AMC0386 Output Histograms in HEV/EV Traction Inverter Voltage Sensing Application

Jiri Panacek

Introduction

The AMC038x is a family of galvanically-isolated amplifiers and modulators designed for high-voltage sensing applications. Different from traditional isolated amplifiers and modulators, such as the AMC1311 and AMC1336, these devices feature a high-impedance, integrated resistive divider that connects directly to a high-voltage signal source. The integrated divider exhibits excellent DC accuracy, low temperature drift, and high life-time stability. AMC038x devices achieve better than 1% accuracy over a lifetime and temperature range without system-level calibration.

In a typical application, the integrated high-impedance resistive divider replaces a discrete resistive divider with much lower impedance. For comparison, the AMC0386M10 has a divider impedance of $12.5M\Omega$. Typical discrete implementations are in the range of $2-5M\Omega$ due to concerns over coupling noise into a high-impedance sense point. This application brief summarizes measurement results under real-life operating conditions in a high-power application. Results show that the integrated high-impedance resistive divider is not affected by switching noise in the system.

Table 1. AMC038x Family Device Comparison

Device	Туре	R1 (1)	R2 (1)	DIVIDER RATIO	LINEAR INPUT RANGE	CLIPPING VOLTAGE	ABS MAX INPUT VOLTAGE	
AMC0381D06-Q1	Isolated amplifier	10ΜΩ	16.7kΩ	601:1	600V	769V	900V	
AMC0381D10-Q1	Isolated amplifier	12.5ΜΩ	12.5kΩ	1001:1	1000V	1281V	1500V	
AMC0381D16-Q1	Isolated amplifier	33.5ΜΩ	21kΩ	1601:1	1600V	2049V	2000V	
AMC0380D04-Q1	Isolated amplifier	8.3ΜΩ	20kΩ	401:1	±400V	±513V	±600V	
AMC0386M06-Q1	Isolated modulator	10ΜΩ	16.6kΩ	601:1	±600V	±751V	±900V	
AMC0386M10-Q1	Isolated modulator	12.5ΜΩ	12.5kΩ	1001:1	±1000V	±1251V	±1500V	

1. R1 and R2 are approximated resistor values and do not accurately reflect divider ratio.

The latest revision of the TIDA-02014, high-power, high-performance automotive SIC traction inverter reference design, integrates AMC0381M10 device for DC-link voltage sensing. Figure 1 shows the implementation on the PCB. For the circuit diagram, see the reference design folder on ti.com.

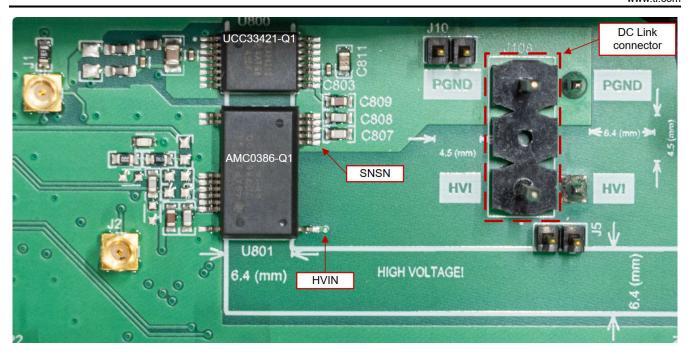


Figure 1. TIDM-02014 DC Link Voltage Sensing Subsystem with AMC0381M10

The AMC0386M10 is an isolated modulator with 10MHz external clock. The digital output connects to the sigma-delta filter module (SDFM) of the F29H859TU-Q1 microcontroller (MCU). The SDFM converts the 10MHz single-bit data stream from the modulator into a 16-bit word at a sample rate of 10MHz/OSR. A 16b data in 2's complement format can store integer from -32768 to +32767. However, the SDFM module in 16b result configuration outputs data in the range from -16384 to +16384. For this reason, the LSB size is double the expected value. Table 2 lists the system configuration.

Table 2. TIDA-02014 System Configuration

Modulator Clock	Filter Over-Sampling Ratio (OSR)		Output Data Format Differential Clipping Voltage		LSB Size
10MHz	Sinc3	256Ω	16b 2's complement	±1251V	76.35mV

The reference design was tested in a motor laboratory under various operating conditions. During the tests, the microcontroller stores voltage readings in the internal debug memory. 1000 voltage readings were collected for each operating condition and plot histograms. The histogram width and distribution help engineers identify how the real-life conditions affect the voltage measurement subsystem. The motor runs at 100RPM during all tests. This mechanical speed corresponds to an electrical frequency of 6.66Hz for a four-pole electric motor.

