Q‘ TEXAS
INSTRUMENTS

Application Report
SLAA265-September 2005

TLV320AIC3x WInCE 5.0 Drivers

Wendy X. Fang

ABSTRACT

DAP Group, HPA

TLV320AIC3x audio drivers have been developed with SPI or 12C control interfaces
and 12S audio streaming. The code was tested on an Intel™ MainStone Il platform,
running on the Microsoft™Windows™ CE 5.0 operating system. This application report
discusses the SPI/12C and I2S drivers, including the hardware connection between the
TLV320AIC33/32EVM and the MainStone Il platform, the Windows CE 5.0 drivers’

code and structure, and the installations.

Contents
1 [aligele [Ulei11e] s T il
2 (ofe]4]a[=Te i (o o 5 |
3 DBVICE DIV OIS sttt e et eeenneseeeeeennssnsseseeeesenssssssseeeseeenssssssesseeenssssssssseeeesnnses 4
4 [ty e= 11 F= Lo o | 10
5 WINCE 5.0 AlIC3X DIVl COO Q] i teeeeeeeeeesssssososnseeseeeseeseeeesessseesesesssssssssssssee |
6 RETEIENCEOS ittt eeeenenseeeeeeeeeeeeeeeeeseseeeeesssssssssseeeeeeeeeeeeseseeeessssssssssssseees |
List of Figures
1 AIC33 Connections to PXA27x Processor With SPI Control Bus[....ouiveeeeeeeeeeeeieieeee. 4
2 AIC3x Connections to PXA27x Processor with 12C Control e eieeiieeeeerennnnsaseeees 3
3 AIC33 WInCE 5.0 Driver Files With SPI Control INnterface [i.eeeeeeseeeeeeeeeeeennnnsssseeees 4
4 AIC3x WINCE 5.0 Driver Files With 12C Control INterfaCe [ioeeeeeeeeezzzeeeeeeeensnssseseeees |
1 Introduction

Texas Instruments (TI) audio devices TLV320AIC3x (or AIC3x for short), including TLV320AIC31,
TLV320AIC32, and TLV320AIC33, are low-power, high-performance stereo input and stereo output
coder/decoders (codec). These devices are ideal for portable audio and telephony applications, in which
an embedded operating system, such as Windows™ CE, often resides and operates.

The Windows CE (WinCE) 5.0 drivers for the AIC3x codecs that were developed are discussed in this
application report to assist users to quickly set up, run, and use the codec device on the WIinCE 5.0

system.

The AIC3x drivers were coded on the standard device driver's PDD (platform-dependent device) layer,
and the PDD layer was further split to have an additional processor-dependent layer (PDL) to make the
drivers easy to port into different host processors. See application report TSC2301 WinCE Generic Drivers

(BLAAIZY) for details on Windows CE PDD and TI PDL generic drivers.

The drivers were run and tested on an AIC33 EVM board and an Intel™ MainStone Il platform with the

PXA270 Step BO processor.

Intel is a trademark of Intel Corporation.
Microsoft, Windows are trademarks of Microsoft Corporation.

SLAA265-September 2005 TLV320AIC3x WInCE 5.0 Drivers 1

http://www-s.ti.com/sc/techlit/SLAA187

4Q’TEXAS
INSTRUMENTS

www.ti.com

Connections

2

Connections

The AIC33 device must be wired and connected to a host processor, where the device driver code is
ported and executed. The two buses or ports for AIC33 operation are the control bus and the audio data
bus. The control bus on the AIC33 can be either an SPI or an 12C bus, selectable through a hardware pin
(SELECT) on the AIC33; the AIC31 or AIC32 can be controlled only through 12C bus. The audio data
streams through the I2S bus on the AIC3x.

In developing the AIC33 drivers for this application, the TI AIC33EVM board (EBAUI14) and the Intel
MainStone Il platform with the PXA270 Step BO processor (see reference 4) were employed.

On the SPI-controlled AIC33, the nine digital signals that are essential for running the AIC33 audio drivers
are:

+ the SPI bus, four wires: SCLK, SS, MOSI, and MISO (at J16 of AIC33EVM board);

» the main audio codec clock, MCLK (at J17 of AIC33EVM board); and

» the 12S bus, four wires: BCLK, WCLK, SDIN and SDOUT (at J17 of AIC33EVM board).

shows the wires and connection between the AIC33 and PXA270 processor for the SPI control
interface.

