
1 Introduction

Application Report
SLAA265–September 2005

TLV320AIC3x WinCE 5.0 Drivers
Wendy X. Fang... DAP Group, HPA

ABSTRACT

TLV320AIC3x audio drivers have been developed with SPI or I2C control interfaces
and I2S audio streaming. The code was tested on an Intel™ MainStone II platform,
running on the Microsoft™Windows™ CE 5.0 operating system. This application report
discusses the SPI/I2C and I2S drivers, including the hardware connection between the
TLV320AIC33/32EVM and the MainStone II platform, the Windows CE 5.0 drivers’
code and structure, and the installations.

Contents
1 Introduction .. 1
2 Connections ... 2
3 Device Drivers .. 4
4 Installation.. 10
5 WinCE 5.0 AIC3x Driver Code .. 12
6 References... 12

List of Figures

1 AIC33 Connections to PXA27x Processor With SPI Control Bus 2
2 AIC3x Connections to PXA27x Processor with I2C Control 3
3 AIC33 WinCE 5.0 Driver Files With SPI Control Interface 4
4 AIC3x WinCE 5.0 Driver Files With I2C Control Interface 4

Texas Instruments (TI) audio devices TLV320AIC3x (or AIC3x for short), including TLV320AIC31,
TLV320AIC32, and TLV320AIC33, are low-power, high-performance stereo input and stereo output
coder/decoders (codec). These devices are ideal for portable audio and telephony applications, in which
an embedded operating system, such as Windows™ CE, often resides and operates.

The Windows CE (WinCE) 5.0 drivers for the AIC3x codecs that were developed are discussed in this
application report to assist users to quickly set up, run, and use the codec device on the WinCE 5.0
system.

The AIC3x drivers were coded on the standard device driver’s PDD (platform-dependent device) layer,
and the PDD layer was further split to have an additional processor-dependent layer (PDL) to make the
drivers easy to port into different host processors. See application report TSC2301 WinCE Generic Drivers
(SLAA187) for details on Windows CE PDD and TI PDL generic drivers.

The drivers were run and tested on an AIC33 EVM board and an Intel™ MainStone II platform with the
PXA270 Step B0 processor.

Intel is a trademark of Intel Corporation.
Microsoft, Windows are trademarks of Microsoft Corporation.

SLAA265–September 2005 TLV320AIC3x WinCE 5.0 Drivers 1

http://www-s.ti.com/sc/techlit/SLAA187

www.ti.com

2 Connections

MainStone II

PXA27x
Processor

AIC33

BCLK

SDOUT

SDIN

WCLK

MCLK25

29

28

27

26

SCLK

MISO

MOSI

35

36

33

34

GPIO24/SSPSFRM

GPIO25/SSPTXD

GPIO26/SSPRXD

GPIO23/SSPSCLK

DVSS
30

VSS

SPI_SELECT

IOVDD

31

GPIO113/
12S_SYSCLK

GPIO29/
12S_SDATA_IN

GPIO30/
12S_SDATA_OUT

GPIO31/
12S_SYNC

GPIO28/
12S_BITCLK

SS

Connections

The AIC33 device must be wired and connected to a host processor, where the device driver code is
ported and executed. The two buses or ports for AIC33 operation are the control bus and the audio data
bus. The control bus on the AIC33 can be either an SPI or an I2C bus, selectable through a hardware pin
(SELECT) on the AIC33; the AIC31 or AIC32 can be controlled only through I2C bus. The audio data
streams through the I2S bus on the AIC3x.

In developing the AIC33 drivers for this application, the TI AIC33EVM board (SBAU114) and the Intel
MainStone II platform with the PXA270 Step B0 processor (see reference 4) were employed.

On the SPI-controlled AIC33, the nine digital signals that are essential for running the AIC33 audio drivers
are:

• the SPI bus, four wires: SCLK, SS, MOSI, and MISO (at J16 of AIC33EVM board);
• the main audio codec clock, MCLK (at J17 of AIC33EVM board); and
• the I2S bus, four wires: BCLK, WCLK, SDIN and SDOUT (at J17 of AIC33EVM board).

