
Application Note
Implement HID and CDC USB Composite Device With
TMS320F28P559SJ-Q1 in IVI

Joe Ji

ABSTRACT

The SoC based intelligent cabin brings the smart and diversified driving experiences in electric vehicles. USB
interface has been widely used in the personal electronic and industry for decades. Since the USB application
is mature and flexible, the application starts to take the data exchange roles in the human interface of intelligent
cabin, such as IVI and touch screen instead of a CAN network. This application note shows the design to
implement the HID and CDC USB composite devices to realize the SCI, button, and touchscreen device
enumeration and data report with the TMS320F28P559SJ-Q1 device. The demo code and test case can be
found in the C2000Ware SDK v6.01 and this E2E thread.

Table of Contents
1 Introduction...2

1.1 Intelligent Cabin and IVI System.. 2
1.2 USB Interface Application in IVI... 2
1.3 TMS320F28P55x Introduction... 3

2 USB Composite Device Enumeration and Data Report.. 4
2.1 USB Composite Device Enumeration.. 4
2.2 USB Composite Device HID Data Report.. 8
2.3 Example of Building a HID Report Descriptor.. 10

3 Software Realization...11
3.1 APIs for USB Composite Device Initialization.. 11
3.2 APIs for USB Composite Device CDC Data Report ..12
3.3 APIs for USB Composite Device HID Data Report.. 14
3.4 APIs for USB Composite Device Simulation.. 14
3.5 APIs for USB Device Operate States Query.. 14

4 System Test...15
4.1 Test Setup.. 15
4.2 USB SCI CDC Device Function Test..16
4.3 USB Touch Screen HID Device Function Test... 16
4.4 USB Button HID Device Function Test...17

5 Summary... 17
6 References.. 17
7 Appendix..18

Trademarks
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SDAA062 – SEPTEMBER 2025
Submit Document Feedback

Implement HID and CDC USB Composite Device With TMS320F28P559SJ-
Q1 in IVI

1

Copyright © 2025 Texas Instruments Incorporated

https://e2e.ti.com/support/microcontrollers/c2000-microcontrollers-group/c2000/f/c2000-microcontrollers-forum/1560968/tms320f28p559sj-q1-not-question-update-the-usb-composite-device-demo-code-for-user-reference
https://www.ti.com
https://www.ti.com/lit/pdf/SDAA062
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA062&partnum=

1 Introduction
1.1 Intelligent Cabin and IVI System
The intelligent cabin in electric vehicles (EVs) is equipped with advanced technologies to enhance the driving
experience, comfort, and safety. This includes large displays, voice command, internet access, and over-the-air
updates. In-vehicle infotainment (IVI) is the key human interface of intelligent cabin that provides entertainment,
information, and connectivity to drivers and passengers, encompassing features such as navigation, audio and
video playback, and smartphone integration.
1.2 USB Interface Application in IVI
The USB interface is increasingly used in IVI systems for various functions, including media playback, device
charging, and data transfer due to the highly standardized scalability specifications. This not only supports
users to connect personal electronic devices, but also supports the communication between SoC and other IVI
peripherals such as touchscreen, button, camera, and speakers. The TI C2000 real time MCU TMS320F28P55x
has a variety of communication interface integration, including PMBus, I2C interfaces, CAN-FD, USB 2.0
integrates MAC + PHY, SPI, SCI, and LIN to support the different communication bridges to the USB. One
possible USB connection structure in the IVI is shown in Figure 1-1.

Figure 1-1. USB Connection Structure in IVI

Introduction www.ti.com

2 Implement HID and CDC USB Composite Device With TMS320F28P559SJ-
Q1 in IVI

SDAA062 – SEPTEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA062
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA062&partnum=

1.3 TMS320F28P55x Introduction
The TMS320F28P55x (F28P55x) is a member of the C2000™ real-time microcontroller family of scalable, ultra-
low latency devices designed for efficiency in automotive body electronics and lighting. The real-time control
subsystem is based on TI’s 32-bit C28x DSP core, which provides 150MHz of signal processing performance for
floating- or fixed-point code running from either on-chip flash or SRAM. The C28x CPU is further boosted by the
Floating-Point Unit (FPU), Trigonometric Math Unit (TMU), and VCRC (Cyclical Redundancy Check) extended
instruction sets, speeding up common algorithms key to real-time control systems.

