b TEXAS Application Report
INSTRUMENTS SLAA097 - June 2000

Using TMS320C5402 DMA Channels to Read from the
TLV1570 ADC

Lijoy Philipose AAP Data Conversion

ABSTRACT

This application report presents hardware and software solutions for using the DMA channels
of the 16-bit, fixed-point TMS320C5402 DSP to collect digital samples from the TLV1570
10-bit, 1.25-MSPS, 8-channel, serial analog-to-digital converter. Project collateral
discussed in this application report can be downloaded from the following URL:
http://www.ti.com/lit/zip/SLAAQ97.

Contents

1 1 Yo 11 e 1 oY o T 2
72 & =1 . 1 - OSSPSR 2
21 TMS320C5402 DSK Starter Kit..........eeeeieieiiiiiiiiiiiiiee e e e e e e e e e e e e ssnnnneeeeeaeeeas 2

2.2 TTLABTO EVM ..ottt et ettt e e e e e e e ettt e e e e e e e e eensstsaeeeeeeeeeaannsssneeeaaaens 3

B T 111 | 3
T T 5 1 3

K3 O o I PRSP PRPRR 3
3.2.1 DSP CNTL2 Control Register (/O Address = 0X0004)...........ceueeeiieiiiiiiiiiiiieeeee e 3

3.2.2 Write to CPLD Register CNTLZ ...t 4

3.8 MCBSP .o e e e e e e e ————eaae e e e e e —————ataaeeeeaaaa————aaaaaaaeaaaans 4

K 3 1Y SO PRRRR 8

TS T I Y 0 TSP SPRRPI 11

351 Data Converter OPEeration 11

352 Hardware OVervieW it e 12

353 Software Overview 12

I =Y = (= 1 14
N o 0= 4 Lo [N o 4 T 1o N o3RRS 15
PN o 01T o e [= T o2 1117 2 =Y o TN o 19
2N o ¢ Y= o Te [QO T3 F= T o o o3 P 38
PaX oY o T=Y g Lo [QB I ', Ued o X3 X (o2 3 SOOI 41
2N o ¢ =1 o Te [QI Vo [o'oY 1= 0 o TP 43
Appendix F C5402 Memory MappPing........cccouerrimmmimmmmmmmeemmeemeseesessesssssssmenne 44

1 McBSP Register Addressing SCheme..........cooooiiiiiiii 5
2 McBSP Register Bits With Respect to Serial-Port Function.............cccoooooiiii, 7
3 DMA SubaddreSSiNg SCNEMEuuuiiiiiiiiii e e e e e e e e s e e e e e e e e e e e e eeaeaaaaaanns 9
4 Overview of How DMA Is Used to Collect Samples...........ccoooeiiiiiiiiiii 12

http://www.ti.com/lit/zip/SLAA097

{if‘ TexAS

SLAA097 INSTRUMENTS
5 Program FIow Chart..........coooii e, 13
6 DMA Triggered Multiple CONVErSIONS i 14
List of Tables

1 CNTL 2 Control Register Bit Definitions.............ooiiiiiiiiii e 4
2 MCBSP RegiSter SettiNgS.uueeiieiiiiiiiii it e e e e et e e e e e e e e e e e e e 8
3 DIMA RegiStEr SEUINGS. ...cii ittt e e e e e e e e e e e e e e 10
4 Configuration Register Definitions i e 11
1 Introduction

2.1

It is inefficient to waste DSP cycles to service slow serial analog-to-digital converters. One
solution is to assign the nursing duties to DSP peripherals, specifically to the DMA controller,
since it is designed to function without tasking the powerful DSP. The slower serial-data
converter in this case is the TLV1570. The TLV1570 is an 8-channel, 10-bit, 1.25-MSPS ADC
with a four-wire serial interface. After reading this report, users will be able to implement the
hardware and software interface of this ADC to the TMS320C5402 DSP via the McBSP and
DMA peripherals. The C-language source code used in developing this report is provided in the
appendixes.

Hardware
The hardware interface consists of the TMS320C5402 DSK and the TLV1570 EVM.

TMS320C5402 DSK Starter Kit

The C5402 DSK is specifically designed for digital communications applications and comes
complete with a TMS320C5402-based target board, DSK-specific Code Composer Studio debug
tools, 32K application-size-limited C-compiler/assembler/linker, parallel-port interface, power
supply, and cables.

The C5402 device features 100-MHz clock, 40-bit ALU, 16K x 16-bit dual-access on-chip RAM,
4K x 16-bit on-chip ROM, advanced multibus architecture with three separate 16-bit
data-memory busses, and one program memory bus. In addition to these features, the DSK has
an embedded JTAG emulation via the TBC and IEEE-1284 parallel ports. The onboard
parallel-port controller allows the host PC to use the parallel port for emulation, or to directly
access the host-port interface of the 'C5402. Other features include onboard standard
JTAG-interface connection for optional emulation and expansion connectors for add-on
accessories. Texas Instruments now provides expansion connectors or adapter boards to
interface all data-converter EVMs to this DSK.

The enhanced peripherals of particular interest to this report are the McBSP serial ports. These
ports are further explained in Chapter 3.

The ‘C5402 DSK supports a TMS320VC5402 DSP which can operate at frequencies up to 100
MHz with a core voltage of 1.8 V and an 1/O voltage of 3.3 V. The DSK provides support for all
the DSP interfaces and control signals. The JTAG-emulation interface is used to support both
embedded and external JTAG emulations. The control interface is used to reset the device and
to provide external interrupts. The McBSPO, by default, is used to interface to a telephone DAA
port; this port is also available to the daughterboard via an onboard multiplexer. The McBSP1,
by default, is used on microphone/speaker interfaces; it is also brought to the
peripheral-expansion connector for use on the daughterboard. The CPLD controls the source of
McBSPO and McBSP1.

Using TMS320C5402 DMA Channels to Read from the TLV1570 ADC

J@ TEXAS
INSTRUMENTS SLAA097

2.2

3.1

3.2

3.2.1

TLV1570 EVM

The TLV1570 evaluation module (EVM) is a complete stand-alone board designed to allow quick
and accurate evaluation of the TLV1570 analog-to-digital converter (ADC).

The TLV1570 is an 8-channel, 10-bit, 1.25-MSPS (megasamples-per-second) ADC with a
four-wire serial interface. It is compatible with both 3-V and 5-V systems and directly interfaces
to Texas Instruments digital-signal processors. This EVM provides a 12-bit digital-to-analog
converter that can be used to loopback DAC output signals to ADC inputs. Circuits such as an
external-voltage-reference source are provided for use with both the ADC and the DAC. An
operational amplifier has been placed between the ADC multiplexer-output pin (MO) and the
analog input pin (AIN) to allow for signal conditioning. The EVM provides control signals and
power pins (VCC and GND) via connector J2. Analog-input signals can be provided via
connector J1. Refer to the TLV1570 Evaluation Module user’s guide for more information on this
EVM.

Software

The DSP, McBSP, and CPLD devices must be initialized correctly before attempting to read or
write to the data converter. The following sections explain the sample code included in the
appendixes.

DSP

The ‘VC5402 DSK provides the DSP with a single 20-MHz frequency reference via the DSP
built-in crystal oscillator. The DSP’s clock-mode pins are configured via dip-switch settings to
allow for a number of different frequencies, up to the part’s maximum rate of 100 MHz. The
CLKMD register can also be changed after reset to select the DSP’s operating frequency. The
CPU clock frequency is 100 MHz when CLKMD is equal to 0x4007.

CPLD

There are seven DSP CPLD registers mapped into the DSP’s lower I/O address space starting
at address 0x0000. Only control register 2 (CNTL2) is of interest to this report.

DSP CNTL2 Control Register (I/O Address = 0x0004)

This register selects the source of data for both McBSPs. Bit 1 of this register needs to be
modified; otherwise the McBSP1 defaults to the onboard device as its input source. The
McBSP1 should be set to use the daughterboard as its source of data on this report. Table 2
shows the register-bit definitions.

Using TMS320C5402 DMA Channels to Read from the TLV1570 ADC 3

{if‘ TexAS

SLAA097 INSTRUMENTS

Table 1. CNTL 2 Control Register Bit Definitions

BIT NAME RIW DESCRIPTION

7 DAACH RW DAA off-hook control (0 = on-hook, 1 = off-hook)

6 DAACID RW DAA caller ID enable (0 = disabled, 1 = enabled)

5 FLASHENB- RW Select FLASH =1 (default) or SRAM (=0) for external memory (1)

4 INT1SEL RW Interrupt 1 source selection (0 = UART, 1 = daughterboard)

3 FC1CON RW MIC/Speaker AD50 FC control bit (0)

2 FCOCON RW | DAA AD50 FC control bit (0)

1 BSPSEL1 RW McBSP1 select control (0 = mic/speaker, 1 = daughterboard)

0 BSPSELO RW McBSPO select control (0 = TelSet DAA, 1 = daughterboard)
3.2.2 Write to CPLD Register CNTL2

3.3

Control register 2 should be set to enable the daughterboard as the source for McBSP1. This is
accomplished by setting CNTL2=0x0002. This register is mapped to I/O space 4h; therefore, the
port instruction is used to access the register.

ioport unsigned int port4; /*Defines port4 as write to I/O space 0x4 */
portd = 0x0002; /*Write 0x0002 to CNTL2 register */
McBSP

The multichannel buffered serial port (McBSP) is a superset of the standard serial ports found
on Texas Instrument’s digital signal processors (DSP). In addition to features found on the
previous serial-port interfaces, the McBSP is able to directly interface to TI/E1 framers,
IOM-2-compliant devices, MVIP switching-compatible and ST-BUS-compliant devices,
AC97-compliant devices, IIS-compliant devices, and SPI devices. It provides a wide selection of
transmit/receive data sizes, u-Law and A-Law companding, programmable polarity for both
frame synchronization and data clocks, and highly-programmable internal clock and frame
generation. These features and programming requirements are described in TMS320C54x DSP
Enhanced Peripherals Reference Set, Volume 5 by Texas Instruments.

First let us look at how the McBSP registers are accessed. The McBSP registers are
memory-mapped using a register-subaddressing scheme. Figure 1 shows a visual
representation of this scheme. Register subaddressing involves multiplexing a set of registers to
a single location in the memory map. A sub-bank address register is used to control the
multiplexer. A subdata register (SPSDx) is used to read or write data to the desired
subaddressed register. To access a specific subaddressed register, the register’'s subaddress
location is written to the subaddress register (SPSAX). This directs the multiplexer to connect to
the desired physical location in memory. When a write access occurs, the data written to the
subdata register is moved to the embedded data register specified by the subaddress register.
Similarly for a read access, the contents of the register specified by the subaddress register is
moved to the subdata register.