Figure 1 shows the wires and connection between the AIC33 and PXA270 processor for the SPI control
interface.

Figure 1. AIC33 Connections to PXA27x Processor With SPI Control Bus

To implement the connection shown in Figure 1 on the AIC33EVM board, JMP10 was installed on pins 3
and 1; JMP11 was installed on pins 3 and 4; and JMP12 was installed on pins 3 and 4. See SBAU114 for
the schematic and other details of the EVM board. On the MainStone II system, the original touch/audio
module, connected on the MainStone II main board, was removed and replaced with the connections as
shown in Figure 1. See the relevant Intel documentation for further information concerning the MainStone
II Platform.

TLV320AIC3x WinCE 5.0 Drivers2 SLAA265–September 2005

http://www-s.ti.com/sc/techlit/SBAU114
http://www-s.ti.com/sc/techlit/SBAU114

www.ti.com

MainStone II

PXA27x
Processor

AIC33

BCLK

SDOUT

SDIN

WCLK

MCLK
37

41

40

39

38

SCL

SDA

1

2
GPIO118/SDA

GPIO117/SCL

DVSS
42

VSS

SPI_SELECT
43

MFP0/A0

MFP1/A1

IOVDD or DVSS

IOVDD or DVSS

45

46

GPIO113/
12S_SYSCLK

GPIO29/
12S_SDATA_IN

GPIO30/
12S_SDATA_OUT

GPIO31/
12S_SYNC

GPIO28/
12S_BCLK

Connections

On the I2C-controlled AIC3x, the seven digital signals that are essential for running the audio driver are:

• the I2C bus, two wires: SCL, and SDA (at J16 or J17 of AIC33EVM board);
• the main audio codec clock, MCLK (at J17 of AIC33EVM board); and
• the I2S bus, four wires: BCLK, WCLK, SDIN and SDOUT (at J17 of AIC33EVM board).

Figure 2 shows the wires and connection between the AIC3x and PXA270 processor for theI2C control
interface.

Figure 2. AIC3x Connections to PXA27x Processor with I2C Control

To implement the connection shown in Figure 2, on an AIC33EVM board, JMP10 was installed on pins 3
and 5; JMP11 was installed either on pins 3 and 1 (A0=1) or on pins 3 and 5 (A0=0); and JMP12 was
installed either on pins 3 and 1(A1=1) or on pins 3 and 5 (A1=0). See SBAU114 for the schematic and
other details of the EVM board and the corresponding data sheets for details on the I2C address.

The connections to the AIC31 or the AIC32 codec is similar to that shown in Figure 2, but note that on
AIC31 or AIC32 the only control bus is I2C with default A1=A0=0 as part of the device address (see the
corresponding data sheets).

In addition to the connections shown in Figure 1 or Figure 2 is the important and useful hardware reset
pin, RESET. The RESET pin can be connected to a GPO pin of the host so that the host processor can
issue a hardware reset to the AIC3x and put the codec into a known default condition after a power up.

SLAA265–September 2005 TLV320AIC3x WinCE 5.0 Drivers 3

http://www-s.ti.com/sc/techlit/SBAU114

www.ti.com

3 Device Drivers

AIC33WinCE5Driver_SPI

AIC33LIBAIC33WAVEDEV

AIC33Audio.C
AIC33Audio.H
HostAudio.C
HostAudio.H

SOURCES
makefile

AIC33SPI.C
HostSPIComm.C

SOURCES
makefile

INC

AIC33SPI.H
HostSPIComm.H
AIC33Regs.H

AIC33.cec

AIC3xWinCE5Driver_I2C

AIC3xLIBAIC3xWAVEDEV

AIC3xAudio.C
AIC3xAudio.H
HostAudio.C
HostAudio.H

SOURCES
makefile

AIC3xI2C.C
HostI2CComm.C

SOURCES
makefile

INC

AIC3xI2C.H
HostI2CComm.H

AIC3xRegs.H

AIC3x.cec

3.1 SPI Interface

Device Drivers

Figure 3 and Figure 4 list the locations of the AIC33 audio device driver files for the SPI and I2C control
interfaces, respectively. The files starting with Host… are the processor-dependent code or PDL, such as
HostAudio.C or HostSPIComm.H.