MainStone Il
AIC33
PXA27x
Processor
GPIO113/ 25
12S_SYSCLK MCLK
GPI029/ 29
12S_SDATA_IN SbouT
GPIO30/ 28
12S_SDATA_OUT SDIN
GPI031/ 27
12S_SYNC WELK
26
GPI028/ BCLK
12S_BITCLK
GPIO26/SSPRXD 35
MISO
36
GPIO25/SSPTXD MOSI
GPI024/SSPSFRM 33
SS
34
GPI023/SSPSCLK SCLK
IOVDD
31 | spi sELECT
VSS _T_ 301 pvss

Figure 1. AIC33 Connections to PXA27x Processor With SPI Control Bus

To implement the connection shown in on the AIC33EVM board, JMP10 was installed on pins 3
and 1; JMP11 was installed on pins 3 and 4; and JMP12 was installed on pins 3 and 4. See EBAU114 for
the schematic and other details of the EVM board. On the MainStone Il system, the original touch/audio
module, connected on the MainStone Il main board, was removed and replaced with the connections as
shown in Eigure 1. See the relevant Intel documentation for further information concerning the MainStone
Il Platform.

TLV320AIC3x WInCE 5.0 Drivers SLAA265-September 2005

http://www-s.ti.com/sc/techlit/SBAU114
http://www-s.ti.com/sc/techlit/SBAU114

{'f TEXAS
INSTRUMENTS

www.ti.com

Connections

On the 12C-controlled AIC3x, the seven digital signals that are essential for running the audio driver are:
e the 12C bus, two wires: SCL, and SDA (at J16 or J17 of AIC33EVM board);

» the main audio codec clock, MCLK (at J17 of AIC33EVM board); and

» the I12S bus, four wires: BCLK, WCLK, SDIN and SDOUT (at J17 of AIC33EVM board).

shows the wires and connection between the AIC3x and PXA270 processor for thel2C control
interface.

MainStone Il
AIC33
PXA27x
Processor
37
GPI10113/ MCLK
12S_SYSCLK
GPI1029/ 41
12S_SDATA_IN SDOUT
GPIO30/ 40
12S_SDATA_OUT SDIN
39
GPIO31/
12S_SYNC WCLK
GP1028/ 38
12S_BCLK BCLK
GPIO117/SCL 1
SCL
GPIO118/SDA 23 <pa
45
IOVDD or DVSS MEPO/AO
46
IOVDD or DVSS MFP1/A1
43
SPI_SELECT
| 42
VSS —T_ DVSS

Figure 2. AIC3x Connections to PXA27x Processor with 12C Control

To implement the connection shown in Eigure 4, on an AIC33EVM board, JMP10 was installed on pins 3
and 5; JMP11 was installed either on pins 3 and 1 (AO=1) or on pins 3 and 5 (A0=0); and JMP12 was
installed either on pins 3 and 1(A1=1) or on pins 3 and 5 (A1=0). See EBAUI1{ for the schematic and
other details of the EVM board and the corresponding data sheets for details on the 12C address.

The connections to the AIC31 or the AIC32 codec is similar to that shown in [Figure 2, but note that on
AIC31 or AIC32 the only control bus is 12C with default A1=A0=0 as part of the device address (see the
corresponding data sheets).

In addition to the connections shown in Eigure 7 or Figure 3 is the important and useful hardware reset
pin, RESET. The RESET pin can be connected to a GPO pin of the host so that the host processor can
issue a hardware reset to the AIC3x and put the codec into a known default condition after a power up.

SLAA265-September 2005

TLV320AIC3x WInCE 5.0 Drivers 3

http://www-s.ti.com/sc/techlit/SBAU114

” TEXAS
INSTRUMENTS

www.ti.com

Device Drivers

3 Device Drivers
Eiqure 3 and Eigure 4 list the locations of the AIC33 audio device driver files for the SPI and 12C control
interfaces, respectively. The files starting with Host... are the processor-dependent code or PDL, such as
HostAudio.C or HostSPIComm.H.
AIC33WinCES5Driver_SPI
AIC33WAVEDEV AIC33LIB I IIIE' AIC33.cec
AIC33Audio.C AIC33SPI.C AIC33SPI.H
AIC33Audio.H HostSPIComm.C HostSPIComm.H
HostAudio.C AIC33Regs.H
HostAudio.H SOURCES
makefile
SOURCES
makefile
Figure 3. AIC33 WiIinCE 5.0 Driver Files With SPI Control Interface
AIC3xWinCES5Driver_|2C
AIC3XWAVEDEV AIC3xLIB | IN§| AIC3x.cec
AIC3xAudio.C AIC3xI2C.C AIC3xI2C.H
AIC3xAudio.H Hostl2CComm.C Hostl2CComm.H
HostAudio.C AIC3xRegs.H
HostAudio.H SOURCES
makefile
SOURCES
makefile
Figure 4. AIC3x WinCE 5.0 Driver Files With 12C Control Interface
3.1 SPlInterface
The four AIC33 pins, SCLK, SS, MOSI, and MISO, are connected to the GP1023 to GPI026 of the
PXA27x processor, respectively.
On the host side, the PXA27x GPIO, SSP, and Clock management control registers are used to set up the
SPI interface to communicate with the AIC33’s SPI. The setup was implemented at the routine,
HWSetupSPI():
11
/1 Function: void HWSet upSPI (BOCL | nPower Handl e)
4 TLV320AIC3x WInCE 5.0 Drivers SLAA265-September 2005

