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ABSTRACT
Cyclic Redundancy Code (CRC) is commonly used to determine the correctness of a data transmission or
storage. This application report presents a solution to compute 16-bit and 32-bit CRCs on the ultra-low-
power TI MSP430™ microcontrollers for the bitwise algorithm (low memory, low cost) and the table-based
algorithm (low MIPS, low power). Both algorithms are presented in C and MSP430 assembly and can be
downloaded from www.ti.com/lit/zip/slaa221. Test code to verify the implementations is also included.
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1 Introduction
The fundamental mathematics behind the CRC is polynomial division. An arbitrary message (a fixed block
of k information bits) is treated as if each bit were the binary coefficient of a polynomial of degree k–1. The
transmitter adds an arbitrary number of bits (called the parity bits) to the end of the message. The parity
bits are chosen so that the original message plus the parity bits (called the code word) is evenly divisible
by a known polynomial (called the generator polynomial). If the receiver can evenly divide the received
code word by the generator polynomial, then the receiver can assume that there were no transmission
errors. However, in practice, it is possible to introduce errors into the received message that make
detection of these errors impossible for a given generator polynomial. The generator polynomial order and
coefficients are related to how many errors it can detect, but that discussion is beyond the scope of this
application report.

Many communications protocols, such as HDLC and Ethernet, use 16-bit or 32-bit CRCs. The native
implementation for computing and checking a CRC is bit based, which typically makes hardware a more
natural fit. However, adding hardware to an application can be complicated by increased cost, increased
power, and increased board size. The MSP430 MCUs can calculate the bit-by-bit division very well, but
these MCUs are much more efficient when handling data in bytes or words. Fortunately, from the CRC
mathematics, a table-based solution has been developed that trades processor cycles for memory and
allows a processor to operate on bytes rather than bits. The designer can decide which resource is more
important: MIPS (power) or memory (cost), and choose the appropriate solution.

This application report includes the source code to compute 16-bit and 32-bit CRCs on the low-power TI
MSP430 MCUs for both the bit-by-bit algorithm and the table-based algorithm. Both algorithms are
supplied in C and MSP430 assembly. Projects and test code to verify the CRC implementation are also
included and can be run on an MSP430 MCU (C and assembly code) or a PC using Microsoft Visual C++
(C code only).

2 CRC Theory
Assume that the message polynomial m(x) of degree k by is augmented by multiplying it by an arbitrary
polynomial g(x). g(x) is the generator polynomial.

c(x) = m(x)g(x)

The result of this calculation increases the size of the message by the degree of the generator polynomial.
This augmented message c(x) is referred to as the code word and is of degree n. The original message
m(x) can be recovered by dividing c(x) by g(x).

The code word can also be written as the sum of two polynomials, the original message m(x), where
each component is increased in degree by (n-k), and an arbitrary polynomial r(x) of degree (n-k).
This form has the advantage of not disturbing the original message and is the basis for the CRC
algorithm.

c(x) = m(x)xn–k + r(x)
r(x) is the remainder polynomial, which is the remainder of m(x)xn–k divided by g(x).

r(x) = R g(x)m(x) xn–k

The binary coefficients of the remainder polynomial are the parity bits that are appended to the end of the
original message. Therefore, the code word is simply the original message followed by the parity bits. The
following example shows the resulting code word derived from the input ASCII hex values for the test
sequence 123456789 and the computed CRC given the CRC-16 generator polynomial.
m(x) = 31 32 33 34 35 36 37 38 39
g(x) = 80 05
r(x) = FE E8
c(x) = 31 32 33 34 35 36 37 38 39 FE E8

The CRC process adds redundancy to the original message by increasing the number of bits required to
transmit the same amount of information, to n bits. These additional bits add the ability to detect errors at
the receiver, which is of tremendous value.
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Checking for errors at the receiver uses the same functions that were used to compute the CRC. There
are two ways to check for errors at the receiver. First, the receiver can divide the code word by the
generator polynomial, which should give a remainder of zero. Second, the receiver can extract the original
message (because it is only a translated copy in the code word), divide the original message by the
generator polynomial, and then compare the result to the parity bits in the code word. If the remainder and
the parity bits match, no errors were detected.

Determining a suitable generator polynomial is outside the scope of this application report. Many existing
protocols use a few well known and well understood generator polynomials (see Table 1).