Figure 3. AIC33 WinCE 5.0 Driver Files With SPI Control Interface

Figure 4. AIC3x WinCE 5.0 Driver Files With I2C Control Interface

The four AIC33 pins, SCLK, SS, MOSI, and MISO, are connected to the GPIO23 to GPIO26 of the
PXA27x processor, respectively.

On the host side, the PXA27x GPIO, SSP, and Clock management control registers are used to set up the
SPI interface to communicate with the AIC33’s SPI. The setup was implemented at the routine,
HWSetupSPI():
///////
// Function: void HWSetupSPI(BOOL InPowerHandle)

TLV320AIC3x WinCE 5.0 Drivers4 SLAA265–September 2005

www.ti.com

3.2 I2C Interface

Device Drivers

// Purpose: This function must be called from the power handler
// of the respective drivers using this library. This
// function will configure the GPIO pins according to
// the functionality shown in the table below
// Signals Pin# Direction Alternate Function
// SSPSCLK GP23 output 2
// SSPSFRM GP24 output 0
// SSPTXD GP25 output 2
// SSPRXD GP26 input 1
///////

void HWSetupSPI(BOOL InPowerHandle)
{

RETAILMSG(1,(TEXT("Setup Host GPIO & SSP for an SPI Interface... \r\n")));

// disable Unit clock
g_pClockRegs->cken &= ~XLLP_CLKEN_SSP1;

// disable SSP1
g_pSSPRegs->sscr0 &= ~SSE_ENABLE;

// Set up the GPIO24=SFRM = 1 (GPSR0)
g_pGPIORegs->GPSR0 |= (GPIO_24_SFRM);

// Program direction of the GPIOs (GPDR0)
// (GPIO23/24/25 as outputs and GPIO26 as input)
g_pGPIORegs->GPDR0 |= GPIO_23_SCLK;
g_pGPIORegs->GPDR0 |= GPIO_24_SFRM;
g_pGPIORegs->GPDR0 |= GPIO_25_MOSI;
g_pGPIORegs->GPDR0 &= ~GPIO_26_MISO;

// Program GPIO alternate function register (GAFR0_U)
g_pGPIORegs->GAFR0_U &= 0xFFC03FFF;
g_pGPIORegs->GAFR0_U |= GPIO_23_AF2_SSPSCLK;
// GPIO24 is used here as GPO
g_pGPIORegs->GAFR0_U |= GPIO_25_AF2_SSPTXD;
g_pGPIORegs->GAFR0_U |= GPIO_26_AF1_SSPRXD;

// Set up SSP registers (when disabled SSP)
// set up SSP control register 0 and 1
g_pSSPRegs->sscr0 = (SCR_590_KHZ | SSE_DISABLE | ECS_INTERNAL |

FRF_MOTOROLA | DSS_8_BIT);
g_pSSPRegs->sscr1 = (RFT_SEVEN | TFT_ZERO | MWDS_16_BIT | SPH_HALF_DELAY |

SPO_IDLE_LOW | LBM_DISABLE | TIE_DISABLE | RIE_DISABLE);

// Enable SSP last
g_pSSPRegs->sscr0 |= SSE_ENABLE;

// enable SPI1 Unit clock
g_pClockRegs->cken |= XLLP_CLKEN_SSP1;

// DumpRegsGPIO();
// DumpRegsSSP();
// DumpRegsClock();
}

Note that: (1) The host’s GPIO24 was used as the SPI’s SS, but this pin in the PXA27x processor should
be programmed as a GPO and be set high and low by SW (not through the PXA27x SSP function); and
(2) the SSP1 unit clock should be turned OFF before the setup and turned ON after the setup.

The two AIC3x I2C bus pins, SCK and SDA, are connected to the GPIO117 and GPIO118 of the PXA27x
processor, respectively.