{'f TEXAS
INSTRUMENTS

www.ti.com

Device Drivers

/1
/1
/1
/1
/1
/1
/1
/1
/1

Purpose: This function nust be called fromthe power handl er
of the respective drivers using this library. This
function will configure the GPIO pins according to
the functionality shown in the table bel ow

Si gnal s Pi n# Direction Al ternate Function
SSPSCLK GP23 out put 2
SSPSFRM GP24 out put 0
SSPTXD GP25 out put 2
SSPRXD GP26 i nput 1

IR
voi d HWSet upSPI (BOCOL | nPower Handl e)

{

/1

/1

/1

/1

/1

/1
/1
/1

}

RETAI LMSQ(1, (TEXT("Setup Host GPIO & SSP for an SPI Interface... \r\n")));

di sabl e Unit clock
g_pd ockRegs- >cken &= ~XLLP_CLKEN_SSP1;

di sabl e SSP1
g_pSSPRegs->sscr0 &= ~SSE_ENABLE;

Set up the GPl CR4=SFRM = 1 (GPSR0)
g_pGPl ORegs->GPSRO | = (GPI O 24_SFRM);

Program direction of the GPlI Gs (GPDRO)

/1 (GPI 23/ 24/ 25 as outputs and GPI Q26 as i nput)
g_pGPl ORegs- >GPDRO | = GPI O_23_SCLK;

g_pGPl ORegs- >GPDRO | = GPI O_24_SFRM

g_pGPl ORegs- >GPDRO | = GPlI O_25_MOSI

g_pGPl ORegs- >GPDR0 &= ~GPl O_26_M SO,

Program GPI O alternate function regi ster (GAFRO_U)
g_pGPl ORegs- >GAFRO_U &= OxFFCO3FFF;

g_pGPl ORegs->GAFRO_U | = GPI O_23_AF2_SSPSCLK;

/Il GPI24 is used here as GPO

g_pGPl ORegs- >GAFRO_U | = GPI O 25_AF2_SSPTXD;

g_pGPl ORegs- >GAFRO_U | = GPI O_26_AF1_SSPRXD;

/1 Set up SSP registers (when di sabl ed SSP)

/1 set up SSP control register 0 and 1

g_pSSPRegs->sscr0 = (SCR 590_KHZ | SSE_DI SABLE | ECS_I NTERNAL |
FRF_MOTOROLA | DSS 8 _BIT);

g_pSSPRegs->sscrl = (RFT_SEVEN | TFT_ZERO | MADS_16_BI T | SPH HALF_DELAY |

SPO | DLE_LOW| LBM DI SABLE | TIE_DI SABLE | RIE_DI SABLE);

/1 Enabl e SSP | ast
g_pSSPRegs->sscr0 | = SSE_ENABLE;

/1 enable SPI1 Unit clock
g_pd ockRegs->cken | = XLLP_CLKEN SSP1;

DumpRegsGPl () ;
DunpRegsSSP() ;
DunmpRegsC ock();

Note that: (1) The host's GP1024 was used as the SPI's SS, but this pin in the PXA27x processor should
be programmed as a GPO and be set high and low by SW (not through the PXA27x SSP function); and
(2) the SSP1 unit clock should be turned OFF before the setup and turned ON after the setup.

3.2 12C Interface

The two AIC3x 12C bus pins, SCK and SDA, are connected to the GP10117 and GPI0118 of the PXA27x
processor, respectively.