The CLA allows significant offloading of common tasks from the main C28x CPU. The CLA is an independent
32-bit floating-point math accelerator that executes in parallel with the CPU. Additionally, the CLA has dedicated
memory resources and the CLA can directly access the key peripherals that are required in a typical control
system. Support of a subset of ANSI C is standard, as are key features such as hardware breakpoints and
hardware task-switching. The F28P55x supports up to 1088KB of flash memory divided into four 256KB banks
plus one 64KB bank, which enables the programming of one bank and execution in another bank in parallel. Up
to 133KB of on-chip SRAM is also available to supplement the flash memory.

The Live Firmware Update hardware enhancements on F28P55x allow fast context switching from the old
firmware to the new firmware to minimize application downtime when updating the device firmware.

High-performance analog blocks are integrated on the F28P55x real-time microcontroller (MCU) and are closely
coupled with the processing and PWM units to provide real-time signal chain performance. Twenty-four PWM
channels, all supporting frequency-independent resolution modes, enable control of various power stages from a
3-phase inverter to power factor correction and advanced multilevel power topologies.

The inclusion of the Configurable Logic Block (CLB) allows the user to add custom logic and potentially integrate
FPGA functions into the C2000 real-time MCU. Interfacing is supported through various industry-standard
communication ports (such as SPI, SCI, I2C, PMBus, LIN, and CAN FD) and offers multiple pin-muxing options
for signal placement. The functional block diagram of TMS320F28P55x is shown in Figure 1-2.

Figure 1-2. TMS320F28P55x Functional Block Diagram

www.ti.com Introduction

SDAA062 – SEPTEMBER 2025
Submit Document Feedback

Implement HID and CDC USB Composite Device With TMS320F28P559SJ-
Q1 in IVI

3

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA062
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA062&partnum=

2 USB Composite Device Enumeration and Data Report
This section introduces the USB composite device enumeration and data report format according to the standard
USB protocol. This section also highlights the file directions to find definitions in the demo project and includes
the software details realized in the demo. For more USB information, see the USB-IF official website.

2.1 USB Composite Device Enumeration
USB composite device enumeration depends on the USB descriptors, the single HID or CDC device descriptor
must be verified separately in projects first before building the composite device descriptor.

2.1.1 Descriptor Structure

The composite device descritptor structure is shown in Figure 2-1. The detailed functions of each descriptor are
explained in the following sections.

Figure 2-1. Composite Device Descriptor Structure

USB Composite Device Enumeration and Data Report www.ti.com

4 Implement HID and CDC USB Composite Device With TMS320F28P559SJ-
Q1 in IVI

SDAA062 – SEPTEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA062
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA062&partnum=

2.1.2 Descriptor Types

This section explains the descriptors details to realize the USB enumeration.

2.1.2.1 Device Descriptor

The device descriptor is the first descriptor queried by the host during enumeration. This is to communicate
to the host what specification of USB the device complies with and how many possible configurations are
available on the device. Upon successful processing of the device descriptor, the host reads all the configuration
descriptors.

In the TI USB composite device project, the device descriptor structure is defined in usblib.h. The instance of the
structure is defined in tCompositeInstance structure in usbdcomp.h called by the USBDCompositeInit function.
The variable values are initialized by the BuildCompositeDescriptor function in usbcomp.c. The key elements of
the device descriptor are shown in Table 2-1.

typedef struct
{
 uint8_t bLength;
 uint8_t bDescriptorType;
 uint16_t bcdUSB;
 uint8_t bDeviceClass;
 uint8_t bDeviceSubClass;
 uint8_t bDeviceProtocol;
 uint8_t bMaxPacketSize0;
 uint16_t idVendor;
 uint16_t idProduct;
 uint16_t bcdDevice;
 uint8_t iManufacturer;
 uint8_t iProduct;
 uint8_t iSerialNumber;
 uint8_t bNumConfigurations;
}
PACKED tDeviceDescriptor;

