latch and launch clocks that tell TimeQuest to ignore these extra 
setup and hold times which simplifies analysis and timing reporting, but they are not required for 
proper analysis. 

 
 
 
 
 

ADC_LAUNCH_CLK 
 
 
 
 
 

ADC_DATA_CLK 

4 ns 

 
         

 
 

Correct default setup and hold 
times for a DDR interface 

Incorrect default setup and hold times for a DDR 
interface, but these do not effect analysis 

because they are less restrictive (3 ns > 1 ns) 

 
Figure 11. Default Setup and Hold Times for the ADS4249 with a 250-MHz Clock 

Hold (thd) Setup (tsd) Hold (thd) 

1 ns 1 ns 3 ns 

Setup (tsd) 

3 ns 
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For the TX side, first the input clock from the DAC3482EVM needs to be added as shown below. This 
is the divided down clock that is sent from the DAC3482EVM back to the TSW1400 providing a clock 
for the TX clock domain. This clock is applied to the input port lvds_tx_fpga_clk_p and is used as the 
input clock for the TX_PLL block. 

 

Next, the DAC launch clock is manually created, rather than automatically through the 
derive_pll_clocks statement, allowing the use of a more convenient clock name as shown below. This 
way, the name DAC_LAUNCH_CLK is used in other statements to define the PLL output clock rather 
than using the longer automatically generated name. Both of these clock definitions must come 
before the derive_pll_clocks statement mentioned previously. 

 

Next, derive the PLL clocks and clock uncertainty as mentioned above, followed by the definition of 
the DAC data output clock, shown below. The statement below defines the DAC data clock at the 
FPGA output port. Although this clock is generated by the ALTDDIO_CLOCK_OUT function, the 
source for the clock is the 90° phase-shifted PLL clock output. The ALTDDIO_CLOCK_OUT output is 
applied to the port lvds_tx_data_clk_p. 

 

The DAC_DATA_CLK and DAC_LAUNCH_CLK also have four possible default setup and hold 
times. The same argument applies here that only the two most restrictive setup and hold times are 
used. The set_false_path statements are added for these clocks to simplify analysis and reporting 
timing, but they are again optional. As in the ADS4249 case, the default setup and hold times on the 
TX side are both 1 ns, since it is a center-aligned interface. 

 
2.3.2 FPGA Input Timing Constraints 

Once the external clocks are created, the delays must be defined based on the external devices. On 
the RX side first, the setup and hold times of the ADS4249 need to be pulled out of the datasheet. 
The excerpt in Figure 12 is taken from the timing requirements table in the ADS4249 datasheet.1 The 
ADC setup and hold-time parameters define the data-valid window around the clock zero-crossing 
point and represent the window of time that the FPGA can use to meet timing. The data setup time 
represents the time before the clock edge that the data is valid and the hold time represents the time 
after the clock edge that the data is valid. The minimum values, shown on the left side for each 
parameter, are the most useful because they are valid over temperature and account for bit-to-bit 
skew. 

 

Figure 12. Timing Requirements from the ADS4249 Datasheet 

create_clock -name TX_FPGA_CLK -period 4.00 [get_ports lvds_tx_fpga_clk_p] 

create_generated_clock -name DAC_LAUNCH_CLK \ 
-source [get_pins {TX_PLL_inst|altpll_component|auto_generated|pll1|inclk[0]}] \ 
[get_pins {TX_PLL_inst|altpll_component|auto_generated|pll1|clk[0]}] 

create_generated_clock -name DAC_DATA_CLK \ 
-source [get_pins {TX_PLL_inst|altpll_component|auto_generated|pll1|clk[1]}] \ 
[get_ports lvds_tx_data_clk_p] 
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Figure 13 provides a graphical view of the ADC setup and hold times as well as the input delays 
that must be defined. In the figure, the green blocks represent the total skew that the FPGA is 
allowed to introduce internally and the red blocks represent the maximum and minimum delays 
that the ADC may introduce on the data line. 

 

 
Figure 13. SDC Input Timing Constraints Illustrated 

 
Since the ADC setup and hold times define the data valid window around the data clock, it is 
fairly intuitive that the rest of the clock period is consumed by the ADC in the form of delays on 
the data line. The input timing delays defined in the SDC file then specify the possible range of 
data delays the ADC could introduce. Therefore the min and max delays are defined as equation 
1 and equation 2 below. The variables used in the equations are defined in Figure 13. 