On the host side, the PXA27x GPIO, 12C, and Clock management control registers are used to set up the
I2C interface to communicate with the AIC3x’s 12C. The setup was implemented at the routine,
HWSetupl2C():

SLAA265-September 2005

TLV320AIC3x WInCE 5.0 Drivers 5

” TEXAS
INSTRUMENTS

www.ti.com

Device Drivers

1rrrr
/1 Function: void HWnitl2C(BOCOL | nPower Handl e)
/'l Purpose: This function nust be called fromthe power handler

I of the respective drivers using this library. This

/1 function will configure the GPIO pins according to

11 the functionality shown in the table bel ow

I Si gnal s Pi n# Direction Al ternate Function
/1 SCL GPI 0117 out put 1

11 SDA GPI 0118 output(at init) 1

1rrrr

BOOL HW ni t 1 2C(BOOL | nPower Handl e)

{

RETAI LMSQ(1, (TEXT("Setup Host GPIO & 12C for an 12C Interface...\r\n")));
/1 init 12C control register (disabled |I2C unit)

g_pl 2CRegs->icr = 0;

/1 enable 12C unit clock (the clock should be enabled first)

g_pd ockRegs->cken | = XLLP_CLKEN I 2C,

/Il set up GPIO

g_pGPl ORegs->GPDR3 | = GPI O_117_SCL;

g_pGPl ORegs->GPDR3 | = GPI O_118_SDA;

g_pGPl ORegs- >GAFR3_U &= ~GPl O_| 2C_MASK;

g_pGPl ORegs- >GAFR3_U | = GPI O 117_AF1_SCL;

g_pGPl ORegs- >GAFR3_U | = GPI O 118 _AF1_SDA;

/] Setup processor |2C slave address (used only when PXA27x is sl ave)
g_pl 2CRegs- >i sar = O0x007F;

/1 Set Processor |2C as master and enable the |12C

g_pl2CRegs->icr = ICR_SCLEA | I CR | UE;

/1 DunpRegsGPI () ;

/1 DunpRegsl 2C() ;

/1 DunpRegsd ock();
return(TRUE);

}

Two other important I12C interface routines are the HWI2CWriteRegs() and HWI2CReadRegs(), which
allow the PXA27x to write to or read from AIC3x control registers using the 12C bus. The protocol for [12C
write and read have been defined (see Figures 5 and 6 of the AIC33 data sheet EGLAS480).

1

/'l Function: HW2CWiteRegs Routine
/1 Purpose: This routine allows the PXA27x to wite to Al C33

I control register(s) using |2C bus.
/'l Note: The first byte in bytesBuf is the starting address
/1 for witing; and the 2nd and on are bytes/contents
I witing to Al C33
1rrrr
BOOL HW 2CW it eRegs(U NT8 *bytesBuf, U NT8 bytesCount, BOOL | nPower Handl e)
{
U NT32 reg;
if (!l nPowerHandl e)
{

/'l wite (Al C33) device address + wite "0" to |I2C bus
g_pl 2CRegs->i dbr = | 2C WRI TE;

reg = g_pl 2CRegs->i cr;

reg |= (ICR_START | ICR TB);

reg & ~(ICR_STOP | ICR ALD E);

g_pl 2CRegs->i cr = reg;

if (HW2CTxBusy(1000)) return(FALSE);

/1 Send all bytes (1st byte is AIC33 starting address)
whi |l e (bytesCount--)
{

g_pl 2CRegs->i dbr = (Ul NT32) (*byt esBuf ++) ;

reg = g_pl 2CRegs->i cr;

reg & ~I CR_START;

reg |= (ICRALDE | ICRTB);

6 TLV320AIC3x WInCE 5.0 Drivers SLAA265-September 2005

http://www-s.ti.com/sc/techlit/SLAS480

{';‘ TEXAS

INSTRUMENTS
www.ti.com
Device Drivers
if (bytesCount == 0)
reg | = | CR_STOP;
el se
reg & ~I CR_STOP;
g_pl 2CRegs->icr = reg;
if (HW2CTxBusy(1000)) return(FALSE);
}

/Il Clear the STOP bit al ways
g_pl 2CRegs->i cr &= ~I CR_STOP;

return(TRUE);

}
el se
RETAI LMSQ(1,
return(FALSE);
}
}
1rrrr
/1 Function: HW 2CReadRegs Routi ne
/'l Purpose:
11 control register(s) usi
/1 Note: The first byte in bytesBuf
I/ r eadi ng;
1rrrr
BOOL HW 2CReadRegs(Ul NT8 *byt esBuf,
BOOL |
{
U NT32 reg;
if (!l nPowerHandl e)
{

/1 wite (A C33) device address + wite
1 2C_WRI TE;

g_pl 2CRegs- >i dbr
reg = g_pl 2CRegs->i cr;
reg |= (ICR_START | |
reg & ~(I CR_STOP |
g_pl 2CRegs->i cr = reg;
if (HW 2CTxBusy(1000))

/Il wite (AlIC33)
g_pl 2CRegs->i dbr = (Ul
byt esCount -= 1;

reg = g_pl 2CRegs->i cr;
reg & ~(1 CR_START | |
reg |= (ICRALD E |
g_pl 2CRegs->icr = reg;
if (HW2CTxBusy(1000))