Table 2-1. Key Elements of a Device Descriptor
Key Elements Description

bcdUSB Informs the host of what version of USB the device supports

bDeviceClass
00 - The device class is defined in the Interface Descriptor

FF - the device class is Vendor class
any other number is the specification for the class of this device

idVendor 16-bit number assigned by USB.org to the manufacturer of the product

idProduct 16-bit product model ID assigned by the vendor to this product

bNumConfigurations How many different configurations are available for this device

www.ti.com USB Composite Device Enumeration and Data Report

SDAA062 – SEPTEMBER 2025
Submit Document Feedback

Implement HID and CDC USB Composite Device With TMS320F28P559SJ-
Q1 in IVI

5

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA062
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA062&partnum=

2.1.2.2 Configuration Descriptor

A device can have more than one configuration. Each device configuration is assigned a number. The
configuration descriptor serves two purposes:

1. Informs the host interfaces quantity in the configuration. The composite device requires more than one
interface in the configuration.

2. Device power consumption of each configuration: If the device is capable of controlling the power
consumption, the device offers more than one configuration. Each configuration advertises how much power
is consumed if the configuration is activated.

Thus, multiple configuration can be claimed. Only one configuration can be active at any time. When a
configuration is active, all of the interfaces and endpoints are available to the host. Devices that have multiple
interfaces are referred to as composite devices. One physical product with one available USB connector appears
to the host as two separate devices.

In the TI USB composite device project, the configuration descriptor structure is defined in usblib.h. The instance
of the structure is defined in tCompositeInstance structure in usbdcomp.h called by the USBDCompositeInit
function. The variable values are initialized by BuildCompositeDescriptor in usbcomp.c. The key elements of a
configuration descriptor are listed in Table 2-2.

typedef struct
{
 uint8_t bLength;
 uint8_t bDescriptorType;
 uint16_t wTotalLength;
 uint8_t bNumInterfaces;
 uint8_t bConfigurationValue;
 uint8_t iConfiguration;
 uint8_t bmAttributes;
 uint8_t bMaxPower;
}
PACKED tConfigDescriptor;

Table 2-2. Key Elements of an Interface Descriptor
Key Elements Description
bNuminterfaces Number of Interface Descriptor tables available

MaxPower Power load of this device if the host activates this configuration

2.1.2.3 Interface Descriptor

An interface descriptor describes the details of the function of the product. For example, if the device is a
keyboard, the specified device class is Human Interface Device (HID) and the number of endpoints is two. See
the USB Device Classes page for details on USB Device Class codes in usblib.h. Specific definitions can be
found in the appropriate device class header files.

In the TI USB composite device project, the interface descriptor structure is defined in usblib.h, the instance and
values are initialized by BuildCompositeDescriptor in usbcomp.c called by USBDCompositeInit function, the key
elements of an interface descriptor are listed in Table 2-3.

typedef struct
{
 uint8_t bLength;
 uint8_t bDescriptorType;
 uint8_t bInterfaceNumber;
 uint8_t bAlternateSetting;
 uint8_t bNumEndpoints;
 uint8_t bInterfaceClass;
 uint8_t bInterfaceSubClass;
 uint8_t bInterfaceProtocol;
 uint8_t iInterface;
}
PACKED tInterfaceDescriptor;

USB Composite Device Enumeration and Data Report www.ti.com

6 Implement HID and CDC USB Composite Device With TMS320F28P559SJ-
Q1 in IVI

SDAA062 – SEPTEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA062
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA062&partnum=

Table 2-3. Key Elements of an Interface Descriptor
Key Elements Description
bNumEndpoints Number of endpoints in the interface

bInterfaceClass USB device class used to set transfer types for the endpoints

2.1.2.4 Endpoint Descriptor

Each endpoint used by device contains a descriptor. The descriptor provides the endpoint address, the size of
the endpoint, and the data transfer type used to access the endpoint.

