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ABSTRACT

TIDL is TI’s AI inference framework operating on TDA4x and AM6xA series processors, utilizing the built-in 
C7xMMA AI accelerator for efficient AI model inference. The C7xMMA, as a dedicated AI inference accelerator, 
features a complex architecture. While the TIDL inference framework has extensively optimized its resource 
allocation to maximize utilization efficiency, high memory bandwidth consumption can still occur during model 
inference. To further leverage inference resources and reduce memory usage, models running on TIDL require 
additional optimization. This document details model optimization methods aimed at reducing DDR bandwidth 
consumption.
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1 Introduction
Current SoCs capable of AI model inference typically employ one of two architectures: those integrating general-
purpose GPUs, and those incorporating dedicated AI inference accelerators, commonly termed NPUs. TI’s 
AI-accelerated SoCs in TDA4x and AM6xA portfolios adopt the latter approach, with their NPU often referred 
to as C7xMMA. This name originates from the NPU’s two components: the C7000 series floating-point digital 
signal processor and a Matrix Multiply Accelerator (MMA). The C7x series DSP core runs an RTOS, handling 
data scheduling and non-linear processing within the model. The MMA, which is deeply coupled with the C7x, is 
responsible for linear algebra operations like matrix multiplication and 2D convolutions that make up >99% of the 
computation requirements for most neural networks.

TI provides the TI Deep Learning (TIDL) inference framework, offering a unified interface for easy invocation by 
the high-level operating system (e.g., Linux, QNX). Invocation methods are beyond this document’s scope, we 
assume reader familiarity with the relevant interfaces and will focus on model optimization techniques. Users 
leverage TIDL tooling to compile models for a particular processor. TIDL then deploys quantized, compiled 
models onto the NPU, allowing users to invoke inference using the TIDL runtime (TIDL-RT), tivxTIDLNode or 
open-source runtimes (OSRT) like ONNX Runtime or Tensorflow-Lite.

TIDL memory read/write bandwidth refers to the load on the DDR interface. For instance, if a single inference 
frame requires reading 100MB from DDR (including model weights, input, and intermediate layer feature maps) 
and writing 50MB to DDR (including model output and intermediate feature maps), achieving a 30 fps frame 
rate demands a total DDR read/write bandwidth of 4.5 GB/s. Given that single-channel DDR4 might offer actual 
bandwidth around 8 GB/s, TIDL model inference can consume significant bandwidth.

Some devices like AM67A and TDA4VH include multiple instances of the C7x. Parallel inference tasks 
running across parallel accelerators will have further implication on the DDR utilization and contention, 
although processors like TDA4VH will include multiple DDR interfaces. System-wide DDR contention should 
be considered when viewing system-level performance, but the optimizations in this document remain beneficial 
for reducing DDR utilization in the first place to improve model performance.

Optimizing DDR bandwidth requires some understanding of the C7xMMA cache structure, effectively utilizing 
TIDL tools, and potentially modifying the model.
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2 C7xMMA Cache Structure
DDR bandwidth optimization starts with comprehending the TI C7xMMA’s memory hierarchy, simplified in the 
figure below.

Figure 2-1. C7xMMA Three-Level Cache Structure

The C7xMMA employs a three-level cache structure. Beyond external DDR, it incorporates internal L1D, L2, and 
L3/MSMC caches. L1D is the smallest and closest to the compute core (typical size 16KB). L2 is somewhat 
more distant (typical sizes 224KB, 448KB), but tightly coupled to data movement mechanisms for the MMA. 
L3 on TDA4x is the Multicore Shared Memory Controller (MSMC), while on other SoCs, it isSRAM managed 
individually by each C7xMMA. Note: The L1D, L2, L3 terminology here corresponds to the TIDL framework’s 
description; chip datasheets may refer to L1P, L1D, L2, and in some SoCs, L3 (i.e. MSMC on TDA4VM). The 
size of L2 and L3 regions can be found in a device_config.cfg file included in tidl tools