On the host side, the PXA27x GPIO, I2C, and Clock management control registers are used to set up the
I2C interface to communicate with the AIC3x’s I2C. The setup was implemented at the routine,
HWSetupI2C():

SLAA265–September 2005 TLV320AIC3x WinCE 5.0 Drivers 5

www.ti.com

Device Drivers

///////
// Function: void HWInitI2C(BOOL InPowerHandle)
// Purpose: This function must be called from the power handler
// of the respective drivers using this library. This
// function will configure the GPIO pins according to
// the functionality shown in the table below
// Signals Pin# Direction Alternate Function
// SCL GPIO117 output 1
// SDA GPIO118 output(at init) 1
///////

BOOL HWInitI2C(BOOL InPowerHandle)
{

RETAILMSG(1,(TEXT("Setup Host GPIO & I2C for an I2C Interface...\r\n")));
// init I2C control register (disabled I2C unit)
g_pI2CRegs->icr = 0;
// enable I2C unit clock (the clock should be enabled first)
g_pClockRegs->cken |= XLLP_CLKEN_I2C;
// set up GPIO
g_pGPIORegs->GPDR3 |= GPIO_117_SCL;
g_pGPIORegs->GPDR3 |= GPIO_118_SDA;
g_pGPIORegs->GAFR3_U &= ~GPIO_I2C_MASK;
g_pGPIORegs->GAFR3_U |= GPIO_117_AF1_SCL;
g_pGPIORegs->GAFR3_U |= GPIO_118_AF1_SDA;
// Setup processor I2C slave address (used only when PXA27x is slave)
g_pI2CRegs->isar = 0x007F;
// Set Processor I2C as master and enable the I2C
g_pI2CRegs->icr = ICR_SCLEA | ICR_IUE;

// DumpRegsGPIO();
// DumpRegsI2C();
// DumpRegsClock();

return(TRUE);
}

Two other important I2C interface routines are the HWI2CWriteRegs() and HWI2CReadRegs(), which
allow the PXA27x to write to or read from AIC3x control registers using the I2C bus. The protocol for I2C
write and read have been defined (see Figures 5 and 6 of the AIC33 data sheet SLAS480).
///////
// Function: HWI2CWriteRegs Routine
// Purpose: This routine allows the PXA27x to write to AIC33
// control register(s) using I2C bus.
// Note: The first byte in bytesBuf is the starting address
// for writing; and the 2nd and on are bytes/contents
// writing to AIC33
///////

BOOL HWI2CWriteRegs(UINT8 *bytesBuf, UINT8 bytesCount, BOOL InPowerHandle)
{

UINT32 reg;

if (!InPowerHandle)
{

// write (AIC33) device address + write "0" to I2C bus
g_pI2CRegs->idbr = I2C_WRITE;
reg = g_pI2CRegs->icr;
reg |= (ICR_START | ICR_TB);
reg &= ~(ICR_STOP | ICR_ALDIE);
g_pI2CRegs->icr = reg;
if (HWI2CTxBusy(1000)) return(FALSE);

// Send all bytes (1st byte is AIC33 starting address)
while (bytesCount--)
{

g_pI2CRegs->idbr = (UINT32)(*bytesBuf++);
reg = g_pI2CRegs->icr;
reg &= ~ICR_START;
reg |= (ICR_ALDIE | ICR_TB);

TLV320AIC3x WinCE 5.0 Drivers6 SLAA265–September 2005

http://www-s.ti.com/sc/techlit/SLAS480

www.ti.com

Device Drivers

if (bytesCount == 0)
reg |= ICR_STOP;

else
reg &= ~ICR_STOP;

g_pI2CRegs->icr = reg;
if (HWI2CTxBusy(1000)) return(FALSE);

}

// Clear the STOP bit always
g_pI2CRegs->icr &= ~ICR_STOP;
return(TRUE);

}
else
{

RETAILMSG(1, (TEXT("HW Tx Error...\r\n")));
return(FALSE);