/1
g_pl 2CRegs- >i dbr
reg = g_pl 2CRegs->i cr;
reg | = (1 CR_START |
reg & ~(I1 CR_STOP |
g_pl 2CRegs->i cr = reg;
if (HW 2CTxBusy(1000))

/1 read the Al C33 regist
whi | e (bytesCount--)

reg = g_pl 2CRegs- >i cr;
reg & ~I CR_START;
reg |= (ICRALD E |

if (bytesCount == 0)
{
reg | = (1 CR_ACKNAK |
}
el se
{

(TEXT("HW Tx Error...\r\n")));

This routine allows the PXA27x to read from Al C33

ng | 2C bus.
is the starting address for

and the 2nd and on are val ues readi ng from Al C33

Ul NT8 byt esCount ,
nPower Handl e)

"0" to |12C bus

CR TB);

| CR_ALDI E) ;

return(FALSE);

regi ster address to |2C bus

NT32) (* byt esBuf ++) ;

CR STOP);

| CR TB);

return(FALSE);

restart and register address + read "1" to |2C bus
| 2C_READ;

| CR TB);
| CR_ALDI E) ;

return(FALSE);

ers' contents

| CR TB);

| CR_STOP) ;

SLAA265-September 2005

TLV320AIC3x WInCE 5.0 Drivers

” TEXAS
INSTRUMENTS

www.ti.com

Device Drivers

reg & ~(1CR_ACKNAK | | CR_STOP);

}

g_pl 2CRegs->i cr = reg;

if (HW 2CRxBusy(1000)) return(FALSE);

reg = (g_pl 2CRegs->i dbr) & OxFF;

*pyt esBuf ++ = (Ul NT8) reg;

}

g_pl 2CRegs->icr & ~(I CR_ACKNAK | | CR_STOP);
return(TRUE);

}
el se
{
RETAI LM 1, (TEXT("HWRx Error...\r\n")));
return(FALSE);
}
}
3.3 Audio Driver
From a hardware standpoint, the AIC33 audio driver must have SPI or 12C (for audio control) and 12S (for
audio data streaming) buses. The SPI or 12C bus controls the audio codec’s operation by writing to AIC33
audio control registers; the 12S bus transfers audio data between the host and the AIC33.
Additionally, the AIC3x MCLK pin should receive an external clock that provides the necessary timing for
the AIC3x audio Sigma-Delta ADC and DAC to operate or run. The MCLK to the AIC3x should be
generated from the same resource as the 12S clocks, i.e.: the MCLK should also from the host processor,
which is the 12S master as described in this application report.
The AIC3x audio driver was built on the standard audio driver, WaveDev, and is located in the directory
AIC3xWaveDev.
On the host side, the PXA27x GPI028 to GPIO31 pins were used as the 12S and connected to AIC3x’s
BCLK, SDOUT, SDIN, and WCLK, respectively (see Figure 1)). The GP10113 is programmed as the 12S
SYSCLK and is connected to the MCLK, which is programmed to generate a 11.346-MHz clock. The 12S
setup was implemented at the routine, HWEnablel2S(), as follows:
/1
e e
/1 Function: HWEnabl el 25()
e
/1
voi d HWEnabl el 2S(voi d)
{
RETAI LMSG(1, (TEXT("Setup Host GPIO & I12S Interface... \r\n")));
//Basic Cutline:
/'l configure the GPIO registers and set to |2S node
/1 Set up |12S control registers at default condition
/] insert reset for 12S
v_pl 2SRegs- >sacr0 | = 0x00000008;
/1 un-insert the reset
v_pl 2SRegs->sacr0 = 0x00007700;
/1 disable I2S unit clock
v_pC ockRegs- >cken &= ~XLLP_CLKEN I 2S;
/] setup GPIO direction regs
v_pGPl ORegs- >GPDRO | = XLLP_GPI O _BI T_I 2SBI TCLK |
XLLP_GPl O BI T_I| 2S_SYNC |
XLLP_GPI O Bl T_| 2S_SDATA_QUT;
v_pGPl ORegs- >GPDR0 &= ~XLLP_GPI O _BI T_I 2S_SDATA_I N;
v_pGPl ORegs->GPDR3 | = XLLP_GPI O BIT_I2S_SYSCLK; // GPIOL13: SYSCLK as out put
/1 configure GPIO alternate function registers
v_pGPl ORegs- >GAFRO_U &= OxO00FFFFFF;
v_pGPl ORegs- >GAFRO_U | = XLLP_GPI O _AF_BI T_I 2SBI TCLK_OUT |
XLLP_GPl O AF_BIT_I 2S SDATA IN |
XLLP_GPl O AF_BI T_| 2S_SDATA QUT |
8 TLV320AIC3x WInCE 5.0 Drivers SLAA265-September 2005

