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ABSTRACT
This application report describes software techniques and related topics of interest to programmers of
MSP430™ MCUs. Code examples are available from http://www.ti.com/lit/zip/slaa294.
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1 Introduction
This application report covers software techniques that are widely applicable in applications based on
MSP430 MCUs. Some of these techniques should be used in every program, while some are situation
dependent. All are designed to save time for the developer or increase system robustness.

The first part of the document discusses the standard interrupt-based code flow model for MSP430 MCUs,
recommended for the vast majority of applications. The next part discusses techniques that should be
considered when developing any application based on an MSP430 MCU. Using these methods can
greatly reduce debug time or provide additional robustness in the field. They include initialization
procedures, validation of supply rails before performing voltage-sensitive operations, and use of special
functions.

As with all application reports for MSP430 MCUs, this document is designed to support the user's guides,
so also see the relevant family user's guide while reading this report.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA294B
http://www.ti.com/lit/zip/slaa294
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2 Top-Level Code Flow for MSP430 MCUs
Most software applications are best served by adhering to a flow similar to the one in Figure 1. This flow is
designed to maximize power efficiency.

Figure 1. Top-Level Code Flow

The code architecture is interrupt driven, because doing so provides the most opportunities to power down
the device. The device sleeps until an interrupt is received, thereby maximizing power efficiency.

To understand the way the interrupt service routines (ISRs) in Figure 1 are implemented, it is beneficial to
review the way in which the MSP430 MCU manages low-power modes. The power modes are controlled
by bits within the status register (SR). The advantage of this is that the power mode in place before ISR
execution is saved onto the stack. When the ISR reloads that value upon completing execution, program
flow returns to that saved power mode. However, by manipulating the saved SR value on the stack from
within the ISR, program flow after the ISR can be diverted to a different power mode.

This mechanism is an integral part of low-power operation, because it allows the device to quickly wake
up in response to an interrupt. As an example, suppose a device is in the LPM0 low-power mode when an
interrupt occurs. The device prepares for ISR execution, including the saving of the SR to the stack and
clearing the SR. Clearing the SR causes an exit from LPM0 into active mode. Within the ISR, the code
developer places a statement that modifies the saved SR value by clearing the low-power bits. When the
ISR completes, it reloads the values from the stack to their respective registers. Without having modified
the bits, this action would put the device back into LPM0. Because the SR value has been modified to
reflect a fully active device, the device stays active, and execution resumes at the PC value that had been
saved to the stack prior to ISR execution.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA294B
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Given this ability to change the power mode from the ISR, the developer can implement the full
functionality of the ISR within the routine itself, or use the ISR to wake up the processor and let the main
loop handle all or part of the resulting functionality. Handling within the ISR ensures that the response to
the interrupt event is immediate, provided that interrupts are enabled at the time of the event. However,
while handling an ISR, interrupts are not enabled and will not be enabled until the ISR is completed. As a
result, long ISRs may decrease system responsiveness. The developer must choose which of these
options best fits the application.

Applying this understanding to the flow in Figure 1, the figure shows two interrupts that allow their
functionality to be handled within the main loop. These ISRs execute two tasks. First, they change the
saved SR value on the stack to reflect a device in active mode. This allows one run through the main loop,
before returning to sleep again. The interrupt can be any applicable event, such as a timer, pushbutton, or
completion of an analog-to-digital conversion. The second task of the ISR is to set a flag that
communicates to the main loop what action needs to be taken.

If the action to be taken in response to an interrupt is brief enough to be placed within the ISR itself, there
may be no need to handle it in the main loop. In this case, there is no need for the ISR to set a flag or
alter the SR power mode bits. The CPU would return to sleep upon exiting the ISR.

This flow can be adapted according to the complexity of the application. For example, if only one interrupt
has the ability to wake the main loop, a flag system is unnecessary. In this case, the interrupt wakes the
main loop, and the main loop performs its one function and puts the CPU back to sleep. An application
that requires the CPU never sleep may have no need for interrupts at all.

The generalized sleep mode "LPMn" is shown in Figure 1. The actual mode to be used depends on the
modules that must stay awake during the sleep mode. If a timer is responsible for waking up the device,
and the timer is driven by ACLK, then ACLK must be kept active; LPM3 can be used. However, if the
timer is driven from the DCO, then LPM0 must be used.

All the techniques in this application report assume that some version of this code structure is in place.
Nearly every piece of code provided by TI, whether in the code examples or application reports, reflects
this architecture and can be referenced for further study.

It is beneficial to gain a solid understanding of this interrupt-driven code flow as it pertains to a particular
program. Consider where program execution might be when a given interrupt occurs, and what effect the
interrupt will have on the code that was originally being executed.