}
}

///////
// Function: HWI2CReadRegs Routine
// Purpose: This routine allows the PXA27x to read from AIC33
// control register(s) using I2C bus.
// Note: The first byte in bytesBuf is the starting address for
// reading; and the 2nd and on are values reading from AIC33
///////
BOOL HWI2CReadRegs(UINT8 *bytesBuf, UINT8 bytesCount,

BOOL InPowerHandle)
{

UINT32 reg;

if (!InPowerHandle)
{

// write (AIC33) device address + write "0" to I2C bus
g_pI2CRegs->idbr = I2C_WRITE;
reg = g_pI2CRegs->icr;
reg |= (ICR_START | ICR_TB);
reg &= ~(ICR_STOP | ICR_ALDIE);
g_pI2CRegs->icr = reg;
if (HWI2CTxBusy(1000)) return(FALSE);

// write (AIC33) register address to I2C bus
g_pI2CRegs->idbr = (UINT32)(*bytesBuf++);
bytesCount -= 1;
reg = g_pI2CRegs->icr;
reg &= ~(ICR_START | ICR_STOP);
reg |= (ICR_ALDIE | ICR_TB);
g_pI2CRegs->icr = reg;
if (HWI2CTxBusy(1000)) return(FALSE);

// restart and register address + read "1" to I2C bus
g_pI2CRegs->idbr = I2C_READ;
reg = g_pI2CRegs->icr;
reg |= (ICR_START | ICR_TB);
reg &= ~(ICR_STOP | ICR_ALDIE);
g_pI2CRegs->icr = reg;
if (HWI2CTxBusy(1000)) return(FALSE);

// read the AIC33 registers' contents
while (bytesCount--)

{
reg = g_pI2CRegs->icr;
reg &= ~ICR_START;
reg |= (ICR_ALDIE | ICR_TB);
if (bytesCount == 0)
{

reg |= (ICR_ACKNAK | ICR_STOP) ;
}
else
{

SLAA265–September 2005 TLV320AIC3x WinCE 5.0 Drivers 7

www.ti.com

3.3 Audio Driver

Device Drivers

reg &= ~(ICR_ACKNAK | ICR_STOP);
}
g_pI2CRegs->icr = reg;
if (HWI2CRxBusy(1000)) return(FALSE);
reg = (g_pI2CRegs->idbr) & 0xFF;
*bytesBuf++ = (UINT8) reg;

}
g_pI2CRegs->icr &= ~(ICR_ACKNAK | ICR_STOP);
return(TRUE);

}
else
{

RETAILMSG(1, (TEXT("HW Rx Error...\r\n")));
return(FALSE);

}
}

From a hardware standpoint, the AIC33 audio driver must have SPI or I2C (for audio control) and I2S (for
audio data streaming) buses. The SPI or I2C bus controls the audio codec’s operation by writing to AIC33
audio control registers; the I2S bus transfers audio data between the host and the AIC33.

Additionally, the AIC3x MCLK pin should receive an external clock that provides the necessary timing for
the AIC3x audio Sigma-Delta ADC and DAC to operate or run. The MCLK to the AIC3x should be
generated from the same resource as the I2S clocks, i.e.: the MCLK should also from the host processor,
which is the I2S master as described in this application report.

The AIC3x audio driver was built on the standard audio driver, WaveDev, and is located in the directory
AIC3xWaveDev.

On the host side, the PXA27x GPIO28 to GPIO31 pins were used as the I2S and connected to AIC3x’s
BCLK, SDOUT, SDIN, and WCLK, respectively (see Figure 1). The GPIO113 is programmed as the I2S
SYSCLK and is connected to the MCLK, which is programmed to generate a 11.346-MHz clock. The I2S
setup was implemented at the routine, HWEnableI2S(), as follows:
//
//---
// Function: HWEnableI2S()
//---
//
void HWEnableI2S(void)
{

RETAILMSG(1,(TEXT("Setup Host GPIO & I2S Interface... \r\n")));
//Basic Outline:
// configure the GPIO registers and set to I2S mode
// Set up I2S control registers at default condition

// insert reset for I2S
v_pI2SRegs->sacr0 |= 0x00000008;