Using TMS320C5402 DMA Channels to Read from the TLV1570 ADC

J@ TEXAS
INSTRUMENTS

SLAA097

Sub-Address

0x0

0x1

McBSP Serial Port Control Register 1 (SPCR1x)

0x2

McBSP Serial Port Control Register 2 (SPCR2x)

0x3

McBSP Receive Control Register 1 (RCR1x)

/

0x4

McBSP Receive Control Register 1 (RCR2x)

0x5

McBSP Transmit Control Register 1 (XCR1x)

0x6

McBSP Transmit Control Register 2 (XCR2x)

Dataln | ycBsp Subdata
Register (SPSDx)

0x7

McBSP Sample Rate Generator Register 1 (SRGR1x)

0x8

McBSP Sample Rate Generator Register 1 (SRGR2x)

0x9

McBSP Multichannel Register 1 (MCR1x)

0xA

McBSP Multichannel Register 2 (MCR2x)

0xB

McBSP Recive Channel Enable Register Partition A
(RCERAX)

Write Subaddress »| McBSP Subaddress Register

0xC

McBSP Recive Channel Enable Register Partition B
(RCERBX)

(SPSAX)

0xD

McBSP Transmit Channel Enable Register Partition A
(XCERAX)

OxE

McBSP Transmit Channel Enable Register Partition B
(XCERBXx)

McBSP Pin Control Register (PCRx)

Figure 1. McBSP Register Addressing Scheme

Let us use the McBSPO as an example: the subdata register (SPSD) is at location 0x039, and
the subaddress register (SPSAX) is at location 0x038 in physical memory. The following
assembly-code sample writes 0x000 to serial-port control register 1 of the McBSPO:

SPSAQ .set 038h ;McBSPO subaddress register
SPSDO .set 03% ;McBSPO subdata register
SPCR10 _SUB .set 000h ;McBSPO serial port control register 1 subaddress

mmr (#SPSAOQ) #SPCR10 SUB
mmr (#SPSD0) = #000h

There are 16 registers associated with each McBSP. Interfacing a single TLV1570 ADC to the
McBSP requires the proper configuration of only nine of these registers.

e The serial port control register 1 (SPCR1) contains the McBSP receiver status bits and the
main switch to enable or disable the receiver. This register includes the clock-stop mode bit,
which sets the serial port for various clocking modes for SPI and non-SPI schemes. Also
included in SPCR1 is the ABIS-mode bit and the receiver-interrupt mode bit.

e The serial port control register 2 (SPCRZ2) contains the McBSP transmitter-status bits and
the main switch to enable or disable the transmitter. This register also contains the bits to
reset the frame-sync generator and the sample-rate generator.

e The pin control register (PCR) contains the bits to configure the McBSP pins as inputs or
outputs during normal serial-port operation. This register is used to reconfigure the
serial-port pins as general-purpose inputs or outputs when the receiver or transmitter is
disabled. The PCR configures the transmitter and receiver clock and frame-sync modes. For

Using TMS320C5402 DMA Channels to Read from the TLV1570 ADC 5

SLAA097

{if‘ TexAS

INSTRUMENTS

example, these bits determine whether CLKX/R and FSX/R are input or output pins and what
their polarity is.

Receive control register 1 (RCR1) contains the bits to configure various options of the
receiver. The value of this register determines the receiver word size (between 8 and 32 bits)
and the number of words per frame (1 to 128) expected per receiver event.

Receive control register 2 (RCR2) determines the size of the word received and the bit delay
after the frame-sync pulse. This register configuration plays an essential role when transfers
greater than 16 bits and multiple phases are necessary. In this application the register bit of
interest is the data-bit delay. The RCR2 register bits also select between p-law, A-law
companding, and whether the MSB or the LSB is transferred first for noncompanding 8-bit
transfers.

The transmit control register 1 (XCR1) contains the bits which determine the transmit-word
length and frame size. A transfer can be 8 to 32 bits wide and anywhere from one to 128
words long.

Transmit control register 2 (XCR2) contain the bits which determine the transmit-data delay
and select between p-law, A-law companding, and whether the MSB or the LSB is
transferred first for noncompanding 8-bit transfers.

Sample-rate generator register one (SRGR1) and sample-rate generator register 2 (SRGR2)
control the sample-rate generator. The sample-rate generator is composed of a three-stage
clock divider that allows programmable data clocks (CLKG) and framing signals (FSG).
These are McBSP internal signals that can be programmed to drive the receive/transmit
clock (CLKR/X) and the receive/transmit data framing (FSR/X). Sample-rate generator
registers (SRGR[1,2]) control the operation of the various features of the sample-rate
generator. These registers are used to control the width of the frame-sync pulse and to
determine whether frame-sync is an external input driven by the sample-rate generator or a
signal to indicate that data has been copied from DXR[1,2] to XSR[1,2]. These registers
specify whether the sample-rate generator clock is derived from the CPU clock or from the
CLKS pin, and by what value to divide the CPU clock to produce the desired serial clock
(CLKX/R).

6 Using TMS320C5402 DMA Channels to Read from the TLV1570 ADC

J@ TEXAS
INSTRUMENTS

SLAA097

Level 1

McBSP Register Bits By Control Function

SPCR2.GRST#

PCR.XIOEN
PCR.RIOEN

SRGR2.GSYNC
SRGR2.CLKSP
SRGR2.CLKSM

Level 2

Serial Clock (SCLK)

SPCR1.CLKSTP

a

Frame-Sync (FS)

SPCR2.FRST#

I

Transmitter (DX)

Receiver (DR)

SPCR1.RJUST
SPCR1.DXENA

SPCR1.RJUST
SPCR1.RINTM

SPCR2.FREE SRGR1.FWID
SPGR2FREE SPCR1.RRST#
SRGR2.GSYNC SPCR2.XINTM
SRGR1.CLKGDV SRGR2.FPER SPCR2.XRST#
Level 3
| CLKR | | CLKX | | FSR | FSX | PCR.CLKXM | | PCR.CLKRM
v i v XCR1.XFRLEN1 RCR1.RFRLEN1
PCR.FSRM PCR.FSXM XCR1.XWDLEN1 RCR1.RWDLEN1
PCR.CLKRP PCR.CLKXP
PCR.FSRP PCR.FSXP XCR2.XPHASE RCR2.RPHASE
SRGR2.FSGM XCR2.XFRLEN2 RCR2.RFRLEN2
XCR2.XWDLEN2 RCR2.RWDLEN2
XCR2.XCOMPAND RCR2.RCOMPAND
XCR2.XFIG RCR2.RFIG
XCR2.XDATDLY RCR2.RDATDLY

Figure 2. McBSP Register Bits With Respect to Serial-Port Function

Describing all nine registers in detail is not practical in this report. Figure 2 presents these
register bits in relation to the serial lines. Table 3 summarizes the register configuration used in
this application report. The multichannel registers are not included in this mapping, since they
are not used for this particular interface. Figure 2 is divided into horizontal levels to illustrate the
details of the bit control. Level-one register bits relate to the overall serial port. These register
bits define the function of the serial-data pins, the state of the sample-rate generator, the clock
input to the sample-rate generator, etc. Level-three bits define the specifics of that particular
serial port signal line. Take for example the serial clock: level-three bits describe the polarity of
the receive and transmit clocks. Detailed descriptions of all the register bits are found in the
TMS32054x DSP Enhanced Peripherals Reference Set, Volume 5 (Literature number
SPRU302) from Texas Instruments.

Using TMS320C5402 DMA Channels to Read from the TLV1570 ADC 7

{if‘ TexAS

SLAA097 INSTRUMENTS

Table 2. McBSP Register Settings

McBSP1 McBSP1 REGISTER
ADDRESS | SUBADDRESS | ACRONYM | \yimiaLizeD COMMENT
0041 DRR11 Receive data register
0043 DXR11 Transmit data register
0048 SPSA1 McBSP1 subaddressing register
0x0000 SPCR11 0x0001 The_ LSB bit must be 0 (0x0000) while configuring McBSP so that the transmitter
is disabled.
0x0001 SPCR21 0x02C 1 The LSB bit must be 0 (0x02C0) while configuring McBSP so that the receiver is
disabled.
0x0002 RCR11 0x0040 Selects one 16-bit word transfer per frame
0049 0x0003 RCR21 0x0001 Sets 1-bitdelay onreceiver. Receiver assumes first MSB bitto arrive on the next
clock cycle after FSR pulse.
0x0004 XCR11 0x0040 Selects one 16-bit word transfer per frame.
0x0005 XCR21 0x0001 Transmitter shifts out data immediately following the falling edge of FSX
CLKX has a 10-MHz frequency, assuming a 100-MHz CPU clock.
0x0006 SRGR11 0x0009 | 5| kX = CPU clock/(CLKGDV +1) when CLKGDV = SRGR1[7,0]
0x0007 SRGR21 0x2000 The sample-rate generator clock is derived from the CPU clock
FSXis determined from sample-rate generator frame-synchronization mode bit
0x000E PCR1 0x0A00 SRGR2.FSGM. CLKX output is driven by sample-rate generator.

3.4

8

DMA

The direct memory access (DMA) controller uses the same subaddressing scheme as the
McBSP. So the same procedure used for writing to and reading from McBSP registers must be
used here. The DMA provides one additional register which makes programming the registers
easier. Figure 3 shows two registers at the input to the multiplexer. DMSDI is the sub-bank
access register (DMSA) which increments the sub-bank address register after each read/write.
Register DMSDN does not increment the sub-bank address register after read/write operations.
The advantage in using the DMSDI is that the user no longer has to change the contents of
DMSA to point to the next register. For example, programming the DMA channel 0 registers
involves writing 0x00 to DMSA. The first value written to DMSDI is moved to DMSCRO, the
second to DMDSTO, the third to DMCTRO, etc. Register DMSDN should be used to write to the
DMA register if that particular register is the only one to be modified.