{'f TEXAS
INSTRUMENTS

www.ti.com

Device Drivers

/1
11
/1
/1

}

XLLP_GPI O_AF_BI T_I 2S_SYNC
v_pGPl ORegs- >GAFRO_U & ~XLLP_GPI O AF_BI T_I 2S_SYSCLK_MASK;
v_pGPl ORegs- >GAFR3_U | = XLLP_GPI O AF_BI T_I 2S_SYSCLK;

/1 configure I12S reg sacr0O but not enable I2S yet
v_pl 2SRegs- >sacr0 = 0x00001104;

/1 configure systemfor |2S node
v_pl 2SRegs- >sacr1 = 0x00000000;

/1 configure clock divider
v_pl 2SRegs->sadi v = | 2SRATE_44_1; // divider for 44.1kHz audio

/1 enable I2S
v_pl 2SRegs->sacr0 | = 0x00000001;

/1 enable Unit clock
v_pd ockRegs->cken | = XLLP_CLKEN I 2S;

DumpRegsGPI () ;
DumpRegsSSP() ;
DunpRegsd ock() ;
DunmpRegsl! 2S() ;
return ;

The codec can be used per the requests of applications. As an example, this application report had initially
set up the AIC33 in such a way that:

About the I12S interface:
1. The 12S interface is at 16 bits, standard 12S mode, with 44.1-kHz ADC and DAC sample rates.

2. The AIC3x is the slave because the host is the 12S master (AIC3x can be 12S slave or master; but
PXA27x can be only the master).

About the audio input circuitry:

1. The left and right ADC input from the stereo, single-ended LINE3 (MICIN3).
2. ADC input gain is controlled by its PGA with initial gain 0-dB gain.

About the audio output circuitry:

1. The left and right DAC results are routed to the stereo-single-ended headphone, HPL/R and with
HPLCOM and HPRCOM being shorted as the VCOM.

2. The headphone output is at the CAPLESS mode.

3. The DAC gains and the HPL/R output gains were all initialized to 0 dB.

About bypass:

1. The differential LINE2 Left is directly fed to the differential MONO_QOUT.
About other functions:

The input high-pass filter has not been enabled.

The output digital boost, emphasis, and 3-D functions have not been enabled.
The PLL is enabled and GPIO1 is used as the PLL output.

The headset detect function is disabled.

5. The pop-reduction function is set to slowest and enabled.

HwnNE

All AIC33 audio control registers (in PageO of the AIC33 memory space) were set up or initialized, as
previously stated, in the routine InitAIC33Audio() and called by the audio PDD routine
PDD_Audiolnitialize(). The audio initialization routine is:

/1

Initalize Al C33 Audio Register at Default

voi d | nitAl C33Audi o(BOOL bl nPower Handl er)

{

RETAI LMSG(1, (TEXT("InitAl C33Audio.\r\n")));

/1 init for digital functions

Al C33WiteReg(Al C33_RATE, RATE_IN T_VALUE, bl nPower Handl er);

Al C33WiteReg(Al C33_PLLa, PLLa_I N T_VALUE, bl nPowerHandl er);

Al C33W it eReg(Al C33_PLLb, PLLb_I NI T_VALUE, bl nPower Handl er);

Al C33WiteReg(Al C33_PLLc, PLLc_INIT_VALUE, blnPowerHandl er);

Al C33W it eReg(Al C33_PLLd, PLLd_I NI T_VALUE, bl nPower Handl er);

Al C33W i t eReg(Al C33_DATAPATH, DATAPATH | NI T_VALUE, bl nPower Handl er);

SLAA265-September 2005 TLV320AIC3x WInCE 5.0 Drivers 9

” TEXAS
INSTRUMENTS

www.ti.com

Installation

4.1

Al C33W it eReg(Al C33_I NTERFa, | NTERFa_I NI T_VALUE, bl nPower Handl er);
Al C33W it eReg(Al C33_I NTERFb, | NTERFb_I NI T_VALUE, bl nPower Handl er);
Al C33WiteReg(Al C33_I NTERFc, | NTERFc_I NI T_VALUE, bl nPower Handl er);
Al C33W it eReg(Al C33_DI GFI LT, DI GFILT_I NI T_VALUE, bl nPower Handl er);
Al C33W it eReg(Al C33_HEDETa, HEDETa_l NI T_VALUE, bl nPower Handl er);
Al C33W i t eReg(Al C33_HEDETb, HEDETb_I NI T_VALUE, bl nPower Handl er);