// un-insert the reset
v_pI2SRegs->sacr0 = 0x00007700;

// disable I2S unit clock
v_pClockRegs->cken &= ~XLLP_CLKEN_I2S;

// setup GPIO direction regs
v_pGPIORegs->GPDR0 |= XLLP_GPIO_BIT_I2SBITCLK |

XLLP_GPIO_BIT_I2S_SYNC |
XLLP_GPIO_BIT_I2S_SDATA_OUT;

v_pGPIORegs->GPDR0 &= ~XLLP_GPIO_BIT_I2S_SDATA_IN;
v_pGPIORegs->GPDR3 |= XLLP_GPIO_BIT_I2S_SYSCLK; // GPIO113: SYSCLK as output

// configure GPIO alternate function registers
v_pGPIORegs->GAFR0_U &= 0x00FFFFFF;
v_pGPIORegs->GAFR0_U |= XLLP_GPIO_AF_BIT_I2SBITCLK_OUT |

XLLP_GPIO_AF_BIT_I2S_SDATA_IN |
XLLP_GPIO_AF_BIT_I2S_SDATA_OUT |

TLV320AIC3x WinCE 5.0 Drivers8 SLAA265–September 2005

www.ti.com

Device Drivers

XLLP_GPIO_AF_BIT_I2S_SYNC;
v_pGPIORegs->GAFR0_U &= ~XLLP_GPIO_AF_BIT_I2S_SYSCLK_MASK;
v_pGPIORegs->GAFR3_U |= XLLP_GPIO_AF_BIT_I2S_SYSCLK;

// configure I2S reg sacr0 but not enable I2S yet
v_pI2SRegs->sacr0 = 0x00001104;

// configure system for I2S mode
v_pI2SRegs->sacr1 = 0x00000000;

// configure clock divider
v_pI2SRegs->sadiv = I2SRATE_44_1; // divider for 44.1kHz audio

// enable I2S
v_pI2SRegs->sacr0 |= 0x00000001;

// enable Unit clock
v_pClockRegs->cken |= XLLP_CLKEN_I2S;

// DumpRegsGPIO();
// DumpRegsSSP();
// DumpRegsClock();
// DumpRegsI2S();

return ;
}

The codec can be used per the requests of applications. As an example, this application report had initially
set up the AIC33 in such a way that:

• About the I2S interface:

1. The I2S interface is at 16 bits, standard I2S mode, with 44.1-kHz ADC and DAC sample rates.
2. The AIC3x is the slave because the host is the I2S master (AIC3x can be I2S slave or master; but

PXA27x can be only the master).
• About the audio input circuitry:

1. The left and right ADC input from the stereo, single-ended LINE3 (MICIN3).
2. ADC input gain is controlled by its PGA with initial gain 0-dB gain.

• About the audio output circuitry:

1. The left and right DAC results are routed to the stereo-single-ended headphone, HPL/R and with
HPLCOM and HPRCOM being shorted as the VCOM.

2. The headphone output is at the CAPLESS mode.
3. The DAC gains and the HPL/R output gains were all initialized to 0 dB.

• About bypass:

1. The differential LINE2 Left is directly fed to the differential MONO_OUT.
• About other functions:

1. The input high-pass filter has not been enabled.
2. The output digital boost, emphasis, and 3-D functions have not been enabled.
3. The PLL is enabled and GPIO1 is used as the PLL output.
4. The headset detect function is disabled.
5. The pop-reduction function is set to slowest and enabled.

All AIC33 audio control registers (in Page0 of the AIC33 memory space) were set up or initialized, as
previously stated, in the routine InitAIC33Audio() and called by the audio PDD routine
PDD_AudioInitialize(). The audio initialization routine is:
// Initalize AIC33 Audio Register at Default
void InitAIC33Audio(BOOL bInPowerHandler)
{

RETAILMSG(1, (TEXT("InitAIC33Audio.\r\n")));
// init for digital functions
AIC33WriteReg(AIC33_RATE, RATE_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_PLLa, PLLa_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_PLLb, PLLb_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_PLLc, PLLc_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_PLLd, PLLd_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_DATAPATH, DATAPATH_INIT_VALUE, bInPowerHandler);