Five channel-specific registers and the channel priority and enable control register (DMPREC)
need to be configured for each DMA channel used:

Using TMS320C5402 DMA Channels to Read from the TLV1570 ADC

Ji‘ TEXAS

INSTRUMENTS SLAA097
Address
0x0
Channel 0 Source Address Register
0x1 Channel 0 Destination Address
Register
0x2
Channel 0 Element Count Register
0x3 Channel 0 Sync Select and Frame
Count Register
0x4 Channel 0 Transfer Mode Control
/ Register
0x5 | 4
oxt9
Channel 5 Source Address Register
McBSP Subdata ‘ |
Register (SPSDx) 0x1A Channel 5 Destination Address
Register
0x1B
Channel 5 Element Count Register
0x1C Channel 5 Sync Select and Frame
Count Register
0x1D Channel 5 Transfer Mode Control
DMSA Register
0x25 Global Destination Address Reload
Register
0x26
Global Element Count Reload Register
0x27
Global Frame Count Reload Regsiter

Figure 3. DMA Subaddressing Scheme

e Source (DMSRCn) and destination (DMDSTn) registers (where n is the DMA channel) store
the address of the data to be read. Likewise, the address where data is to be written is
stored in the DMSTn register.

e The element count register(DMCTRn is a 16-bit counter that keeps track of the number of
DMA transfers to be completed. This register is always initialized to one less than the
number of elements to be stored.

e The DMA sync event and frame count (DMSFCn) register controls three services: 1) the
synchronization event used to trigger a DMA transfer; 2) the word size for each transfer,
specified as either 16-bit or 32-bit words; 3) the number of frames to be transferred (one to
256); for example, if only one frame is desired, this register field should be written as zero
(the desired value minus one).

e The transfer-mode control register(DMMCRn) controls the transfer mode of the channel.
This register determines whether the source/destination address is postincrement or

Using TMS320C5402 DMA Channels to Read from the TLV1570 ADC 9

SLAA097

{if‘ TexAS

INSTRUMENTS

postdecrement after each transfer. This register also determines whether the channel is
operating in autobuffering mode (ABU) or multiframe mode, when the DMA will interrupt the
DSP, and the address space where the source/destination addresses are located.

e The channel priority and Enable Control Register (DMPREC) controls the function of the
overall DMA. Due to the limited number of interrupts available in the ‘C54xx family, some
DMA interrupts are multiplexed with other peripheral interrupts. Bits in this register determine
which interrupts are assigned to the interrupt-flag register. The DMPREC also sets the
priority given to each channel to either low or high so those channels with high priority are
serviced before those with low priority. The DMA register settings used in this application
report are summarized in Table 3.
Table 3. DMA Register Settings
REGISTER
COMMENT
NAME VALUE
DMSRCO DRR11 DMA channel 0: source-address register
Source-memory-mapped address to read from
DMDSTO &DataTable_0 DMA channel 0: destination-address register
Destination address for sample storage
DMCTRO NSAMPLES-1 DMA channel 0: element-count register
Number of samples to store minus one
DMSFCO0 0x5000 DMA channel 0: sync-select and frame-count register
Synchronization transfers with McBSP1 receive event. CHO reads data out of DRR1 when McBSP REVT
occurs, then CH1 moves channel-command word to DXR1.
DMMCRO 0xC004 DMA channel O: transfer-mode control register
The content of the registers are reinitialized upon completion of block transfer.
DMACO interrupt is generated after block transfer.
No modification is made to source address register after each transfer.
Destination address register is post-incremented after transfer.
DMSRC1 &ChnlISelCmd DMA channel 1: source-address register
Source-memory address to read command word from
DMDST1 DXR11 DMA channel 1: destination address register
Destination address to store command, that is, McBSP1 transmitter
DMCTRA1 NSAMPLES-1 DMA channel 1: element-count register
Number of times to transfer command word to transmitter, minus 1
DMSFC1 0xE000 DMA channel 1: sync-select and frame-count register
Synchronization transfers with INT3 receive event. When INT3 occurs, CHO reads data out of DRR1, then
CH1 moves channel-command word to DXR1.
DMMCR1 0x8000 DMA channel 1: transfer-mode control register
The contents of the registers are reinitialized upon completion of block transfer.
No modification is made to source-address register after each transfer.
No modification is made to destination-address register after each transfer.
DMAPREC 0x0103 DMA priority and enable-control register

Enable DMA CHO and CH1. CHO has high priority. CHO reads data out of DRR1 and stores it before CH1
triggers another conversion cycle.

Now that the basic operation of the McBSP and DMA peripherals has been covered, let us look
at the TLV1570 analog-to-digital converter.

10 Using TMS320C5402 DMA Channels to Read from the TLV1570 ADC

J@ TEXAS
INSTRUMENTS SLAA097

3.5 TLV1570

3.5.1 Data Converter Operation

The TLV1570 accepts an analog-input range from 0 V to AVdd, and digitizes the input at a
maximum throughout rate of 1.25 MSPS. To achieve this rate it must be clocked at 20 MHz with
power supplied at 5 V. Using a 3-V supply and a maximum serial-clock input of 10 MHz, the
throughput rate drops to 625 KSPS. The sampling rate is determined by dividing the serial-clock
frequency by 16. This data converter requires 16 serial clocks for each conversion (sample and
convert). The result from the current cycle is placed on the serial-data-out line at the start of the
next conversion cycle. Before accepting valid conversion results, the device needs to be
programmed to the desired operating state. This is done by writing to the 16-bit configuration
register. Table 4 explains all the different operating states for this ADC.

Table 4. Configuration Register Definitions

BIT DESCRIPTION 5V | 3V
Software power down: X X
DI15 0: Normal X X
1: Power down enabled
DI14 Reads out values of the internal register, 1 — read. Only DI15 — DI1 are read out. X X
These two bits select the self-test voltage to be applied to the ADC input during next clock cycle: X X
00: Allow AIN to come in normally
DI13, DI12 01: Apply AGND to AIN
10: Apply VREF/2 to AIN
11: N/A
Choose speed application X X
DI11 0: High speed (higher power consumption)
1: Low speed (lower power consumption)
This bit enables channel autoscan function. X X
DI10 0: Autoscan disabled
1: Autoscan enabled
DI9 — DI7: These three bits select which of the eight [DI9, DI8: These two bits select the channel swept X X
channels is to be used (if DI10 = 0). sequence used by auto scan mode (if DI10 = 1)
000: Channel O selected as input 00: ég;&%%ggﬂl;tge?e'i?éfm’ CHZ, » CH7
001: Channel 1 selected as input 01: ég;lljc;gmigﬂ;tge?elgé(?H3, CHS, CHY
DI9. DI8, DI7 010: Channel 2 selected asinput 10: Q‘Qgﬂ%%{g’ﬁ‘;fe?e'i?éf'ﬂ’ CH4, CHo
) . Analog inputs CH7, CH6, CH5, , CHO
011: Channel 3 selected as input 1 sequentially selected
100: Channel 4 selected as input DI7 Autoscan reset
101: Channel 5 selected as input 0: Noreset
110: Channel 6 selected as input 1: Reset autoscan sequence
111: Channel 7 selected as input
Selects Internal or external reference voltage: X X
Di6 0: External
1: Internal
Selects internal-reference voltage value to be applied to the ADC during next conversion cycle.
DI5 0: 23V X
1. 3.8V X

Using TMS320C5402 DMA Channels to Read from the TLV1570 ADC 11

{if‘ TexAS

SLAA097 INSTRUMENTS

Table 4. Configuration Register Definitions (Continued)

BIT DESCRIPTION 5V |3V
Enables/disables autopower-down function: X X
Dl4 1: Enable
0: Disable
Performance optimizer —linearity
DI3 0: AVpp=5.5Vt0o3.6V X X
1:AVpp=35Vto2.7V
DI2 Always write 0 (reserved bit) X X
DI1 Always write 0 (reserved bit) X X
DIO Always write 0 (reserved bit) X X
3.5.2 Hardware Overview

3.5.3

12

The block diagram of Figure 4 shows how to connect the TLV1570 EVM to the ‘C5402 DSP.
General-purpose /O pin XF is used as the chip-select pin. FSR1 and CLKR1 are tied to EVM
pins FSX1 and CLKX1, respectively. Pin SDOUT is tied to pin DRR1, and pin SDIN is connected
to pin DXR1. This configuration indicates that the TLV1570 is interfaced to the McBSP1. Tying
the FSR1 and FSX1 lines together ensures that the receiver expects data to arrive at the same
time the ADC transmits it.

TLV1570 TMS320CV54xx DSP
i DMA Ux3009 i4— ADC Ch |
CLKX11 annel:
SCLK‘ LKR11 McBSP1 Select Command
L ¢ On-Chip Memory
Fs ‘ <€ FSX11 + -+
FSR11
XSR11 |1—| DXR11 CH1
SDIN 0xDC80
|_. 0xDC00
0x0000 ADC Sample-
SDOUT|
RSR11 I—bl DRR11 CHoO 0X0000 Storage Table
0x0000
Cs XF 0x0000

Figure 4. Overview of How DMA Is Used to Collect Samples

Software Overview

The software flowchart for this interface method is presented in Figure 5. Begin by setting the
CPU-clock speed. On the 'C5402 DSK, the maximum CPU clock is 100 MHz. If there are any
pending interrupts, they are cleared by writing all ones to IFR. Enable the DMACO interrupt in
IMR. The interrupt service routine (ISR) associated with this interrupt can be used to initiate DSP
processing of the collected ADC samples. The interrupt vector table (IVT) needs to be remapped
so it points to the user ISR. The vector table should be placed at the beginning of a data page.

The 'C5402 DSK I/O lines are managed by a CPLD. The input to the McBSP1 must be set to
arrive from the expansion bus.

Before configuring the McBSP registers, it is important to disable the transmitter and receiver
portions. Once disabled, users need to configure the device for the desired operation; only then
the transmitter and receiver may be enabled.

Using TMS320C5402 DMA Channels to Read from the TLV1570 ADC

J@ TEXAS
INSTRUMENTS SLAA097

For this interface, the McBSP needs to be configured per Table 2. Note that Table 2 settings
have the transmitter and receiver enabled. The transmitter and the receiver must be disabled
during initialization of the McBSP.

The DMA channel 1 source register is initialized to the address of the ADC command word. Its
destination register is initialized to the address of the McBSP1 transmit-data register. The

count registers for both channels store the value for the number of samples (transfers) to read
(implement). Both channel 1 and channel 0 are synchronized to the McBSP1 receive event.
Therefore, when a receive event occurs, the DMA channel O reads the data from the DRR1 and
stores it in memory. DMA channel 1 sends the next command word to the ADC to begin another
conversion. Table 3 explains the DMA-register settings used in this application report.

DSP
Set DSP Clock
Remap Interrupt Vector (PMST.IPTR)
Enable Desired Interrupts in IMR
Clear Pending Interrupts (IFR)

Set CPLD Register (CNTL2) to Allow Daughterboard to Act
as Input to McBSP1

I

McBSP1
Disable Transmitter and Receiver
(Clear Bit 0 in SPCR[1,2]).

Set Serial Port Control Registers, Pin Control Register,
and Sample-Rate Generator Registers.
Select One 16-Bit Transfer Per Frame-Sync.
Set CLKX/R, FSX/R DXIr Signals
as Serial Port Signals

Enable Transmitter and Receiver
(Set Bit 0 in SPCR[1,2]).

v

DMA Channel 1
Initialize Channel to Read From Memory Location and Write
Data to McBSP Transmitter Register. Synchronize With
Receive Event
DMA Channel 0
Initialize Channel to Read From McBSP Receiver and
Store in Memory Table.
Synchronize With Receive Event

Enable Channel 0 With High Priority
Enable DMA Channel 0 and Channel 1

Send Configuration Word to ADC by Placing The
Configuration Word in The McBSP

Initiate ADC Conversion Cycle by Write Channel Select
Command to McBSP1 Transmit Data Register

Continue DSP Processing %ntil DMA Has Read Desired
Number of Samples From ADC

Figure 5. Program Flow Chart

Using TMS320C5402 DMA Channels to Read from the TLV1570 ADC 13

{ir‘ TexAS

SLAA097 INSTRUMENTS

Note that channel zero, where the received data is stored, is given the high priority. This
selection ensures that received data is stored after every conversion. The only remaining step is
to trigger the first conversion and enable the DMA channels.