/1 init for anal og input functions
Al C33W i t eReg(Al C33_ADCPGAL, ADCPGAL_| NI T_VALUE, bl nPower Handl er);
Al C33W i t eReg(Al C33_ADCPGAR, ADCPGAR | NI T_VALUE, bl nPower Handl er);
Al C33WiteReg(Al C33_M C3_ADCL, M C3_ADCL_I NI T_VALUE, bl nPowerHandl er);
Al C33W it eReg(Al C33_M C3_ADCR, M C3_ADCR | NI T_VALUE, bl nPower Handl er);
Al C33W i t eReg(Al C33_M CBI AS, M CBI AS | Nl T_VALUE, bl nPower Handl er);

/1 init for anal og output functions
Al C33W it eReg(Al C33_OUTPWR, OUTPWR | NI T_VALUE, bl nPower Handl er);
Al C33W i t eReg(Al C33_OUTDRI VE, OUTDRI VE_I NI T_VALUE, bl nPower Hand! er);
Al C33W it eReg(Al C33_QUTSTAGE, QOUTSTAGE_| NI T_VALUE, bl nPower Handl er);
Al C33W it eReg(Al C33_OUTPOP, OUTPOP_I NI T_VALUE, bl nPower Handl er);
Al C33W i t eReg(Al C33_DACLGAI N, DACLGAI N I NI T_VALUE, bl nPower Hand! er);
Al C33W i t eReg(Al C33_DACRGAI N, DACRGAI N_I NI T_VALUE, bl nPower Handl er);
Al C33W it eReg(Al C33_DACL_HPL, DACL_HPL_ | NIT_VALUE, bl nPower Handl er);
Al C33W i t eReg(Al C33_HPLLEVEL, HPLLEVEL_ | NI T_VALUE, bl nPower Handl er);
Al C33W i t eReg(Al C33_DACR HPR, DACR HPR | NI T_VALUE, bl nPower Handl er);
Al C33W it eReg(Al C33_HPRLEVEL, HPRLEVEL | NI T_VALUE, bl nPower Handl er);
Al C33W i t eReg(Al C33_L2L_MONO, L2L_MONO | NI T_VALUE, bl nPower Hand! er);
Al C33W it eReg(Al C33_MONOLEVEL, MONOLEVEL_I NI T_VALUE, bl nPower Handl er);

/1 init GPIO functions
Al C33W it eReg(Al C33_GPIOL, GPIOL_| NI T_VALUE, bl nPower Handl er);
Al C33WiteReg(Al C33_GPI X2, GPI2_I N T_VALUE, bl nPowerHandl er);

Al C33WiteReg(Al C33_CLKGEN, CLKGEN_I NI T_VALUE, bl nPowerHandl er);

RETAI LMSG(1, (TEXT("Done InitAl C33Audio.\r\n")));
}

Refer to the file AIC33Regs.H for the actual setup values in the foregoing initialization routine.

Installation

This section presents the installation steps to run the AIC33 WiInCE 5.0 drivers on Intel MainStone Il
platform.

Included with the Microsoft™ Windows CE 5.0 platform builder CD ROM is the Board Support Package
(BSP) of the MainStone I, called \MAINSTONEII\, which may be located in your PC after installing the
Platform Builder 5.0 at, for example:

C:\WInCE500\PLATFORM\.

To install the AIC3x Windows CE 5.0 touch and audio drivers into one of MainStone Il WorkSpaces,
perform the following steps.

Step I: Copy

1. Copy \AIC3xWinCE5Drivers\AIC3x.cec file into:
C:\WINCE500\PUBLIC\COMMON\OAK\CATALOG\CEC\

2. Copy all files inside \AIC3xWinCE5Drivers\INC\ into:
C:\WINCES500\PLATFORM\MAINSTONEINSRCAINC\

3. Copy the directories AIC3xLIB and AIC3xWaveDev into:
C:\WINCE500\PLATFORM\MAINSTONEINSRC\DRIVERS\

10

TLV320AIC3x WInCE 5.0 Drivers SLAA265-September 2005

{';‘ TEXAS

INSTRUMENTS
www.ti.com
Installation
4.2 Step Il: Set Up

4.3

4.4

4.5

4.6

This step sets up the catalog to include the AIC3x device drivers.

1. Run Platform Builder 5.0, and the Platform Builder IDE appears.

2. At the Platform Builder 5.0 IDE, open Manage Catalog Items from the menu File\Manage Catalog
Items ...\. When the Manage Catalog Items window appears, click on Import button on the right side
of the window, navigate, find, and select AIC3x.cec in the directory

C:\WINCE500\PUBLIC\COMMON\OAK\CATALOG\CEC),
and then click on Open so that the item is ported in.