SLAA265–September 2005 TLV320AIC3x WinCE 5.0 Drivers 9

www.ti.com

4 Installation

4.1 Step I: Copy

Installation

AIC33WriteReg(AIC33_INTERFa, INTERFa_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_INTERFb, INTERFb_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_INTERFc, INTERFc_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_DIGFILT, DIGFILT_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_HEDETa, HEDETa_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_HEDETb, HEDETb_INIT_VALUE, bInPowerHandler);

// init for analog input functions
AIC33WriteReg(AIC33_ADCPGAL, ADCPGAL_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_ADCPGAR, ADCPGAR_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_MIC3_ADCL, MIC3_ADCL_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_MIC3_ADCR, MIC3_ADCR_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_MICBIAS, MICBIAS_INIT_VALUE, bInPowerHandler);

// init for analog output functions
AIC33WriteReg(AIC33_OUTPWR, OUTPWR_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_OUTDRIVE, OUTDRIVE_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_OUTSTAGE, OUTSTAGE_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_OUTPOP, OUTPOP_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_DACLGAIN, DACLGAIN_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_DACRGAIN, DACRGAIN_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_DACL_HPL, DACL_HPL_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_HPLLEVEL, HPLLEVEL_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_DACR_HPR, DACR_HPR_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_HPRLEVEL, HPRLEVEL_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_L2L_MONO, L2L_MONO_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_MONOLEVEL, MONOLEVEL_INIT_VALUE, bInPowerHandler);

// init GPIO functions
AIC33WriteReg(AIC33_GPIO1, GPIO1_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_GPIO2, GPIO2_INIT_VALUE, bInPowerHandler);

AIC33WriteReg(AIC33_CLKGEN, CLKGEN_INIT_VALUE, bInPowerHandler);

RETAILMSG(1, (TEXT("Done InitAIC33Audio.\r\n")));
}

Refer to the file AIC33Regs.H for the actual setup values in the foregoing initialization routine.

This section presents the installation steps to run the AIC33 WinCE 5.0 drivers on Intel MainStone II
platform.

Included with the Microsoft™ Windows CE 5.0 platform builder CD ROM is the Board Support Package
(BSP) of the MainStone II, called \MAINSTONEII\, which may be located in your PC after installing the
Platform Builder 5.0 at, for example:

C:\WinCE500\PLATFORM\.

To install the AIC3x Windows CE 5.0 touch and audio drivers into one of MainStone II WorkSpaces,
perform the following steps.

1. Copy \AIC3xWinCE5Drivers\AIC3x.cec file into:
C:\WINCE500\PUBLIC\COMMON\OAK\CATALOG\CEC\

2. Copy all files inside \AIC3xWinCE5Drivers\INC\ into:
C:\WINCE500\PLATFORM\MAINSTONEII\SRC\INC\

3. Copy the directories AIC3xLIB and AIC3xWaveDev into:
C:\WINCE500\PLATFORM\MAINSTONEII\SRC\DRIVERS\

TLV320AIC3x WinCE 5.0 Drivers10 SLAA265–September 2005

www.ti.com

4.2 Step II: Set Up

4.3 Step III: Open

4.4 Step IV: Add

4.5 Step V: Modify

4.6 Step VI: Update

Installation

This step sets up the catalog to include the AIC3x device drivers.

1. Run Platform Builder 5.0, and the Platform Builder IDE appears.
2. At the Platform Builder 5.0 IDE, open Manage Catalog Items from the menu File\Manage Catalog

Items …\. When the Manage Catalog Items window appears, click on Import button on the right side
of the window, navigate, find, and select AIC3x.cec in the directory

C:\WINCE500\PUBLIC\COMMON\OAK\CATALOG\CEC\,
and then click on Open so that the item is ported in.

3. Click and drag to select all *.cec files in the Manage Catalog Items Window, and then click on the
Refresh button to make sure the new item is loaded.