:I-hEIE-I-l cllylollﬁll ﬁ.ll "l'Iﬂﬁl-I*lTimefDiv:lm Mlﬂl

14

L1: I-I'B"‘S = c2 |3-34'-‘S = DeltaTime: |1.54u3 =
CLE#1 C1: 1 Cz: 1 Delka: O
7 = L :
CLKA T e T T
C5zl | !
F5x1 I 1 ' 1
Dl i
DR [L]] [A Ny g MR YT L] Il
Conversion 0 Conversion #1 i Conversion #2 Conversion #3 Conversion #4

Invalid Result Conversion 0 Result Conversion #1 Result Conversion #2 Result ~ Conversion #3 Result

Figure 6. DMA Triggered Multiple Conversions

Figure 6 shows the behavior of the hardware in this application. The data read in from the initial
conversion (conversion 0) cycle is discarded, since it comes from an unknown configuration.
Conversion result 0 is put on the SDOUT line while the second conversion (conversion 1) cycle
is proceeding. After the DMA has completed all its transfers, it notifies the DSP by generating a
DMA-channel-zero interrupt event (DMACO). When the DMACO interrupt occurs, the CPU
begins processing the data. The DMA channels store the specified number of samples before
producing the interrupt. Once the DMA completes the specified number of reads, it generates an
interrupt (DMACDO) to signal the CPU to process the samples. In the mean time the CPU can be
performing other tasks.

References

TMS320C54X DSP CPU And Peripherals Reference Set, Vol I, Literature number SPRU131
TMS320C54X Optimizing C Compiler User’s Guide, Literature number SPRU103
TMS320C54XX DSP Enhanced Peripherals Reference Set, Vol 5, Literature number SPRU302
TLV1570 Evaluation Module User’s Guide, Literature number SLAU024

TLV1570 data sheet, Literature number SLAS169

a bk owbd =

Using TMS320C5402 DMA Channels to Read from the TLV1570 ADC

J@ TEXAS
INSTRUMENTS SLAA097

Appendix A main.c

/***/

/*Function: main () */
/*file name: main.c */
/*Description: Main function for using the DMA to collect MAX samples */
/* from TLV1570 ADC. Begin by setting up the DSP, CPLD, and McBSP. */
/* Then send configuration word and begin the first conversion cycle. */
/* Once this cycle is complete, the DMA will collect MAX number of */
/* samples from the ADC attached to McBSPl. The samples are */
/* stored in array DataTable 0. Once NSAMPLES samples have been */
/* collected, the DMA will produce a DMACO interrupt to the DSP. */
/*Inputs: None */
/*Outputs: None */
/*Returns: None */
/*Note: None */
/* AUTHOR: AAP Application Group, L. Philipose, Dallas */
/* CREATED 2000 (C) BY TEXAS INSTRUMENTS INCORPORATED */

/**~k**********/

#include ”c5402Reg.h” /*File Contains structures definitions for DSP, McBSP and DMA */
#include ”adc _const.h” /*File Contains ADC parameter data for each data converter (DC)*/

MCBSP McBSP1; /*Initialize McBSP Register Structures */
unsigned int n=0,1=0; /*Global Index useful DataTable array */
unsigned int DataTable O[NSAMPLES]; /*Data Table */
ioport unsigned int portO0; /*Write to i/o address 0x0 */
ioport unsigned int porté4; /*Write to i/o address 0x4 */
/*Function used to communicate with ADC on McBSP1 */

unsigned int McBSPlWriteRead (unsigned int value)
{

/*Write McBSP1 */

SPSAl_ADDR = SPCR2 l_SUB;

while (SPCR21 ADDR->bitval.xrdy != 1);

DXR11 ADDR = value;

/*Read McBSP1 */
SPSA1 ADDR = SPCR11 SUB;
while (SPCR11 ADDR->bitval.rrdy != 1);
return (DRR11 ADDR);
}
void main (void)
{
unsigned int CLKGDV,ChnlSelCmd; /*Divide down ratio for CPU to produce CLKX in SRGR1 */
unsigned int channel0, source0, /*Variables used to store DMA register settings */
destination0O, countO,
frame sync0O, control mode0;
unsigned int channell, sourcel,
destinationl, countl,
frame syncl, control model;

portd = 0x0003; /*Set CNTL2, in CPLD, allow daughtercard as input to McBSP1 */

Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC 15

SLAA097

4E?TEXAS

INSTRUMENTS

16

port0 = 0x00808;

ST1 ADDR->bitval.xf = 1;

ST1 ADDR->bitval.intm =

DMAPREC ADDR —-> value =

IMR ADDR->value =0;
IFR_ADDR—>Value:=OXFFFF;

PMST ADDR->value = 0x3620;

ST1 ADDR->bitval.intm =

while (n<=NSAMPLES)

{

/*Set CNTL1,

’

in CPLD, allow INT3# from daughtercard to DSP */

/*set ADC CS# high */
1; /*Disable System Interrupts */
0x0000; /* Reset DMA channels */
/*Mask out all interrupts */
/*Clear all pending interrupts by writing ones */
/*to register */
/*Configure PMST, set IPTR=0x3600. Remap */
/*Interrupt Vector Table */
0; /*Enable System Interrupts */
/*Initialize Data Table 0 with OxXFFFF */

DataTable O[n++]=0xFFFF;

}

CLKGDV= (DSP_FREQ/ (SERCLOCK+1)) ;

McBSP1l.RegVal.
McBSP1l.RegVal.

McBSP1.RegVal.

McBSP1l.RegVal

McBSP1.RegVal.

McBSP1l.RegVal

McBSP1l.RegVal.

McBSP1l.RegVal.

McBSP1l.RegVal.

McBSP1.RegVal
McBSP1l.RegVal
McBSP1.RegVal

SPCR1_REG
SPCR2_REG

PCR_REG =

.RCR1_REG

RCR2_REG

.XCR1 REG

XCR2_REG

SRGR1 REG

SRGR2_REG

.MCR1_REG
.MCR2_REG
.RCERA_REG

/*CPU clock (in MHz) divide by desired */
/*CLKX Freq (in MHz) */
/*plus one = SRGR1.CLKGDV */

= 0x0000;
= 0x02CO0;

0x0AQ0;

0x0040;

0x0001;

0x0040;
0x0001;

CLKGDV;

= 0x2000;

0x0;
0x0;
0x0;

/*Initialize McBSP1 registers*/
/*Receiver Off*/
/*Free running serial clock, transmitter

/*off */
/*Frame-Sync Generator and Sample-Rate */
/*Generator Reset */

/*DX,FSX,CLKX, DR, FSR,CLKR are serial */
/*port pins. CLKX and FSX/R output driven */

/*by sample-rate generator. */
/*Receive 16-bits per frame */
/*Receiver 16-bits per frame, one-bit */
/*receive */

/*delay. With this delay receiver assumes*/
/*first bit arrives after falling edge of*/

/*FSR */
/*Transmit 16-bits per frame */
/*Transmit 16-bits per frame and one-bit */
/*transmit delay */
/*With this delay transmitter sends first*/
/*bit after falling edge of FSX */
/*FSX width is default on Clock. */
/*CPU divide-down number determines */
/*CLKX frequency. */
/*Sample-rate generator Clock derived */
/*from CPU clock */
/*Not using this feature */

Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC

Ji‘ TEXAS

INSTRUMENTS SLAA097

McBSP1l.RegVal.RCERB REG = 0x0;

McBSP1.RegVal.XCERA REG = 0xO0;

McBSP1l.RegVal.XCERB REG = 0x0;

MCBSP1 init (&McBSP1); /*Initialize McBSPl registers with user */
/*values */

SPSA1 ADDR = SPCR21 SUB; /*Choose Serial Port Control Register 2 */

SPCR21 ADDR->bitval.xrst = 1; /*Enable McBSP1 Transmitter */

SPSA1 ADDR = SPCR11 SUB;

SPCR11 ADDR->bitval.rrst = 1; /*Enable McBSP1 Receiver */
DMA reset(); /*Reset all DMA Channels *x/
channel0 =0x0; /*Set up DMA Channel 0 store Samples */
/*from McBSP1 */

source0 =DRR11 BASE; /*Source address to read from */
destination0 =(unsigned int) &DataTable 0; /*Destination Address to */
/*store Sample to */

countO =NSAMPLES-1; /*Number of Samples to Store */
frame syncO =0x5000; /*Sync of McBSP1l receive event */
control mode0 =0xC004; /*Autoinitialization, interrupt */
/*after buffer */

DMA init (channelO, source0, /*Initialize DMA Channel 0 */

destinationO,
count0, frame syncO,
control modeO) ;

/*Set up Transmitter channel 1 */

channell=0x1; /*Set up DMA Channel 1 to send */
/*Command Word to Transmitter */

sourcel =(unsigned int)&ChnlSelCmd;/*Source address to read command Word */
destinationl =DXR11 BASE; /*Destination Address to Store Command, */
/*that is, McBSP1l transmitter x/

countl =NSAMPLES-1; /*Number of Times to transfer Command */
/*Word to transmitter. */

frame syncl =0x5000 ; /*Sync transfer with McBSPl receive event */
control model =0x8000; /*Autoinitialize registers from transfers */
DMA init(channell, sourcel, /*Initialize DMA Channel 1 */

destinationl, countl,
frame syncl, control model);

DMAPREC ADDR->value=0x0183; /*Enable DMA CHO & CH1. channel 0 has */
/*high priority */
/*INT10 & 11 for McBSP1 */
ST1 ADDR->bitval.xf = 0; /*Set ADC CS# low */
ChnlSelCmd=ADChan0; /*This Channel Select Command will be used */
McBSP1WriteRead (ChnlSelCmd) ; /*Send configuration word to ADC by the */
/*DMA for each conversion cycle */

Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC 17

{ir‘ TexAS

SLAA097 INSTRUMENTS
while (IFR_ADDR->bitval.dmacO != 1); /*Wait for DMA buffer to be filled */
/*before quitting */
ST1 ADDR->bitval.xf = 1; /*Desired samples collected. Deselect ADC*/

18 Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC

J@ TEXAS
INSTRUMENTS SLAA097

Appendix B ¢c5402Reg.h

/*k*k*k*k*k*k*k*k*k*k*k*k*k*k***/

/*Function: None */
/*file name: c5402Reg.h */
/*Description: File defines ONLY those DSP, McBSP1l, and DMA Registers */
/* objects used in conjunction with this Application Note. */
/*Inputs: None */
/*Outputs: None */
/*Returns: None */
/* AUTHOR: AAP Application Group, L. Philipose, Dallas */
/* CREATED 2000 (C) BY TEXAS INSTRUMENTS INCORPORATED */

/***/

/**/

/* Define Interrupt Flag and Interrupt Mask Registers */
/**/
#define IMR BASE 0x00
#define IMR ADDR ((volatile IMR REG *) ((char *) IMR BASE))
#define IFR BASE 0x01
#define IFR ADDR ((volatile IFR _REG *) ((char *) IFR BASE))

typedef union {
struct {

unsigned int res

~.

unsigned int dmacb

~.

unsigned int dmac4

~.

unsigned int bxintl

~.