Table 1. Common CRC Polynomials

Name (Protocols) Polynomial
CRC-16 x16 + x15 + x2 + 1
CRC-CCITT (SDLC, HDLC/X.25) x16 + x12 + x5 + 1
CRC-32 (Ethernet) x32 + x25 + x23 + X22 + x16 + x12 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

3 CRC Algorithms

3.1 Bitwise Method
The bit method is a brute force binary polynomial division where we keep the remainder and throw away
the quotient. The remainder is then appended to the message to form the code word. Figure 1 is a Linear
Feedback Shift Register (LFSR) implementation of the bitwise CRC algorithm which is the basis for the
software bitwise implementation.

Figure 1. CRC-n Bitwise LFSR Implementation

Algorithm:
1. Initialize the CRC register
2. Shift the CRC left by one bit while shifting in the next message bit
3. If the bit just shifted out is set, XOR the CRC with the generator polynomial
4. Continue with step 2 until there are no message bits left
5. XOR the CRC register with the final XOR value

3.2 Table Method
Processors tend to be more efficient when operating on bytes and words rather than bits. The advantage
of the table method is that CRC values can be precalculated and stored in a table, so the fundamental unit
of data shifts from bits to bytes. On the MSP430 MCU, these tables can be stored in flash at either run
time or link time. The table algorithm included with this document uses table sizes of 256 words to balance
between MIPS and memory.

http://www.ti.com
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Other table algorithms are available that can use larger tables to further reduce run time, or reduced
tables that are a further compromise between table size and run time. Neither of these options is
discussed in this application report, because they either require too much memory or the speed advantage
is marginal on the MSP430 MCUs.

Algorithm:
1. Initialize the CRC register
2. XOR the CRC most significant byte with the incoming message byte
3. Use this byte to index into the 256 entry table
4. Shift the CRC register to the left by one byte
5. XOR the CRC register with the value indexed into the table
6. Continue with step 2 until no more message bytes are left
7. XOR the CRC register with the final XOR value

4 Implementation
The source files associated with this application report include projects that were developed in IAR
Embedded Workbench V3.20A and Microsoft Visual C++ 6.0. The source files should function as
expected in later versions. Table 2 is an overview of the project directory structure of the associated
archive.

Table 2. Project Directory Structure

Description Directory
Microsoft Visual C++ project files \CRC\MSVCpp\
IAR Embedded Workbench project files \CRC\MSP430\
Source (.c, .a43) \CRC\src\
Header files (.h) \CRC\inc\
Data files (.txt, .dat) \CRC\dat\

4.1 Coding Conventions
• Both the C and assembly versions of the CRC functions have the same name except that the

assembly version is preceded by two underscores, __<name> (arg1, arg2...). Two underscores
are used because the C compiler generates references to the C functions with a single underscore.
This avoids multiply defined symbols and less confusion on the name space.

• Each function starts with crc followed by either 16 or 32 to indicate the size of the CRC calculated.
• If the next character is an r, then the algorithm is reflected, otherwise it is normal.
• The last part of the name indicates whether it is bitwise, MakeBitwise, or table method,

MakeTableMethod.
• All of the assembly functions are C callable.

4.2 CRC-16 and CRC-32
All of the code is either 16 bit or 32 bit. For most, a C function and C-callable assembly function are
provided. Other widths can be supported by extending the source code.

4.3 Normal or Reflected
Some standards such as SDLC expect the data to come into the processor least significant bit first (for
example, from a UART). Therefore, the standard specifies that the incoming data and the resulting CRC
must be bit reflected. This means that the bits are swapped around their center position (for example, in a
16-bit word, b0↔b15, b1↔b14, b2↔b13, and so on). Rather than waste processor time reflecting the
input bits and then the CRC, the algorithm is reflected. So for each normal algorithm, an associated
reflected algorithm exists. This saves both CPU time and power.

http://www.ti.com
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4.4 Code Size and Performance
For obtaining the following test results, the IAR Embedded Workbench V3.20A was used. Results may
differ for other versions of this product. Performance is measured in cycles for the input ASCII sequence
123456789. The C code was measured using the Profiler in the IAR Simulator. The C-callable assembly
was measured using the cycle counter in the Simulator by setting the counter to 0 at the functional call
then stepping over the function to the next instruction. The C compiler was configured for speed at the
highest optimization level. Note that there are two versions of the crc16MakeBitwise and the
crc32MakeBitwise functions. The one without the numeric appendix is an implementation equivalent to the
assembly version. The one with the 2 is a more C-efficient implementation. This can be seen in Table 3
and Table 4 which give the code size and CPU time for both.