In the TI USB composite device project, the endpoint descriptor structure is defined in usblib.h. The instance and
values are initialized by BuildCompositeDescriptor in usbcomp.c called by USBDCompositeInit function. The key
elements of an interface descriptor are shown in Table 2-4.

typedef struct
{
 uint8_t bLength;
 uint8_t bDescriptorType;
 uint8_t bEndpointAddress;
 uint8_t bmAttributes;
 uint16_t wMaxPacketSize;
 uint8_t bInterval;
}
PACKED tEndpointDescriptor;

Table 2-4. Key Elements of an Interface Descriptor
Key Elements Description

bEndpointAddress The address of the endpoint

wMaxPacketSize Length of the endpoint

bInterval How often in frames is this endpoint to be serviced by the host

2.1.2.5 String Descriptor

String descriptors are optional. Human-readable strings that the host OS can display is not used in this project.

typedef struct
{
 uint8_t bLength;
 uint8_t bDescriptorType;
 uint8_t bString;
}
PACKED tStringDescriptor;

www.ti.com USB Composite Device Enumeration and Data Report

SDAA062 – SEPTEMBER 2025
Submit Document Feedback

Implement HID and CDC USB Composite Device With TMS320F28P559SJ-
Q1 in IVI

7

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA062
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA062&partnum=

2.2 USB Composite Device HID Data Report
This section describes the HID data report definition after USB composite device enumeration is complete.. The
CDC data format is simple. The data can be directly filled into or obtained from the USB endpoints with USB
Endpoint APIs, so this section focuses on the USB HID data report.

2.2.1 Data Report Item

The HID data reporting uses the item as the basic message element, and changes the item headers to identify
the different HID devices report contents. The HID report descriptor must be specified once the interface
descriptor defines a HID interface. The item format is shown in Figure 2-2. Bits 23-8 represent the data to be
transmitted. Bits 7-0 are the item header. bSize specifies the data length of the item in bytes. bType specifies the
item types. The definition details are shown in the following text. bTag specifies the item types which is described
in Configuration Descriptor. The complete definition of bTag can be found on the USB-IF official website.

Figure 2-2. Data Report Items Structure

bSize = 0 – No available data

bSize = 1 – 1-byte available data

bSize = 2 – 2-bytes available data

bSize = 3 – 4-bytes available data

bType = 0 – Main item

bType = 1 – Global item

bType = 2 – Local item

2.2.2 HID Report Descriptor Structure

The data report items are organized into the structure shown in Figure 2-3. The types of items used in the HID
data report are described in the following sections.

Figure 2-3. HID Report Descriptor Structure

USB Composite Device Enumeration and Data Report www.ti.com

8 Implement HID and CDC USB Composite Device With TMS320F28P559SJ-
Q1 in IVI

SDAA062 – SEPTEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA062
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA062&partnum=

2.2.2.1 Main Item

Main item is used to define the data domain or a group of data domain. The data domain types are defined with
bTag, which is listed in Table 2-5

Table 2-5. Main Item Definition and bTag Value
Item Type bTag Value Description

Input 0x8 USB device reports data to USB host

Output 0x9 USB host send data to USB device

Feature 0xB Return configuration information

Collection 0xA Start of data domain

End Collection 0xC End of data domain

With the input, output, and feature item types, the data bytes come after the bTag, describes the detailed
functions of this main item. The complete definition can be found in USB-IF documents hid-6.2.2.7. The data
bytes come after the collection. End collection item types are listed in Table 2-6.

Table 2-6. bTag Details on Collection and End Collection Item Types
Item Type bTag Value Description

Collection

0xA0 Physical: defines the USB device physical structures and connection.
For example, key and scroll wheel

0xA1 Application: defines the input and corresponding output signal of the
USB device. For example, touchpad finger position, volume control.

0xA2 Logical: maps the physical and application. For example defines the
scroll wheel (physical) as the volume control (application)

0xA3 Start of data domain

End Collection 0xC0 Close an item collection

2.2.2.2 Global Item

Global item is used to define the data properties which are listed in Table 2-7. This takes effect for all the
following items until another global item appears. The complete definition can be found in USB-IF documents
hid-6.2.2.7.