  1 

2 
 

These equations assume that the data and clock traces on the board are well matched. This is a 
valid assumption with the TSW1400 and ADS4249EVM where the traces are matched within 10 
mils. If a data trace is longer than the clock trace then that reduces the setup time and increases 
the hold time so the max delay increases and the min delay decreases accordingly. If the clock 
trace is longer than the data trace, then that reduces the hold time and increases the setup time 
so the min delay increases (becomes more negative) and the max delay decreases accordingly. 
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2.3.3 FPGA Output Timing Constraints 

One simple way to think about the output timing delays is to imagine them as defining the data 
delay inside of the receiving device before they reach the latching register. This essentially says 
that the delays specify the minimum amount of time the receiver needs the data held constant 
around the latching clock in order for the data to be at the latching register in time for the clock 
to capture the data successfully. Knowing this, the timing delays are very straight-forward for a 
DAC. The DAC setup and hold times listed in the datasheet specify the amount of time that the 
DAC needs to receive data before the clock edge and the time the DAC needs the data held 
constant after the clock edge, respectively. Therefore, it is very straightforward that the 
maximum output delay is simply the setup time of the DAC and the minimum output delay is the 
negative of the hold time of the DAC. This is illustrated in Figure 14. 

Again, these delays are only valid if the data and clock lines are matched precisely, such as with 
the DAC3482EVM and TSW1400. If there is mismatch between the traces, the delays need to 
be accounted for. If the data trace is longer than the clock trace, then the max delay increases 
and the min delay decreases accordingly. If the clock trace is longer than the data trace then the 
max delay decreases and the minimum delay increases. 

 
 

 
Figure 14. SDC Output Timing Constraints Illustrated 
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2.3.4 Tips for Closing Timing 

If the designer is having trouble closing timing there are a few simple things that can be tried. 
First, the PLL of both the RX and TX side can be used to introduce a phase shift inside the 
FPGA to increase setup or hold times. By adding a delay on the latch clock, the default setup 
time is increased and the default hold time is decreased. This should help to improve the setup 
slack in the case where the setup timing has little slack but the hold timing has a lot of slack. 
Alternatively, a negative phase shift can be added to the latch clock to increase hold slack and 
decrease setup slack. Similarly, the TX PLL can add more or less phase difference between the 
0° launch clock and the 90° latch clock to improve the setup and hold times at the DAC. 

Note that changing the PLL clock-phase shifts does not affect the SDC timing constraints 
because only the internal timing has changed while the external timing has remained the same. 
Remember that the SDC file describes the external interface timing only. 

The devices often allow even more flexibility. For instance, the DAC3482 allows programming in 
different setup and hold times, effectively shifting the required data window around the data 
clock. This may be especially useful for closing timing at sample rates higher than 250 MSPS. 
The ADS4249 has similar features in which the rising and falling clock edges can be shifted in 
time, but not as extensive as the DAC3482. 

 
3 ADC Interface Without the use of a PLL 

It is easy to consume all of the FPGA’s PLLs when interfacing many devices with it. In these 
situations, it is desirable to avoid the use of PLLs for the receiving devices. It is possible to bring 
the clock into the FPGA and use it directly at the ALTDDIO_IN block. The caveat is that the 
clock-to-data relationship is no longer maintained within the FPGA as it was when using a PLL 
with source-synchronous compensation. Therefore, the FPGA must match the delays between 
the clock and data lines to meet the necessary timing for a center-aligned interface. This should 
be possible since the FPGA I/O cells have adjustable data delays. If the timing constraints are 
set correctly, the fitter should be able to match the delays between the clock and data traces. 
This will create a fairly robust solution because the matched delays should vary similarly over 
process, voltage, and temperature differences. 

If timing cannot be met or timing is met with marginal results, the clock shifting feature of the 
ADS4249 can be used to move the clock edge compared to the data to loosen the matching 
requirement inside of the FPGA. If this is done, then the timing constraints will need to be 
updated to match the new timing of the ADC interface. The easiest way to do this is to simply 
modify the –waveform property of the ADC launch clock. Since it is the ADC latch clock (data 
clock) that is actually being shifted, an advance of the latch clock is equivalent to a delay on the 
launch clock. Simply add the amount of time that the latch clock has been advanced to the 
–waveform values of the launch clock. Likewise, a separate –waveform parameter could be 
defined for the latch clock (ADC_DATA_CLK) to shift the latch clock edge. 
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4 Conclusion 
This application note illustrates examples of both an ADC and a DAC interfacing with an Altera 
FPGA. The ADC is the ADS4249, a 250-MSPS, 14-bit ADC. The DAC is the DAC3482, a 1.25- 
GSPS, 16-bit DAC. The TSW1400 data capture and pattern generation card is used as a 
development platform for these interfaces. For both devices, the FPGA interface architecture is 
described in detail giving a solid comprehension of the design. The timing constraints for both 
interfaces are discussed and diagrams are shown providing a more intuitive understanding. 
Example code is provided as a working example for implementation into an existing FPGA or for 
further expansion using the TSW1400 as the development platform. 
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