Table 3. CRC-16 Profiled Functions

Function Code Size
(Bytes)

Total CPU Time
(Cycles/72 Bytes)

CPU Time
(Cycles/Bit)

Crc16MakeBitwise 72 1290 17.9

Crc16MakeBitwise2 60 1063 14.8

__crc16MakeBitwise 64 665 9.2

Crc16rMakeBitwise Not Implemented Not Implemented NA

__crc16rMakeBitwise 62 645 9.0

Crc16MakeTableMethod 52 252 3.5

__crc16MakeTableMethod 48 153 2.1

Crc16rMakeTableMethod 50 243 3.4

__crc16rMakeTableMethod Not Implemented Not Implemented NA

Table 4. CRC-32 Profiled Functions

Function Code Size
(Bytes)

Total CPU Time
(Cycles/72 Bytes)

CPU Time
(Cycles/Bit)

crc32MakeBitwise 98 1490 20.7

crc32MakeBitwise2 74 1265 17.6

__crc32MakeBitwise 82 781 10.8

crc32rMakeBitwise Not Implemented Not Implemented NA

__crc32rMakeBitwise 80 766 10.6

crc32MakeTableMethod 68 348 4.8

__crc32MakeTableMethod 68 224 3.1

crc32rMakeTableMethod 68 341 4.7

__crc32rMakeTableMethod Not Implemented Not Implemented NA

4.5 Static and Dynamic Table Generation
For the Table Method, the CRC tables can be generated statically at link-time or dynamically at run-time.
Static generation saves initialization time unless the device needs to support multiple protocols and there
is not enough flash memory to store all possible tables. Although the tables could be generated at run-
time and stored in RAM, flash is optimal because the MSP430 MCUs typically have limited RAM. The
source to generate the tables is provided in C. An additional step is required to generate the reflected
tables from the normal tables.

To generate the tables statically, run the Visual C++ code with the appropriate generator polynomials set
in the crc.h file. This code generates both 16-bit and 32-bit tables and writes them to corresponding files.
Separate table files are generated and can be included in a C style array or an MSP430 assembly style
array.

http://www.ti.com
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4.6 Test Environment and CRC Verification
Projects are included for both Visual C++ and Embedded Workbench. These projects both include a
single main() function for test and verification. The C-callable assembly functions are included in the build
only if the symbol __ICC430__ is defined. This symbol is automatically defined in the Embedded
Workbench C environment. These functions are not included when building with Visual C++, so there will
not be any unresolved symbols. The test message is the character sequence 123456789. Note that this
is not a string, as there is no \0 terminating character. After each function call, the resulting CRC is sent
to the consol using printf(). The user can then verify that the computed result matches the expected
result.

Table 5. CRC Parameters and Verification

FORM CRC-16 CRC-16 CRC-32 CRC-32
Polynomial 0x8005 0x8005 0x04C11DB7 0x04C11DB7
Init CRC register 0x0000 0x0000 0xFFFFFFFF 0xFFFFFFFF
Final XOR value 0x0000 0x0000 0xFFFFFFFF 0xFFFFFFFF
Reflect data (byte) NO YES NO YES
Reflect CRC (word) NO YES NO YES
Input sequence (ASCII) 123456789 123456789 123456789 123456789
Expected CRC 0xFEE8 0xBB3D 0xFC891918 0xCBF43926

4.7 Other Software Examples
Texas Instruments also provides CRC software examples for the MSP430F5xx, MSP430F6xx, and
MSP430 FRAM families. See the MSP430 Driver Library for these examples.

5 References
1. MSP430x1xx Family User’s Guide
2. Mixing C and Assembler with the MSP430
3. Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x
4. A Tutorial on CRC Computations, Gaitonde, Sunil G., Ramabadran, Tenkasi V., IEEE Micro, August

1988, pp. 62–74
5. A Painless Guide to CRC Error Detection Algorithms, Williams, Ross N.,

ftp://ftp.rocksoft.com/papers/crc_v3.txt, August 1993
6. MSP430 Driver Library
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