4. Close the Manage Catalog Items window by clicking on its OK button.

This step, in the Platform Builder 5.0 IDE, opens a new or existing MainStone II workspace per the
application. The procedure is ignored here.

This step adds the AIC3x device drivers from the Catalog into the existing OS design.

1. In the Catalog window of the Platform Builder 5.0 IDE, find TI AIC3x Audio CODEC Driver,
right-click on it, and select Add to OS Design to add the audio driver to the OS.

2. As a result, the audio device driver should appear under the Device Drivers section at the
OSDesignView window of the WorkSpace.

This step modifies the building device drivers so as to include TI AIC3x drivers.

1. Open the dirs file in the directory:
C:\WINCE500\PLATFORM\MAINSTONEII\SRC\DRIVERS\

2. Add on the AIC3xLIB and AIC3xWAVEDEV. For example: the dirs file could be:
DIRS=\

AIC3xLIB \
AIC3xWAVEDEV \

@CESYSGEN IF CE_MODULES_POINTER
touch \
@CESYSGEN ENDIF CE_MODULES_POINTER
@CESYSGEN IF CE_MODULES_DEVICE
@CESYSGEN IF CE_MODULES_USBD

hcd \
@CESYSGEN ENDIF CE_MODULES_USBD
@CESYSGEN IF CE_MODULES_SERIAL

serial \
@CESYSGEN ENDIF CE_MODULES_SERIAL
.....
.....

3. Save and close the modified dirs file.

This step updates the Hardware Specific Files, so that the operating system will use AIC33 device drivers.

1. Open the existing platform.reg file from Hardware Specific section of the ParameterView window of
the workspace.

2. Edit the platform.reg file such as to delete the old audio dll and to add in the AIC33 audio:
; ---
; @CESYSGEN IF CE_MODULES_WAVEAPI
IF BSP_NOAUDIO !

SLAA265–September 2005 TLV320AIC3x WinCE 5.0 Drivers 11

www.ti.com

5 WinCE 5.0 AIC3x Driver Code

6 References

WinCE 5.0 AIC3x Driver Code

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\WaveDev]
"Prefix"="WAV"

; "Dll"="pxa27x_wavedev.dll"
"Dll"="wavedev.dll"
"Index"=dword:1
"Order"=dword:0
"Priority256"=dword:95
"Sysintr"=dword:19

...

3. Save and close the updated platform.reg file.
4. Similarly, edit the platform.bib file such as:
; ---
; @CESYSGEN IF CE_MODULES_WAVEAPI
IF BSP_NOAUDIO !
; pxa27x_wavedev.dll $(_FLATRELEASEDIR)\pxa27x_wavedev.dll NK SH

wavedev.dll $(_FLATRELEASEDIR)\wavedev.dll NK SH
ENDIF BSP_NOAUDIO !
; @CESYSGEN ENDIF CE_MODULES_WAVEAPI
; ---

5. Save and close the updated platform.bib file.

To obtain the the WinCE 5.0 AIC3x driver code, contact the TI DAP Application Support Group at e-mail
address dataconvapps@list.ti.com.

1. TSC2301 WinCE Generic Drivers application report (SLAA187)
2. TLV320AIC33, Low Power Stereo Audio Codec for Portable Audio/Telephony data sheet (SLAS480)
3. TLV320AIC33EVM User's Guide (SBAU114)
4. Intel PXA27x Processor Developer’s Kit, order number 278827-005

TLV320AIC3x WinCE 5.0 Drivers12 SLAA265–September 2005

http://www-s.ti.com/sc/techlit/SLAA187
http://www-s.ti.com/sc/techlit/SLAS480
http://www-s.ti.com/sc/techlit/SBAU114

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2005, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	1 Introduction
	2 Connections
	3 Device Drivers
	3.1 SPI Interface
	3.2 I2C Interface
	3.3 Audio Driver

	4 Installation
	4.1 Step I: Copy
	4.2 Step II: Set Up
	4.3 Step III: Open
	4.4 Step IV: Add
	4.5 Step V: Modify
	4.6 Step VI: Update

	5 WinCE 5.0 AIC3x Driver Code
	6 References