~.

unsigned int brintl

unsigned int hint

~e

unsigned int int3

~e

unsigned int tintl

unsigned int dmacO

~.

unsigned int bxint0

~e

unsigned int brintO0

~.

unsigned int tintO0

~e

unsigned int int2

~.

unsigned int intl

~.

e e T S S Sy G e e T S S B S EE S V)

unsigned int int0

} bitval;

~.

unsigned int wvalue;
} IFR REG;
typedef union {

Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC 19

SLAA097

4E?TEXAS

INSTRUMENTS

struct {

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

} bitval;

int res

int dmacb
int dmac4
int bxintl
int brintl

int hint

int int3

int tintl
int dmacO
int bxintO0
int brint0

int tintO

int int2

int intl

int intO

unsigned int value;

} IMR REG;

/**/

/*Status Registers */

/**/

#define
fdefine
#define
#define
typedef

STO BASE
ST1 BASE
STO_ADDR
ST1 ADDR

union {

struct {

0x06
0x07

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

} bitval;

((volatile

((volatile

int arp
int tc
int ¢

int ova
int ovb

int dp

unsigned int value;

} STO REG;

typedef

20 Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC

union {

struct {

unsigned

int braf

[e e e T S S e e ST Sy GRS O
~.

~.

STO_REG
ST1 REG

e ~. ~e ~e ~. ~e

~.

~e

~.

~.

~.

~.

~e

*) STO BASE))
*) ST1 BASE))

J@ TEXAS
INSTRUMENTS

SLAA097

unsigned int cpl

~.

unsigned int xf

~e

unsigned int hm

~.

unsigned int intm

~e

unsigned int zero

~e

unsigned int ovm

~e

unsigned int sxm

unsigned int cl6

~.

unsigned int frct

~e

unsigned int cmpt

~e

& N e e e e

~.

unsigned int asmm
} bitval;
unsigned int value;

} STl REG;

/************~k*~k~k~k~k~k~k~k~k~k******~k************************************/
/*PMST */
/~k~k~k~k~k~k~k~k~k~k~k~k~k~k*******~k~k***/
#define PMST BASE 0x1d
#define PMST ADDR ((volatile PMST REG *) ((char *) PMST BASE))
typedef union {

struct {

unsigned int iptr

~e

unsigned int mpmc

~.

unsigned int ovly

~e

unsigned int avis

unsigned int drom

~e

~e

unsigned int clkoff

unsigned int smul

~e

e e T I N = e RN}
~.

unsigned int sst
} bitval;

~e

unsigned int value;
} PMST REG;

/*k*k*k*k*k*k*k*k***/

/* Structure for McBSP */

/*k*k*k*k*k*k*k*k***/

2 *)
/* McBSP 1 */

2 *)
#define DRR21 BASE 0x40

Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC 21

4E?TEXAS

SLAA097 INSTRUMENTS
#define DRR11 BASE 0x41

#define DXR21 BASE 0x42

#define DXR11l BASE 0x43

#define SPSA1 BASE 0x48

#define SPCR11 BASE 0x49

#define SPCR21 BASE 0x49

#define RCR11 BASE 0x49

#define RCR21 BASE 0x49

#define XCR11l BASE 0x49

#define XCR21 BASE 0x49

#define SRGR11 BASE 0x49

#define SRGR21 BASE 0x49

#define MCR11 BASE 0x49

#define MCR21 BASE 0x49

#define RCERA1 BASE 0x49

#define RCERB1 BASE 0x49

#define XCERA1 BASE 0x49

#define XCERB1 BASE 0x49

#define PCR1 BASE 0x49

#define SPCR11 SUB 0x00

#define SPCR21 SUB 0x01

#define RCR11_SUB 0x02

#define RCR21 SUB 0x03

#define XCR11l SUB 0x04

#define XCR21 SUB 0x05

#define SRGR11_ SUB 0x06

#define SRGR21 SUB 0x07

#define MCR11 SUB 0x08

#define MCR21 SUB 0x09

#define RCERA1l SUB 0x0A

#define RCERB1 SUB 0x0B

#define XCERAl SUB 0x0C

#define XCERB1 SUB 0x0D

#define PCR1_SUB 0x0E

#define DRR21 ADDR (*(volatile wunsigned int *)DRR21 BASE)
#define DRR11 ADDR (*(volatile wunsigned int *)DRR11 BASE)
#define DXR21 ADDR (*(volatile wunsigned int *)DXR21 BASE)
#define DXR11l ADDR (*(volatile wunsigned int *)DXR11l BASE)
#define SPSA1 ADDR (*(volatile unsigned int *)SPSAl BASE)
#define SPCR11 ADDR ((volatile SPCR1 REG *) ((char *) SPCR11 BASE))

22 Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC

Ji‘ TEXAS

INSTRUMENTS SLAA097
#define SPCR21 ADDR volatile SPCR2 REG *) char *) SPCR21 BASE))

#define RCR11 ADDR volatile RCR1 REG *) char *) RCR11 BASE))

#define RCR21 ADDR volatile RCR2 REG *) char *) RCR21 BASE))

#define XCR11 ADDR volatile XCR1 REG *) char *) XCR11l BASE))

#define XCR21 ADDR volatile XCR2 REG *) char *) XCR21 BASE))

#define SRGR11 ADDR volatile SRGR1 REG *) char *) SRGR11 BASE))

((((
((((
((((
((((
((((
((((
#define SRGR21 ADDR ((volatile SRGR2Z REG *) ((char *) SRGR21 BASE))

((((
((((
((((
((((
((((
((((

((

#define MCR11 ADDR volatile MCR1 REG *) char *) MCR11l BASE))
#define MCR21 ADDR volatile MCR2 REG *) char *) MCR21 BASE))
#define RCERAl ADDR volatile RCERA REG *) char *) RCERAl1l BASE))
#define RCERB1_ ADDR volatile RCERB_REG *) char *) RCERB1 BASE))
#define XCERA1l ADDR volatile XCERA REG *) char *) XCERAl BASE))
#define XCERB1 ADDR volatile XCERB REG *) char *) XCERB1 BASE))
#define PCR1 ADDR ((volatile PCR REG *) char *) PCR1 BASE))
P L ny
/* SPCR1 */
2 ———————— * /
typedef union {
struct {

unsigned int dlb:1;

unsigned int rjust:2;

unsigned int clkstp:2;

unsigned int rsrvd:3;

unsigned int dxena:1;

unsigned int abis:1;

unsigned int rintm:2;

unsigned int rsyncerr:1;

unsigned int rfull:1;

unsigned int rrdy:1;

unsigned int rrst:1;

} bitval;

unsigned int value;

} SPCR1_REG;
2 —————— * /
/* SPCR2 */
2 —————— * /

typedef union {
struct {
unsigned int rsrvd:6;

unsigned int free:1;

Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC 23

4E?TEXAS

SLAA097 INSTRUMENTS

unsigned int soft:1;
unsigned int frst:1;
unsigned int grst:1;
unsigned int xintm:2;
unsigned int xsyncerr:1;
unsigned int xempty:1;
unsigned int xrdy:1;
unsigned int xrst:1;
} bitval;

unsigned int value;

} SPCR2Z_REG;

/* ___ *k/
/* PCR */
/* 777 *k/

typedef union {
struct {

unsigned int rsrvdl:2;
unsigned int xioen:1;
unsigned int riocen:1;
unsigned int fsxm:1;
unsigned int fsrm:1;
unsigned int clkxm:1;
unsigned int clkrm:1;
unsigned int rsrvd2:1;
unsigned int clks stat:1;
unsigned int dx stat:1;
unsigned int dr stat:1;
unsigned int fsxp:1;
unsigned int fsrp:1;
unsigned int clkxp:1;
unsigned int clkrp:1;
} bitval;

unsigned int value;

} PCR_REG;

/~k ,,, */
/* RCRL */

/~k ___ */

typedef union {
struct {

unsigned int rsrvdl:1;

24 Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC

Ji‘ TEXAS

INSTRUMENTS SLAA097

unsigned int rfrlenl:7;
unsigned int rwdlenl:3;
unsigned int rsrvd2:5;
} bitval;

unsigned int value;

} RCR1 REG;

/* ___ */
/* RCR2 */
/*k ___ */

typedef union {

struct {
unsigned int rphase:1;
unsigned int rfrlen2:7;
unsigned int rwdlen2:3;
unsigned int rcompand:2;
unsigned int rfig:1;
unsigned int rdatdly:2;
} bitval;

unsigned int value;

} RCR2_ REG;

/* ___ */
/* XCR1 */
/* ___ */

typedef union {
struct {
unsigned int rsrvdl:1;
unsigned int xfrlenl:7;
unsigned int xwdlenl:3;
unsigned int rsrvd2:5;
} bitval;

unsigned int value;

} XCR1 REG;

/* ___ */
/* XCR2 */

/* ___ */

typedef union {
struct {
unsigned int xphase:1;
unsigned int xfrlen2:7;

unsigned int xwdlen2:3;

Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC

25

4E?TEXAS

SLAA097 INSTRUMENTS

unsigned int xcompand:2;
unsigned int xfig:1;
unsigned int xdatdly:2;
} bitval;

unsigned int value;

} XCR2 REG;

/* ___ */
/* SRGR1 */
/* ___ */

typedef union {
struct {
unsigned int fwid:8;
unsigned int clkdiv:8;
} bitval;
unsigned int value;

} SRGR1_REG;

/* ___ */
/* SRGR2 */
/* 777 *k/

typedef union {

struct {
unsigned int gsync:1;
unsigned int clksp:1;
unsigned int clksm:1;
unsigned int fsgm:1;
unsigned int fper:12;
} bitval;

unsigned int value;

} SRGR2_REG;

/* 777 *k/
/* MCR1 */
/* ___ *k/

typedef union {
struct {
unsigned int rsrvdl:7;
unsigned int rpbblk:2;
unsigned int rpablk:2;
unsigned int rcblk:3;
unsigned int rsrvd2:1;

unsigned int rmcm:1;

26 Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC

J@ TEXAS
INSTRUMENTS SLAA097

} bitval;

unsigned int value;