The figure below shows cache usage during a typical layer's inference, involving four operations. Operation 1 
is DMA transferring data directly from DDR to L2. Operation 2 moves data from L3 to L2. Operation 3 transfers 
data from L2 to L3. Operation 4 moves data from L3 to DDR. Operations 2 and 3 are over ten times more 
efficient than 1 and 4. Utilizing the previous layer’s feature map can lead to three scenarios: only Operation 1 
(if the input layer and previous layer output reside entirely in DDR); only Operation 2 (if the previous feature 
map fits completely in L3/MSMC); or both Operations 1 and 2 (if the previous output is too large for L3, partially 
stored in DDR). After computing the current layer’s feature map, Operation 3 is prioritized to move data to L3. If 
L3 capacity is exceeded, Operation 4 stores the surplus in DDR. Weight values are always stored in DDR and 
fetched directly to L2 when needed.

Figure 2-2. C7xMMA Cache Operations

This three-level cache architecture significantly boosts inference efficiency by avoiding slow DDR read/writes 
during compute cycles and conserving DDR bandwidth. The key to improving efficiency and saving bandwidth 
lies in maximizing L3 utilization, preventing feature map storage in DDR. The next section covers analyzing 
model memory usage.
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3 Model DDR Read/Write Analysis for a Compiled TIDL Model
The TI model compilation tool provides corresponding interfaces to facilitate fast DDR read/write analysis. When 
compiling the model, a bufinfolog_0.csv file will be generated in the output folder. To be precise, it will be in a 
folder with naming like artifacts/tempDir/$SUBGRAPH_NAME_tidl_net, where the SUBGRAPH_NAME is model 
dependent. Exact names of the folder structure may have slight changes in different SDK releases.

It is important to note that when using the RTOS (i.e., tidl_model_import.out) tool, you must ensure that a 
perfSimConfig is provided and that the tool executes without errors. In any scenario where model compilation 
fails, the errors must be resolved before analyzing bandwidth consumption. Any error logs during the compilation 
process may lead to inaccurate analysis results.

The table below explains the key fields in the bufinfolog CSV file.

Table 3-1. Description of fields in bufinfolog CSV files
Field Description
Ni Input feature map channel dimension.

No Output feature map channel dimension.

InW Input feature map width dimension.

InH Input feature map height dimension.

OutW Output feature map width dimension.

OutH Output feature map height dimension.

In-Write-size Actual input feature map size, calculated in Bytes. May include some small overhead 
for padding or the DMA bus sizing

In-Write-memSpace L2 or DDR; All layers use L2 except the Data layer (input/output layers)

Out-Read-memSpace Temporary storage location for current layer's computation results. Values are typically 
empty, L2, MSMC, or DDR. Empty indicates computed results are directly stored into 
Out-Write-memSpace. When a value is present, it indicates part of the current layer's 
output feature map needs to be stored in Out-Read-memSpace first, then read from 
this space and written into Out-Write-memSpace.

Out-Write-memSpace Final storage location for current layer's feature map. Values are DDR or MSMC. DDR 
indicates the current layer's output feature map cannot fully fit into MSMC, so part or all 
of it is stored in DDR. MSMC indicates the output is entirely stored in MSMC for use by 
subsequent layers.

Out-Write-size Amount of data stored in the Out-Write-memSpace by the current layer. When Out-
Write-memSpace is DDR, this value represents the current layer's contribution to DDR 
write bandwidth consumption. May include some small overhead for padding or the 
DMA bus sizing

Wt-Write-memSpace Loading location for current layer's weights. Always L2. Weight values are entirely 
stored in DDR and loaded into L2 when used.

Wt-Write-size Size of the current layer's weight data. This value contributes to DDR read bandwidth 
consumption. May include some overhead for padding or DMA bus sizing

Among the fields mentioned above, DDR write bandwidth is primarily influenced by the value of Out-Write-
memSpace. By reducing the output feature map size for a layer, the DDR write bandwidth consumption can be 
significantly decreased.

DDR read bandwidth is mainly affected by Wt-Write-size and In-Write-size. Notably, In-Write-size only has an 
impact when the output of the previous layer is partially or entirely stored in DDR.