3. Click and drag to select all *.cec files in the Manage Catalog Iltems Window, and then click on the
Refresh button to make sure the new item is loaded.

4. Close the Manage Catalog Items window by clicking on its OK button.

Step Ill: Open

This step, in the Platform Builder 5.0 IDE, opens a new or existing MainStone Il workspace per the
application. The procedure is ignored here.

Step IV: Add

This step adds the AIC3x device drivers from the Catalog into the existing OS design.

1. Inthe Catalog window of the Platform Builder 5.0 IDE, find TI AIC3x Audio CODEC Driver,
right-click on it, and select Add to OS Design to add the audio driver to the OS.

2. As aresult, the audio device driver should appear under the Device Drivers section at the
OSDesignView window of the WorkSpace.

Step V: Modify

This step modifies the building device drivers so as to include Tl AIC3x drivers.

1. Open the dirs file in the directory:
C:\WINCE500\PLATFORM\MAINSTONEINSRC\DRIVERS\

2. Add on the AIC3xLIB and AIC3XWAVEDEV. For example: the dirs file could be:

DI RS=\
Al C3xLI B \
Al C3xWAVEDEV \
@CESYSGEN | F CE_MODULES_PO NTER
touch \
@CESYSGEN ENDI F CE_MODULES PO NTER
@CESYSGEN | F CE_MODULES DEVI CE
@ESYSGEN | F CE_MODULES_USBD
hcd \
@ESYSGEN ENDI F CE_MODULES_USBD
@CESYSGEN | F CE_MODULES_SERI AL
serial \
@ESYSGEN ENDI F CE_MODULES_SERI AL

HHHHH

3. Save and close the modified dirs file.

Step VI: Update

This step updates the Hardware Specific Files, so that the operating system will use AIC33 device drivers.

1. Open the existing platform.reg file from Hardware Specific section of the ParameterView window of
the workspace.

2. Edit the platform.reg file such as to delete the old audio dll and to add in the AIC33 audio:

. @XESYSGEN | F CE_MODULES_WAVEAP|
I F BSP_NGAUDI O !

SLAA265-September 2005 TLV320AIC3x WInCE 5.0 Drivers 11

” TEXAS
INSTRUMENTS

www.ti.com

WinCE 5.0 AIC3x Driver Code

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ WaveDev]
"Prefix"="WAV"
"Dl I "="pxa27x_wavedev. dl | "
"Dl "="wavedev.dl|"
"I ndex" =dwor d: 1
"Order"=dword: 0
"Priority256"=dword: 95
" Sysi ntr"=dword: 19

3. Save and close the updated platform.reg file.
4. Similarly, edit the platform.bib file such as:

@CESYSGEN | F CE_MODULES_WAVEAPI
I F BSP_NCAUDI O !
pxa27x_wavedev. dl | $(_FLATRELEASEDI R) \ pxa27x_wavedev. dl | NK SH
wavedev. dl | $(_FLATRELEASEDI R) \ wavedev. dI | NK SH
ENDI F BSP_NOAUDI O !
@ESYSGEN ENDI F CE_MODULES_WAVEAPI

5. Save and close the updated platform.bib file.

5 WinCE 5.0 AIC3x Driver Code
To obtain the the WIinCE 5.0 AIC3x driver code, contact the TI DAP Application Support Group at e-malil
address dataconvapps@list.ti.com.
6 References
1. TSC2301 WinCE Generic Drivers application report [SCAATS7)
2. TLV320AIC33, Low Power Stereo Audio Codec for Portable Audio/Telephony data sheet [SCAS480)
3. TLV320AIC33EVM User's Guide (EBAUI1Y)
4. Intel PXA27x Processor Developer’s Kit, order number 278827-005
12 TLV320AIC3x WInCE 5.0 Drivers SLAA265-September 2005

http://www-s.ti.com/sc/techlit/SLAA187
http://www-s.ti.com/sc/techlit/SLAS480
http://www-s.ti.com/sc/techlit/SBAU114

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI's terms
and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by Tl regarding third-party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for
such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security
Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	1 Introduction
	2 Connections
	3 Device Drivers
	3.1 SPI Interface
	3.2 I2C Interface
	3.3 Audio Driver

	4 Installation
	4.1 Step I: Copy
	4.2 Step II: Set Up
	4.3 Step III: Open
	4.4 Step IV: Add
	4.5 Step V: Modify
	4.6 Step VI: Update

	5 WinCE 5.0 AIC3x Driver Code
	6 References