} MCR1 REG;
/* ___ */
/* MCR2 */
/* ___ */

typedef union {
struct {

unsigned int rsrvdl:7;
unsigned int xpbblk:2;
unsigned int xpablk:2;
unsigned int xcblk:3;
unsigned int xmcm:2;
} bitval;

unsigned int value;

} MCR2_REG;
/* ,,, */
/* RCERA */
/* ,,, */

typedef union {
struct {
unsigned int RCEA15:
unsigned int RCEAl4:
unsigned int RCEA13:

1
1
1
unsigned int RCEAl12:1;
unsigned int RCEA11l:1
unsigned int RCEA10:1
unsigned int RCEA9:1;
unsigned int RCEA8:1;
unsigned int RCEA7:1;
unsigned int RCEAG6:

unsigned int RCEA5:

unsigned int RCEA4:
unsigned int RCEA3:
unsigned int RCEAZ2:
unsigned int RCEAl:

e R = = =
-~

unsigned int RCEAO:
} bitval;
unsigned int wvalue;

} RCERA_ REG;

Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC 27

SLAA097

{if‘ TexAS

INSTRUMENTS

typedef union {

}

struct {
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

} bitval;

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

int

unsigned int value;

RCERB_REG;

typedef union {

28

struct {
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC

int
int
int
int
int
int
int
int
int
int

int

RCEB15:
RCEB14:
RCEB13:
RCEB12:
RCEB11:
RCEB10:

RCEBR9:
RCEBS8:
RCEB7:
RCEB6:
RCEB5:
RCEB4:
RCEB3:
RCEB2:
RCEB1:
RCEBO:

XCEAlS5:
XCEAl4:
XCEA13:
XCEAl2:
XCEAll:
XCEA1OQ:

XCEA9:
XCEAS8:
XCEAT:
XCEAG:
XCEAL:

~e ~e ~.

~e

~. ~e ~. ~e

e e e e
~

~e

J@ TEXAS
INSTRUMENTS SLAA097

unsigned int XCEA4:
unsigned int XCEA3:
unsigned int XCEAZ2:

~.

unsigned int XCEAl:
unsigned int XCEAO:
} bitval;

e e
~

unsigned int value;

} XCERA REG;

typedef union {
struct {
unsigned int XCEB15:

unsigned int XCEB14:

unsigned int XCEB13:

unsigned int XCEB12:

unsigned int XCEB11:

unsigned int XCEB1O0:

unsigned int XCEB9:

~.

unsigned int XCEBS8:
unsigned int XCEB7:

~e

~e

unsigned int XCEB6:
unsigned int XCEBb5:

~.

~e

unsigned int XCEB4:
unsigned int XCEB3:

~e

unsigned int XCEB2:
unsigned int XCEB1:

~.

~.

e e e e

unsigned int XCEBO:
} bitval;

~.

unsigned int value;
} XCERB_REG;
typedef union {
struct {
unsigned int SPCR1 REG :16;
unsigned int SPCR2 REG :16;
unsigned int PCR REG :16;
unsigned int RCR1 REG :16;
unsigned int RCR2 REG :16;
unsigned int XCR1 REG :16;

Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC 29

4E?TEXAS

SLAA097 INSTRUMENTS
unsigned int XCR2 REG :16;
unsigned int SRGR1 REG :16;
unsigned int SRGR2 REG :16;
unsigned int MCR1 REG :16;
unsigned int MCR2 REG :16;
unsigned int RCERA REG :16;
unsigned int RCERB_REG :16;
unsigned int XCERA REG :16;
unsigned int XCERB REG :16;
} RegVval;

unsigned int value;
} MCBSP;

/***/

/* Structure for DMA */

/***/

#define
#define
#define
#define
#define
#define
#define
#define

DMAPREC BASE
DMAPREC ADDR
DMSBA BASE
DMSBA ADDR
DMSBATI BASE
DMSBATI ADDR
DMSBANOI BASE
DMSBANOI ADDR

0x54

((volatile DMPREC REG *) ((char *) DMAPREC BASE))
0x55

(* (volatile unsigned int *) DMSBA BASE)

0x56 /* Autoincrementing Subaddress Register */

(* (volatile unsigned int *)

DMSBAI BASE)

0x57 /* Subaddress Register without Autoincrement */

(* (volatile unsigned int *)

/* Sub addressing offsets */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

30 Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC

DMSRCO_SUB
DMDSTO_SUB
DMCTRO_SUB
DMSFCO_SUB
DMMCRO_SUB
DMSRC1_SUB
DMDST1 SUB
DMCTR1 SUB
DMSFC1 SUB
DMMCR1 SUB
DMSRC2_SUB
DMDST2 SUB
DMCTR2_SUB
DMSFC2_ SUB
DMMCR2 SUB
DMSRC3_ SUB

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

DMSBANOI BASE)

‘E?'TEXAS

INSTRUMENTS SLAA097
#define DMDST3 SUB 0x10
#define DMCTR3_ SUB 0x11
#define DMSFC3 SUB 0x12
#define DMMCR3 SUB 0x13
#define DMSRC4 SUB 0x14
#define DMDST4 SUB 0x15
#define DMCTR4 SUB 0x16
#define DMSFC4 SUB 0x17
#define DMMCR4 SUB 0x18
#define DMSRC5_ SUB 0x19
#define DMDST5 SUB 0x1A
#define DMCTR5 SUB 0x1B
#define DMSFC5 SUB 0x1cC
#define DMMCR5 SUB 0x1D
#define DMSRCP SUB 0x1E
#define DMDSTP SUB 0x1F
#define DMIDXO SUB 0x20
#define DMIDX1 SUB 0x21
#define DMFRIO SUB 0x22
#define DMFRI1 SUB 0x23
#define DMGSA SUB 0x24
#define DMGDA SUB 0x25
#define DMGCR_SUB 0x26
#define DMGFR SUB 0x27

/* Define the base addresses for autoincrementing */
/* Autoincrementing addresses will be denoted with an A ending */

#define DMSRCO_ BASEA 0x56

#define DMSRC1 BASEA 0x56
#define DMSRC2 BASEA 0x56
#define DMSRC3 BASEA 0x56
#define DMSRC4 BASEA 0x56
#define DMSRC5 BASEA 0x56
#define DMDSTO BASEA 0x56
#define DMDST1 BASEA 0x56
#define DMDST2 BASEA 0x56
#define DMDST3 BASEA 0x56
#define DMDST4 BASEA 0x56
#define DMDSTS5 BASEA 0x56
#define DMCTRO_ BASEA 0x56
#define DMCTR1 BASEA 0x56

Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC 31

4E?TEXAS

SLAA097 INSTRUMENTS
#define DMCTR2 BASEA 0x56

#define DMCTR3 BASEA 0x56

#define DMCTR4 BASEA 0x56

#define DMCTRS5 BASEA 0x56

#define DMSFCO BASEA 0x56

#define DMSFC1 BASEA 0x56

#define DMSFC2 BASEA 0x56

#define DMSFC3 BASEA 0x56

#define DMSFC4 BASEA 0x56

#define DMSFC5 BASEA 0x56

#define DMMCRO BASEA 0x56

#define DMMCR1 BASEA 0x56

#define DMMCR2 BASEA 0x56

#define DMMCR3 BASEA 0x56

#define DMMCR4 BASEA 0x56

#define DMMCR5 BASEA 0x56

#define DMSRCP BASEA 0x56

#define DMDSTP BASEA 0x56

#define DMIDX0 BASEA 0x56

#define DMIDX1 BASEA 0x56

#define DMFRIO BASEA 0x56

#define DMFRI1 BASEA 0x56

#define DMSGA BASEA 0x56

#define DMGDA BASEA 0x56

#define DMGCR BASEA 0x56

#define DMGFR_BASEA 0x56

#define DMSRCO_ADDRA (* (volatile unsigned int *) DMSRCO_BASEA)
#define DMSRC1 ADDRA (*(volatile unsigned int ¥*) DMSRC1 BASEA)
#define DMSRC2_ ADDRA (*(volatile unsigned int ¥*) DMSRC2 BASEA)
#define DMSRC3 ADDRA (* (volatile unsigned int *) DMSRC3 BASEA)
#define DMSRC4 ADDRA (*(volatile unsigned int ¥*) DMSRC4 BASEA)
#define DMSRC5 ADDRA (*(volatile unsigned int ¥*) DMSRC5 BASEA)
#define DMDSTO ADDRA (*(volatile unsigned int ¥*) DMDSTO_ BASEA)
#define DMDST1 ADDRA (* (volatile unsigned int *) DMDST1 BASEA)
#define DMDST2 ADDRA (*(volatile unsigned int ¥*) DMDSTZ2 BASEA)
#define DMDST3 ADDRA (*(volatile unsigned int ¥*) DMDST3 BASEA)
#define DMDST4 ADDRA (*(volatile unsigned int ¥*) DMDST4 BASEA)
#define DMDSTS5 ADDRA (*(volatile unsigned int ¥*) DMDST5 BASEA)
#define DMCTRO_ADDRA (*(volatile unsigned int ¥*) DMCTRO_BASEA)
#define DMCTR1 ADDRA (*(volatile unsigned int ¥*) DMCTRO_BASEA)

32 Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC

Ji‘ TEXAS

INSTRUMENTS SLAA097

*

#define DMCTR2_ ADDRA
#define DMCTR3 ADDRA
#define DMCTR4 ADDRA
#define DMCTR5 ADDRA

volatile unsigned int * DMCTRO_BASEA)
DMCTROiBASEA)
DMCTRO_BASEA)

DMCTRO_BASEA)

*(volatile unsigned int *

*(volatile unsigned int *

*

(
(
(
(

volatile unsigned int *

(

(

(

(
#define DMSFCO_ADDRA ((volatile DMSFCn REG ¥*) ((char *) DMSFCO BASEA))
#define DMSFC1 ADDRA ((volatile DMSFCn REG ¥*) ((char *) DMSFC1 BASEA))
#define DMSFC2 ADDRA ((volatile DMSFCn_ REG ¥*) ((char *) DMSFC2 BASEA))
#define DMSFC3 ADDRA ((volatile DMSFCn REG ¥*) ((char *) DMSFC3 BASEA))
#define DMSFC4 ADDRA ((volatile DMSFCn REG ¥*) ((char *) DMSFC4 BASEA))
#define DMSFC5 ADDRA ((volatile DMSFCn REG ¥*) ((char *) DMSFC5 BASEA))
#define DMMCRO_ADDRA ((volatile DMMCRn_ REG ¥*) ((char *) DMMCRO BASEA))
#define DMMCR1 ADDRA ((volatile DMMCRn_REG *) ((char *) DMMCR1 BASEA))
#define DMMCR2 ADDRA ((volatile DMMCRn REG ¥*) ((c *) DMMCRZ2 BASEA))
#define DMMCR3 ADDRA ((volatile DMMCRn REG *) ((c *) DMMCR3 BASEA))
#define DMMCR4 ADDRA ((volatile DMMCRn REG ¥*) ((char *) DMMCR4 BASEA))
#define DMMCR5 ADDRA ((volatile DMMCRn_ REG ¥*) ((char *) DMMCRS5 BASEA))
#define DMSRCP ADDRA ((volatile DMSRCP REG *) ((char *) DMSRCP BASEA))
#define DMDSTP ADDRA ((volatile DMDSTP_ REG ¥*) ((char *) DMDSTP BASEA))
#define DMIDX0 ADDRA (* (volatile unsigned int *) DMIDX0 BASEA)
#define DMIDX1 ADDRA (* (volatile unsigned int *) DMIDX1 BASEA)