Figure 2 shows histograms of the voltage readings at a nominal 400V DC-link voltage, and phase peak currents of 0A, 50A, 100A, and 150A. The histogram bin width corresponds to the least significant bit (LSB) size. The histograms illustrate that the noise floor, represented by the width of the distribution, slightly increases with the phase current, as expected. However, no outliers in the data are observed. Table 3 summarizes the test results. Root mean square (RMS) noise, signal-to-noise ratio (SNR) and effective number of bits (ENOB) parameters are approximations that assume Gauss distribution of the noise.

Equation 1 calculates the RMS noise in volts:

$$RMSnoise = \sigma \times LSB \tag{1}$$

where

- σ is standard deviation of the SDFM output data
- LSB is the size of the least significant bit in volts (refer to Table 2)

Equation 2 calculates SNR in decibels:

$$SNR = 20 \times \log \left(\frac{V_{IN}}{RMSnoise} \right)$$
 (2)

where

- V_{IN} is the linear input voltage range of the AMC0386M10 device (2000V)
- · RMS noise is the value from Equation 1

Equation 3 calculates ENOB in bits:

$$ENOB = \frac{SNR - 1.76}{6.02}$$
 (3)

where

• SNR is signal-to-noise ratio in decibels

Table 3. Test Results Summary for Phase Current Sweep at 400V

Table of Test Results Summary 15.1 Hass Summit on Sup at 1881								
Phase Current	DC Link Voltage Readout (MIN)	DC Link Voltage Readout (AVG)	DC Link Voltage Readout (MAX)	DC Link Voltage RMS Noise	DC Link Voltage SNR	DC Link Voltage ENOB		
0A	399.170V	399.626V	400.085V	0.154V _{RMS}	82.3dB	13.4b		
50A	399.018V	399.599V	400.237V	0.203V _{RMS}	79.9dB	13b		
100A	398.789V	399.650V	400.618V	0.349V _{RMS}	75.2dB	12.2b		
150A	398.408V	399.548V	401.000V	0.382V _{RMS}	74.4dB	12.1b		

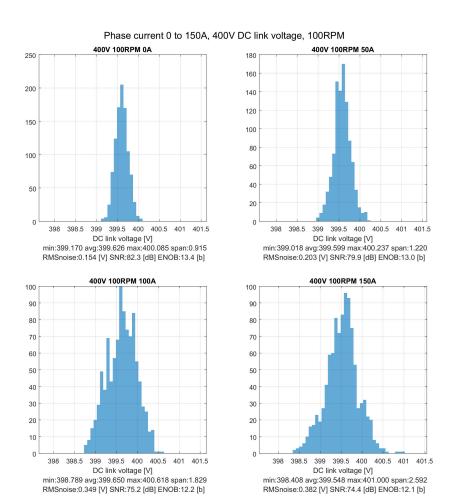
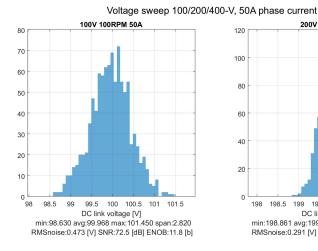



Figure 2. Phase Current Sweep at Fixed DC-link Voltage of 400V

Figure 3 displays histograms of the voltage readings at nominal 100V, 200V, and 400V DC-link voltage at a fixed 50A phase peak current. The histogram plots show that the noise decreases as the input voltage increases. Expect this behavior because the input current increases when the input voltage decreases. Additionally, reducing the input voltage affects the SNR calculation. Table 4 summarizes the results.

Table 4. Test Results Summary for DC Link Voltage Sweep at Phase Current of 50A

DC Link Voltage	DC Link Voltage Readout (MIN)	DC Link Voltage Readout (AVG)	DC Link Voltage Readout (MAX)	DC Link Voltage RMS Noise	DC Link Voltage SNR	AMC0386 SNR (Spec)
100V	98.630V	99.968V	101.450V	0.473V _{RMS}	72.5dB	11.8b
200V	198.861V	199.787V	200.690V	0.291V _{RMS}	76.8dB	12.5b
400V	399.018V	399.599V	400.237V	0.203V _{RMS}	79.9dB	13.0b

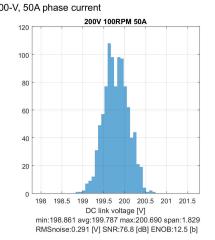


Figure 3. DC Link Voltage Sweep for 50A Phase Current

Trademarks

All trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025