3 Techniques

3.1 First Things First: Configure the Watchdog and Oscillator
Configuring the watchdog should be among the first actions taken by any MSP430 program. If it is not
handled quickly, the watchdog expires, and a PUC system reset occurs. This then occurs iteratively to
form an endless loop. To prevent this, the watchdog should be configured at the beginning of the program
by resetting the timer value, setting the hold bit, or disabling watchdog mode

Similarly, when using a low-frequency crystal on LFXT1 with a device from the 4xx or 2xx families, the
code should configure the internal load capacitance using the FLL_CTL0 register very early in the code.
Without this, the oscillator may not run properly. Note that it could still be a relatively long time after this
before the clock is stable see Section 3.4.

These techniques can be found in most code examples for MSP430 MCUs available from TI.

3.2 Always Use Standard Definitions From TI Header Files
TI provides header files for every MSP430 MCU in production. These header files have constants for all
the registers and bits in a given device, which match the names provided in the user's guides. Using these
constants within code greatly enhances its readability. It also gives any code that uses them a similar look-
and-feel that enables another engineer familiar with MSP430 MCUs, including TI's support team, to more
quickly grasp the code. Every code example and application report from TI uses these headers where
applicable.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA294B
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3.3 Using Intrinsic Functions to Handle Low-Power Modes and Other Functions
Several intrinsic functions are available in development environments when writing in C. Sometimes, the
only way to accomplish a critical task is to use an intrinsic function. Other intrinsics provide an opportunity
to do things more efficiently.

The most common example of a critical task that can only be done using intrinsic functions is entering or
exiting low-power modes. Doing so requires manipulation of bit values not otherwise accessible at the
level of C, because they reside within the status register of the CPU. If entering LPM3 within the IAR
development environment, an intrinsic function is used:
_BIS_SR(LPM3_bits + GIE);

Other intrinsic functions provide opportunity for optimization, such as those that provide access to the
BCD math assembly instructions. Doing BCD math without these instructions requires a considerable
amount of C code, and the compiler does not automatically translate this code to the BCD math
instructions. Using the intrinsic functions allows the C programmer to take advantage of these instructions,
maximizing memory and power efficiency.

The documentation for the development environment includes a list of these functions. See this list during
development, and check it whenever new versions of the environment are released.

3.4 Write Handlers for Oscillator Faults
The MSP430 MCUs have circuitry that checks the integrity of the clocks. All the families provide this
function for the DCO and high-frequency crystal sources. The 4xx and 2xx families also provide this
function for a low-frequency (32.768-kHz) source. The specifics are covered in the user's guides.

Two kinds of oscillator faults should be considered, and a decision made regarding whether or not to
handle them:
1. Stabilization of a crystal oscillator as it powers up. This happens every time the device runs. The time

to stabilization is particularly long for low-frequency crystals, often in the hundreds of milliseconds.
2. Failure during operation. This can occur if a conductive substance is allowed to short the leads of the

crystal. Some applications may be particularly susceptible to failure or intolerant of it and, therefore,
need to handle it in a particular way. If a crystal oscillator fails, the DCO can drive the CPU while it
handles the failure.

If an oscillator sourcing ACLK or SMCLK fails or has not yet stabilized, any peripherals supplied by those
clocks are affected, and the only way to prevent this is to catch and handle it in software. A common
problem is for a timing-sensitive peripheral (for example, a timer), sourced by a low-frequency crystal, to
produce poor initial results because the crystal has not yet stabilized. If the code does not wait for the
crystal to stabilize, the output of the peripheral may be corrupted.

If LFXT1 or XT2 sourcing MCLK fails, supply of MCLK reverts to the DCO. While this is an intelligent and
robust fail-safe, it may have a negative effect on operation of the circuit and, therefore, needs to be caught
and handled by software, rather than continuing as if nothing happened.

An easy way to handle initial stabilization is to repeatedly clear, wait, and check the fault flags until they
stay cleared, as shown in the user's guides. (For the 1xx family, which cannot detect low-frequency
oscillator faults on LFXT1, a fixed delay can be used, with a period sufficient for the worst-case
stabilization length.) This method does not catch a fault during normal operation. A method that can catch
both scenarios is to set the OFIE bit and implement a handler in the NMI interrupt service routine.

Fault-init.c in the accompanying zip file shows a check performed at startup to ensure the clock has
stabilized. An example of using the OFIE bit and NMI service routine to trap and handle oscillator failures
during operation can be found in code example FET410_LFxtal_nmi.c, in the MSP430x41x, MSP430F42x
C Examples.

3.5 Increasing the MCLK Frequency
MCLK can be configured up to 8 MHz (16 MHz on the 2xx family devices). However, the VCC requirement
increases with frequency. If MCLK is set for a frequency that requires a VCC level higher than what is
applied to the device, unpredictable behavior can occur. The device-specific data sheet indicates the VCC
required for a particular MCLK frequency.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA294B
http://www.ti.com/lit/zip/SLAC071
http://www.ti.com/lit/zip/SLAC071
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Even if the stabilized VCC value is high enough for a given frequency, a slow VCC ramp can prevent that
level from being reached before the program increases the MCLK frequency. This is one reason it is good
for the programmer to have knowledge of the power-up characteristics of the supply rail, not just on a
single prototype, but characterized thoroughly for the device being produced.