*

#define DMFRIO ADDRA
#define DMFRI1 ADDRA
#define DMSGA ADDRA

(* (volatile unsigned int
(*(
(*(
#define DMGDA ADDRA (*(volatile unsigned int *
(*(
(*(

DMFRIO BASEA)
DMFRI1 BASEA)
DMSGA BASEA
DMGDA BASEA
DMGCR_BASEA

DMGFR_ BASEA

*(volatile unsigned int *

*

*

volatile unsigned int
#define DMGCR_ADDRA *(volatile unsigned int *

*)
)
)
)
)
#define DMGFR ADDRA)

)
)
)

*(volatile unsigned int *)

/* Define the base addresses without autoincrementing */

#define DMSRCO_BASE 0x57

#define DMSRC1 BASE 0x57

#define DMSRC2 BASE 0x57

#define DMSRC3_ BASE 0x57

#define DMSRC4 BASE 0x57

#define DMSRC5 BASE 0x57

#define DMDSTO BASE 0x57

#define DMDST1 BASE 0x57

#define DMDSTZ2 BASE 0x57

#define DMDST3 BASE 0x57

#define DMDST4 BASE 0x57

#define DMDSTS5 BASE 0x57

Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC 33

4E?TEXAS

SLAA097 INSTRUMENTS
#define DMCTRO_ BASE 0x57

#define DMCTR1 BASE 0x57

#define DMCTR2 BASE 0x57

#define DMCTR3 BASE 0x57

#define DMCTR4 BASE 0x57

#define DMCTR5 BASE 0x57

#define DMSFCO_ BASE 0x57

#define DMSFC1l BASE 0x57

#define DMSFC2 BASE 0x57

#define DMSFC3 BASE 0x57

#define DMSFC4 BASE 0x57

#define DMSFC5 BASE 0x57

#define DMMCRO_BASE 0x57

#define DMMCR1 BASE 0x57

#define DMMCR2 BASE 0x57

#define DMMCR3 BASE 0x57

#define DMMCR4 BASE 0x57

#define DMMCR5 BASE 0x57

#define DMSRCP_ BASE 0x57

#define DMDSTP BASE 0x57

#define DMIDX0 BASE 0x57

#define DMIDX1 BASE 0x57

#define DMFRIO BASE 0x57

#define DMFRI1 BASE 0x57

#define DMSGA BASE 0x57

#define DMGDA BASE 0x57

#define DMGCR_BASE 0x57

#define DMGFR_BASE 0x57

#define DMSRCO ADDR (* (volatile unsigned int ¥*) DMSRCO_BASE)
#define DMSRC1 ADDR (* (volatile unsigned int *) DMSRC1 BASE)
#define DMSRC2 ADDR (*(volatile unsigned int *) DMSRC2 BASE)
#define DMSRC3 ADDR (*(volatile unsigned int *) DMSRC3 BASE)
#define DMSRC4 ADDR (* (volatile unsigned int *) DMSRC4 BASE)
#define DMSRC5_ ADDR (* (volatile unsigned int *) DMSRC5 BASE)
#define DMDSTO ADDR (* (volatile unsigned int *) DMDSTO_ BASE)
#define DMDST1 ADDR (*(volatile unsigned int *) DMDST1 BASE)
#define DMDST2 ADDR (* (volatile unsigned int *) DMDST2 BASE)
#define DMDST3 ADDR (* (volatile unsigned int *) DMDST3 BASE)
#define DMDST4 ADDR (*(volatile unsigned int *) DMDST4 BASE)

34 Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC

‘E?'TEXAS

INSTRUMENTS

SLAA097

#define

DMDSTS5 ADDR

(* (volatile

unsigned int

DMDSTS5 BASE)

#define DMCTRO_ADDR (*(volatile unsigned int *) DMCTRO_BASE)
#define DMCTR1 ADDR (*(volatile unsigned int *) DMCTR1 BASE)
#define DMCTR2 ADDR (*(volatile unsigned int *) DMCTR2_ BASE)
#define DMCTR3_ADDR (*(volatile unsigned int *) DMCTR3 BASE)
#define DMCTR4 ADDR (*(volatile unsigned int *) DMCTR4 BASE)
#define DMCTR5 ADDR (*(volatile unsigned int *) DMCTRS5 BASE)
#define DMSFCO_ADDR ((volatile DMSFCn REG ¥*) ((char *) DMSFCO BASE))
#define DMSFC1 ADDR ((volatile DMSFCn REG ¥*) ((char *) DMSFC1 BASE))
#define DMSFC2 ADDR ((volatile DMSFCn REG ¥*) ((char *) DMSFC2 BASE))
#define DMSFC3 ADDR ((volatile DMSFCn REG ¥*) ((char *) DMSFC3 BASE))
#define DMSFC4 ADDR ((volatile DMSFCn REG ¥*) ((char *) DMSFC4 BASE))
#define DMSFC5 ADDR ((volatile DMSFCn REG ¥*) ((char *) DMSFC5 BASE))
#define DMMCRO_ADDR ((volatile DMMCRn_ REG ¥*) ((char *) DMMCRO BASE))
#define DMMCR1 ADDR ((volatile DMMCRn_ REG ¥*) ((char *) DMMCR1 BASE))
#define DMMCR2 ADDR ((volatile DMMCRn_ REG ¥*) ((char *) DMMCR2 BASE))
#define DMMCR3 ADDR ((volatile DMMCRn REG ¥*) ((char *) DMMCR3 BASE))
#define DMMCR4 ADDR ((volatile DMMCRn REG ¥*) ((char *) DMMCR4 BASE))
#define DMMCRS5 ADDR ((volatile DMMCRn_ REG ¥*) ((char *) DMMCR5 BASE))
#define DMSRCP ADDR ((volatile DMSRCP REG ¥*) ((char *) DMSRCP_BASE))
#define DMDSTP ADDR ((volatile DMDSTP REG ¥*) ((char *) DMDSTP_ BASE))
#define DMIDX0 ADDR (*(volatile unsigned int *) DMIDX0 BASE)
#define DMIDX1 ADDR (*(volatile unsigned int *) DMIDX1 BASE)
#define DMFRIO ADDR (*(volatile unsigned int *) DMFRIO BASE)
#define DMFRI1 ADDR (*(volatile unsigned int *) DMFRI1 BASE)
#define DMSGA ADDR (*(volatile unsigned int *) DMSGA BASE)
#define DMGDA ADDR (*(volatile unsigned int *) DMGDA BASE)
#define DMGCR_ADDR (*(volatile unsigned int *) DMGCR_BASE)
#define DMGFR ADDR (*(volatile unsigned int *) DMGFR BASE)
P R .
/* DMPREC */
/* ___ */
typedef union {
struct {

unsigned int free:1;

unsigned int rsvd:1;

unsigned int dprc:6;

unsigned int intosel:2;

Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC 35

4E?TEXAS

SLAA097 INSTRUMENTS
unsigned int de:6;
} bitval;
unsigned int value;
} DMPREC REG;
/ - * /
/* DMFCn */
/ - * /
typedef union {
struct {
unsigned int dsyn:4;
unsigned int dblw:1;
unsigned int rsrvd:3;
unsigned int framecount:8;
} bitval;
unsigned int value;
} DMSFCn_REG;
2 —————— */
/* DMMCRn */
2 ——————— */
typedef union {
struct {
unsigned int autoinit:1;
unsigned int dinm:1;
unsigned int imod:1;
unsigned int ctmod:1;
unsigned int rsrvdl:1;
unsigned int sind:2;
unsigned int dms:2;
unsigned int rsrvd2:1;
unsigned int dind:3;
unsigned int dmd:2;
} bitval;
unsigned int value;
} DMMCRn_REG;
/ - * /
/* DMSRCP */
/ - * /
typedef union {
struct {
unsigned int rsvd :9;

36 Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC

J@ TEXAS
INSTRUMENTS

SLAA097

unsigned int source 27

} bitval;
unsigned int value;

} DMSRCP_REG;

typedef union {
struct {
unsigned int rsvd

unsigned int dest
} bitval;
unsigned int wvalue;

} DMDSTP_REG;

Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC

37

SLAA097

4E?TEXAS

INSTRUMENTS

Appendix C dma_src.c

/*************************************~k****k*k*k*k************************/

/* */
/*Function: DMA reset () */
/*file name: dma_src.c */

/*Description: This function performs a reset of all DMA registers. */

/*Inputs: None */
/*Outputs: None */
/*Returns: None */
/* AUTHOR: AAP Application Group, L. Philipose, Dallas */
/* CREATED 2000 (C) BY TEXAS INSTRUMENTS INCORPORATED. */

/**/

#include ”c5402Reg.h”
void DMA reset (void)
{ /* DMA Initialization */

/* Zero all Frame and Sync Registers */

/* Clear Channel 0 */
DMSBA ADDR = DMSFCO_SUB; /* Subaddress Frame-Sync */
DMSFCO_ADDR—>Value = 0x0;

DMSBA ADDR = DMSRCO_SUB; /* Subaddress Source */
DMSRCO ADDR = 0x0;

/* Clear Channel 1 */
DMSBA ADDR = DMSFC1 SUB; /* Subaddress Frame/Sync */
DMSFC1 ADDR->value = 0x0;

DMSBA ADDR = DMSRC1 SUB; /* Subaddress Source */
DMSRCl_ADDR = 0x0;

/* Clear Channel 2 */
DMSBA ADDR = DMSFC2 SUB; /* Subaddress Frame/Sync */
DMSFC2 ADDR->value = 0x0;

DMSBA ADDR = DMSRC2_ SUB; /* Subaddress Source */
DMSRC2 ADDR = 0x0;

/* Clear Channel 3 */
DMSBA ADDR = DMSFC3 SUB; /* Subaddress Frame/Sync */
DMSFC3 ADDR->value = 0x0;

DMSBA ADDR = DMSRC3_ SUB; /* Subaddress Source */
DMSRC3_ADDR = 0x0;

38 Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC

J@ TEXAS
INSTRUMENTS SLAA097

/* Clear Channel 4 */
DMSBA ADDR = DMSFC4 SUB; /* Subaddress Frame/Sync */
DMSFC4 ADDR->value = 0x0;

DMSBA ADDR = DMSRC4 SUB; /* Subaddress Source */
DMSRC4 ADDR = 0x0;