Therefore, the key to reducing DDR read/write bandwidth lies in optimizing the model to minimize the read 
bandwidth caused by weights and the read/write bandwidth resulting from large feature maps.

Model DDR Read/Write Analysis for a Compiled TIDL Model www.ti.com

4 Optimizing TI Deep Learning Performance via Memory and DDR Bandwidth 
Reduction

SDAA175 – NOVEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA175
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA175&partnum=


4 Model Optimization
Based on the above, reducing DDR bandwidth relies on keeping intermediate feature maps in L3, necessitating 
intentional model design.

4.1 Simple Structure Models
Simple models have linear, non-branching structures. The initial section of EfficientNet shown below is entirely 
sequential. Here, ensuring each layer’s output fits within L3 suffices. TIDL can automatically configure layers to 
run using L3, avoiding DDR interaction. DDR interaction will still be required when intermediate feature maps are 
larger than the L3 size.

Figure 4-1. Simple Model with Sequential Layer Ordering
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4.2 Complex Structure
Many models in practice have more complicated structures and graph patterns than sequential layers only. The 
next sections will look at a few examples of more complicated structures and what this entails for DDR and 
cache usage.

4.2.1 Residual Structures

Many backbone networks use residual structures like the one shown, creating localized parallel paths called 
"Residuals" that are beneficial during training. Residuals avoid the the vanishing gradient problem.

During compilation, TIDL simulates DDR bandwidth for different computation orders (left branch first, right first, 
interleaved), and will select the most efficient. It also decides whether the first Conv layer’s output stays in 
L3/MSMC until the add operation or is written to DDR immediately. Storing in DDR causes direct bandwidth 
cost, while holding in L3 may occupy memory during left branch computation, potentially forcing parts of the left 
branch to use DDR instead.

TIDL will select a strategy that maximizes L3 occupancy, but large intermediate feature maps may require DDR 
be used. In this case, it is recommeded to prioritize optimizing the size of the longer path (left-side in the figure) 
to avoid multiple feature-maps going to DDR as opposed to the single feature map along the skip connection.
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Figure 4-2. Residual structure in a neural network. The right-side path’s “skip” connection has a feature 
map that must be stored until the left-side path completes

4.2.2 Parallel Branch Merge

Applications often involve multiple deep parallel branches merging into one, or one branch splitting into several 
deep parallel paths. This is especially common for multi-input neural networks. The figure shows part of a classic 
four-input BEV network after the gridsample operator merges paths.

Since paths are deep before merging, feature maps must be placed in DDR at the merge point, making 
DDR bandwidth consumption unavoidable here. Such architectures should be used only as needed to avoid 
excession DDR bandwidth and resulting bottlenecks. However, it may be possible to reduce the DDR read 
bandwidth caused by weights. The model architecture can be modified to consolidate multiple input heads and 
setting the batch dimension of certain model layers to a value greater than 1 such that weights need only load 
once.
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Figure 4-3. Complex structure merging multiple parallel branches

For example, in the above figure, the same backbone network precedes the GridSample layers and the feature 
maps at each layer of this backbone are relatively small. The four branches can be merged into two or even one, 
with the batch dimension adjusted accordingly. These would be followed by appropriate Slice or data-shaping 
layers to separate out the batches again so they can be recombined by the Add layers shown. This approach 
can reduce or even prevent the same weights from being repeatedly loaded, thereby lowering DDR read 
bandwidth overhead. This method requires attention to the size of the feature maps in the merged backbone 
network.
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5 Summary
Model optimization for DDR bandwidth primarily involves reducing per-layer feature map size and increasing 
depth. DDR bandwidth consumption may be unavoidable with complex structures. TI’s Model Zoo offers 
numerous optimized and validated models and backbones. Given the maturity of common architectures, 
consider replacing your model’s backbone with a TI-optimized version for rapid improvement.

This document detailed methods for analyzing model DDR bandwidth consumption and optimizing models to 
reduce it. This is highly relevant for users of TDA4x, AM6xA series SoCs, and the TIDL inference framework. 
Applying these methods typically results in optimized models consuming bandwidth only for inputs and outputs, 
freeing significant resources for the overall system.
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