If the device in question possesses an SVS module, it can be used to alert the system when VCC has
reached the necessary level. If the device does not contain SVS, but does contain an available analog-to-
digital conversion (ADC) module, the ADC module can be used to sample the VCC level and determine if
its high enough before proceeding with the change.

If the device has neither SVS nor an available ADC, a fixed delay period can be used to wait until VCC has
reached the necessary level. Note that the delay period must be sufficiently long to handle the worst-case
ramp scenario, taking into account variability over production windows and temperature.

A code example showing the use of the SVS module for this purpose is given as mclk.c in the
accompanying zip file.

3.6 Using a Low-Level Initialization Function
By default, when a C compiler generates assembly code, it creates code that initializes all declared
memory and inserts it before the first instruction of the main() function. If the amount of declared memory
is large (either a large number of variables or one or more large memory spaces) this could pose a
problem with the watchdog. The time required to initialize the long list of variables may be so long that the
watchdog expires before the first line of main() can be executed. This means the watchdog configuration
code is never executed, and an endless loop results. Generally, this can happen only on devices
containing more than 2KB of RAM.

The easiest way to prevent this is to use a compiler directive that disables the initialization of memory
elements that do not need preinitialization. For example, if using IAR, and a single large array is
contributing to a watchdog-expiration problem, it could be handled as such:
__no_init int x_array[2500];

If this directive is not available in a given development environment, another possibility is to use a
compiler-defined low-level initialization function to handle the watchdog before memory is initialized. The
memory would be initialized as usual, but the watchdog configuration would happen first. In the IAR
environment, this is accomplished by adding a function by the name of __low_level_init() and inserting the
watchdog configuration code. For example:
void __low_level_init(void) { WDTCTL = WDTPW+WDTHOLD; }

A code example portraying the low-level init function is given as init.c in the accompanying zip file.

If neither of these functions is available in the compiler environment being used, one more option is to edit
the startup file the compiler inserts at the beginning of every C program. See the compiler documentation
for more information on these options.

If large amounts of memory are being defined on a device from the 4xx family, it is also a good idea to
configure the LFXT1 oscillator capacitance within the low-level init function (or the startup file) (see
Section 3.1). This gives extra time for the oscillator to stabilize before main execution begins.

3.7 In-System Programming (ISP)
If using the ISP functionality to write to flash memory, a few actions must be taken to ensure proper
results:
1. Set the correct fFTG value, as specified in the data sheet. Without this, the results are unpredictable. If

the clock is too slow, there is the potential for overstressed flash cells. If the clock is too fast, there is
the potential for incomplete write or erase operations.

2. Set the flash lock bit after the ISP operation is complete. This prevents accidental writes.
3. Ensure that the cumulative programming time for a flash block is not exceeded.
4. Provide sufficient VCC. The level required for flash write and erase is higher than what is required for

CPU operation.

The user's guides and data sheets contain more information on these points.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA294B
http://www.ti.com/lit/zip/slaa294


Techniques www.ti.com

6 SLAA294B–March 2006–Revised March 2018
Submit Documentation Feedback

Copyright © 2006–2018, Texas Instruments Incorporated

Software Coding Techniques for MSP430™ MCUs

VCC must be above the minimum specified by the device data sheet for flash erase/programming.
Common ways in which this could be violated include a power-up ramp that has not yet completed, or a
battery that has drifted too low for flash programming but is still high enough for CPU operation. Even if
the level is high enough initially, the current draw associated with flash erase/programming could
potentially stress smaller power supplies, pulling the voltage below the minimum threshold.

VCC can be checked using the SVS module, if available, or with analog-to-digital conversion. SVS makes it
advantageous in that it provides continuous checking of the rail during the operation. The code example
given in Section 3.5 (mclk.c) can be used as a reference for how to configure the SVS prior to performing
a VCC-sensitive operation. The code example sets available from the TI website show how to use the ADC
modules.

3.8 Using Checksums to Verify Flash Integrity
To ensure integrity of the data in flash memory during critical applications, a checksum function can be
implemented that periodically verifies the data. The checksum value can be stored in one or more
locations, depending on the redundancy needed. The value provided by a checksum scheme is that it
provides the device an opportunity to handle an error if one should occur.

A code example showing the use of flash checksum verify is given as checksum.c in the accompanying
zip file.

4 References
1. MSP430x1xx Family User's Guide
2. MSP430x2xx Family User's Guide
3. MSP430x4xx Family User's Guide
4. MSP430 MCU Code Examples

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA294B
http://www.ti.com/lit/zip/slaa294
http://www.ti.com/lit/zip/slaa294
http://www.ti.com/lit/pdf/SLAU049
http://www.ti.com/lit/pdf/SLAU144
http://www.ti.com/lit/pdf/SLAU056
http://www.ti.com/msp430
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