/* Clear Channel 5 */
DMSBA ADDR = DMSFC5 SUB; /* Subaddress Frame/Sync */
DMSFC5 ADDR->value = 0x0;

DMSBA ADDR = DMSRC5 SUB; /* Subaddress Source */
DMSRC5 ADDR = 0x0;

/* General Stop/Reset of DMA */

DMAPREC ADDR->value = 0x0; /* STOP all DMA channels */

DMSBA ADDR = DMSRCP_SUB; /* Subaddress Source Program Page Address */
DMSRCP_ADDRA->value = 0x0; /* Use autoincrement address */
DMDSTP ADDRA->value = 0x0; /* Destination page (Auto) */
DMIDX0 ADDRA = 0x0; /* Index Register 0 (Auto) */
DMIDX1 ADDRA = 0x0; /* Index Register 1 (Auto) */
DMFRIO ADDRA = 0xO0; /* Frame Index Register 0 (Auto) */
DMFRI1 ADDRA = 0x0; /* Frame index Register 1 (Auto) */
DMSGA ADDRA = 0x0; /* Global Source Address Reload Register (Auto) */
DMGDA ADDRA = 0x0; /* Global Destination Address Reload Register (Auto)?*/
DMGCR_ADDRA = 0x0; /* Global Count Reload Register (Auto) */
DMGFR_ADDRA = 0x0; /* Global Frame Count Reload Register (Auto) */

/**/

/* */
/*DMA init */
/*file name: dma src.c */
/*Description This function performs the initialization of all */
/* DMA channels. It is capable of initializing the */
/* channels one at a time. */
/* */
/*Inputs: channel - selects the channel to be initialized 0,1 */
/* source — source of data (input/read) */
/* destination - destination of data (output/write) */
/* count - number of DMA transfers to be performed */
/* frame sync - element that initiates each transfer */
/* control mode - transfer mode control */
/* */
/*Outputs: None */

Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC 39

{if‘ TexAS

SLAA097 INSTRUMENTS
/*Returns: None */
/*Note: Although DMA init sets up the channel, it does NOT start */
/* the DMA channel running. This must be done separately by */
/* modifying the DMPREC register. */
/* */
/* AUTHOR: AAP Application Group, L. Philipose, Dallas */
/* CREATED 2000 (C) BY TEXAS INSTRUMENTS INCORPORATED. */
/********************************'k‘k*k*k*k*k*k*k*k*k*k*k*k*k*k*k***************************/
void DMA init(wunsigned int channel,

unsigned int source,

unsigned int destination,

unsigned int count,

unsigned int frame sync,

unsigned int control mode)

switch (channel)

{

case 0:

case 1:

/*Initialize

DMSBA ADDR =

DMSRCO_ADDRA

DMDSTO_ ADDRA

DMCTRO_ADDRA

>value =

>value =

DMA channel 0 Registers*/
DMSRCO_SUB; /* Sub Address Register */
= source;

= destination;

count; DMSFCO ADDRA-

frame sync; DMMCRO ADDRA-

control mode; break;

DMSBA ADDR =

DMSRC1 ADDRA

DMDST1 ADDRA

DMCTR1 ADDRA

>value

>value =

/*Initialize DMA channel 1 Registers*/

DMSRC1_SUB; /* Sub Address Register */

sourcey

destination;

= count; DMSFC1 ADDRA-

frame sync; DMMCR1 ADDRA-

control mode; break;

40 Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC

J@ TEXAS
INSTRUMENTS SLAA097

Appendix D Mcbspsrc.c

/*k*k*k*k*k*k*k*k*k*k*k*k*k*k***/

/* */
/*Function: MCBSP1 init () *x/
/* */
/*file name: mcbspsrc.c */
/*Description: This function performs the initialization of McBSP1 */
/* Registers. It begins by resetting the Frame-sync Generator, */
/* Sample-Rate Generator, Transmitter and Receiver. Once */
/* registers are programmed in enables the Frame-sync and Sample */
/* rate generators only. */
/* */
/*Inputs: Address of McBSP object. This structure contains all */
/* the McBSP Registers and their desired values. */
/*Outputs: None */
/*Returns: None */
/*Note: Although MCBSP init sets up the channel, it does NOT */
/* Enable the Transmitter or Receiver. This is done by modifying */
/* bit 0 of SPCRI1 (for Receiver) and SPCR2 (for Transmitter). */
/* The Multi-channel registers are NOT currently not programmed. */
/* Those lines were commented out simple to save cycles, because */
/* we currently don’t use the multi-channel McBSP features. */
/*AUTHOR: AAP Application Group, L. Philipose, Dallas */
/* CREATED 2000(C) BY TEXAS INSTRUMENTS INCORPORATED. */

/***/
#include ”c5402Reg.h”

void MCBSPl_init(MCBSP *pMcBSP)

{

unsigned int 1=0;

/* McBSP 1 Place McBSP into reset*/
SPSA1 ADDR = SPCR11 SUB; /* Clear the RRST bit */
SPCR11 ADDR->value = pMcBSP->RegVal.SPCR1 REG & OxXFFFE;

SPSA1 ADDR = SPCR21 SUB; /* Clear the XRST FRST GRST bits */
SPCR21 ADDR->value = pMcBSP->RegVal.SPCR2 REG & OxFF3E;

for (i=0;i<5;i++); /*Wait for transmitter and Receiver */
/*to Power Off */

SPSA1 ADDR = RCR11 SUB;
RCR11 ADDR->value = pMcBSP->RegVal.RCR1 REG ;

Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC 41

4E?TEXAS

SLAA097 INSTRUMENTS
SPSA1 ADDR = RCR21 SUB;
RCR21 ADDR->value = pMcBSP->RegVal.RCR2 REG;
SPSA1 ADDR = XCR11l SUB;
XCR11 ADDR->value = pMcBSP->RegVal.XCR1l REG;
SPSA1 ADDR = XCR21 SUB;
XCR21 ADDR->value = pMcBSP->RegVal.XCR2 REG;
SPSA1 ADDR = SRGR11 SUB;
SRGR11 ADDR->value = pMcBSP->RegVal.SRGR1 REG;
SPSA1 ADDR = SRGR21 SUB;
SRGR21 ADDR->value = pMcBSP->RegVal.SRGRZ REG;
/* Since we are not currently using the multichannel
* capabilities of the McBSP, these registers will not be
* programmed.
*/
/* SPSA1 ADDR = MCR11l SUB;

MCR11 ADDR->va

SPSA1 ADDR

MCR21 ADDR->va

SPSA1l ADDR

RCERA1 ADDR->value

SPSA1 ADDR

RCERB1 ADDR->value

SPSA1l ADDR
XCERAL ADDR->v

X

SPSA1 ADDR = X
XCERB1 ADDR->V
SPSA1 ADDR = P

PCR1 ADDR->val

/*Enable Sample-Rate Generator

SPSAI_ADDR SPCRZl_SUB;
SPCR21 ADDR->bitval.frst

SPCR21 ADDR->bitval.grst

42

lue pMcBSP->RegVal.MCR1 REG ;

MCR21 SUB;

lue

pMcBSP->RegVal.MCR2 REG;

RCERAL SUB;

pMcBSP->RegVal.RCERA REG;

RCERB1 SUB;

pPMcBSP->RegVal.RCERB REG;

CERAL SUB;

alue

pMcBSP->RegVal.XCERA REG;

CERB1 SUB;

alue

pMcBSP->RegVal.XCERB REG ;
CR1 SUB;

ue pMcBSP->RegVal.PCR REG;

and Frame-Sync Generator*/

/*Choose Serial Port Control Register 2*/
1;
1;

/*Frame-Sync generator pulled out of Reset*/

/*Sample-Rate Generator pulled out of Reset*/

Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC

J@ TEXAS
INSTRUMENTS SLAA097

Appendix E adc_const.h

/***/

/* */
/*file name: adc_const.h */
/*Description: Contains various DSP and ADC parameters */
/*Inputs: None */
/*Outputs: None */
/*Returns: None */
/*Note: None */
/*AUTHOR: AAP Application Group, L. Philipose, Dallas */
/* CREATED 2000 (C) BY TEXAS INSTRUMENTS INCORPORATED. */

/*k*k*k*k***/

/*DSP Parameters*/

#define DSP_FREQ (100) /* In MHz */
#define CPU_100MHZ (0x4007) /* Set C5402 DSK to run at 100MHz */
#define SERCLOCK (5) /* Serial clock speed in MHz */

/*ADC control words*/

#define ADChanO 0x0000 //5V & ext ref
#define ADChanl 0x0080 //5V & ext ref
#define ADChan4 0x0200 //5V & ext ref
#define ADChanb5 0x0280 //5V & ext ref
#define ADChan6 0x0300 //5V & ext ref
#define ADChan7 0x0380 //5V & ext ref

Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC 43

{ir‘ TexAS

SLAA097 INSTRUMENTS

Appendix F C5402 Memory Mapping

/*File: dma tlv1570.cmd */
/*Description: ’C5402 DSK Memory Mapping */
MEMORY
{
PAGE 0O: PRAMO: origin = 0x0060 length = O0x04FF
PAGE 0: CODE: origin = 0x0560 length = 0x3000
PAGE 0: VECTOR: origin = 0x3600 length = 0x0080
PAGE 1: DRAMO: origin = 0x0060 length = 0xOFAO
PAGE 1: DATA: origin = 0x1000 length = 0x3000
}
SECTIONS

{
.vectors > VECTOR PAGE 0 /*Typically where User Interrupt Vector */

/*Table is stored */
.text > CODE PAGE O /*Typically where source code is located */
.cinit > CODE PAGE O
.bss > PRAMO PAGE O

44 Using TMS320C5402 DMA Channels to Read From the TLV1570 ADC

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you
permission to use these resources only for development of an application that uses the Tl products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third
party intellectual property right. Tl disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	ABSTRACT
	2 Hardware 2
	3 Software
	. 3
	4 References 14
	Appendix A main.c 15
	Appendix B c5402Reg.h 19
	Appendix C dma_src.c 38
	Appendix D Mcbspsrc.c 41
	Appendix E adc_const.h 43
	Appendix F C5402 Memory Mapping 44
	List of Figures
	List of Tables
	3.2 CPLD
	3.2.1 DSP CNTL2 Control Register (I/O Address = 0x0004)
	3.2.2 Write to CPLD Register CNTL2

	3.3 McBSP
	Figure 2. McBSP Register Bits With Respect to Serial-Port Function

	3.4 DMA
	Figure 3. DMA Subaddressing Scheme

	3.5 TLV1570
	3.5.1 Data Converter Operation
	Figure 6. DMA Triggered Multiple Conversions

	Appendix B c5402Reg.h
	Appendix C dma_src.c
	Appendix D Mcbspsrc.c
	Appendix E adc_const.h
	Appendix F C5402 Memory Mapping