Table 2-7. Global item Definition and bTag Value
Item Type bTag Value Description

Usage Page 0x0 Classification of this item. For example, button page and keyboard
page

Logical Minimum 0x1 The minimum data value of this item

Logical Maximum 0x2 The maximum data value of this item

Physical Minimum 0x3 The minimum data value of this item

Physical Maximum 0x4 The maximum data value of this item

Report Size 0x7 The length of the data domain (in bytes)

Report Count 0x9 The number of the data domain

ReportId 0x8 Report ID

www.ti.com USB Composite Device Enumeration and Data Report

SDAA062 – SEPTEMBER 2025
Submit Document Feedback

Implement HID and CDC USB Composite Device With TMS320F28P559SJ-
Q1 in IVI

9

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA062
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA062&partnum=

2.2.2.3 Local Item

The local item is used to define the data detail properties after the global item. The definition of different local
items are listed in Table 2-8. This takes effect for all the following items until another global item appears. The
complete definition can be found in USB-IF documents hid-6.2.2.8.

Table 2-8. Local Item Definition and bTag Value
Item Type bTag Value Description

Usage 0x0 Specification of the usage according to the usage page.

Usage Minimum 0x1 The minimum data value of this usage

Usage Maximum 0x2 The maximum data value of this usage

2.3 Example of Building a HID Report Descriptor
The HID report descriptor instance is claimed in g_pui8CustomReportDescriptor[] in usbhidcustom.c. Using a
point 1 report descriptor as an example, there are four usages divided into two usage pages in one collection.
The format of each usage is specified with LogicalMinimum/ LogicalMaximum/ ReportSize/ ReportCount/ Input.

UsagePage(USB_HID_DIGITIZERS),
Usage(USB_HID_FINGER),
Collection(USB_HID_LOGICAL),
Usage(USB_HID_CONTACT_ID),
LogicalMinimum(0),
LogicalMaximum(9),
ReportSize(8),
ReportCount(1),
Input(USB_HID_INPUT_DATA | USB_HID_INPUT_VARIABLE | USB_HID_INPUT_ABS),
Usage(USB_HID_TOUCH_PRESS),
LogicalMinimum(0),
LogicalMaximum(1),
ReportSize(1),
ReportCount(1),
Input(USB_HID_INPUT_DATA | USB_HID_INPUT_VARIABLE | USB_HID_INPUT_ABS),
ReportSize(7), // Pad to 1byte
ReportCount(1),
Input(USB_HID_INPUT_CONSTANT | USB_HID_INPUT_ARRAY | USB_HID_INPUT_ABS),
UsagePage(USB_HID_GENERIC_DESKTOP),
Usage(USB_HID_X),
LogicalMinimum(0),
LogicalUi16Maximum(4095),]
ReportSize(16),
ReportCount(1),
Input(USB_HID_INPUT_DATA | USB_HID_INPUT_VARIABLE | USB_HID_INPUT_ABS),
Usage(USB_HID_Y),
LogicalMinimum(0),
LogicalUi16Maximum(4095),
ReportSize(16),
ReportCount(1),
Input(USB_HID_INPUT_DATA | USB_HID_INPUT_VARIABLE | USB_HID_INPUT_ABS),
EndCollection,

USB Composite Device Enumeration and Data Report www.ti.com

10 Implement HID and CDC USB Composite Device With TMS320F28P559SJ-
Q1 in IVI

SDAA062 – SEPTEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA062
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA062&partnum=

3 Software Realization
This section shows the USB APIs that are included in the C2000ware SDK USB driverlib and demo project. With
the USB APIs, the USB composite device enumeration and data report is realized. The relationship between the
USB APIs and USB descriptors is shown in USB Composite Device Enumeration and Data Report.
3.1 APIs for USB Composite Device Initialization
The APIs use the USB descriptors to initialize the USB peripherals. After those APIs are called, the USB device
can be enumerated by the USB host. The data report format is also initialized in those APIs.

3.1.1 USBStackModeSet

This function is called in USBLib_init() in C2000Ware_libraries_init() to initialize the USB port in USB device
mode. There is no return code with this function.

Table 3-1. USBStackModeSet API Input Variables and Descriptions
Input Variables Description

ui32Index Specifies the USB controller whose mode of operation is to be set. There is only one USB IP in
F28P55 so this parameter must be set to 0.

iUSBMode Input eUSBModeDevice to make USB operates in device mode.

pfnCallback No callback function is required. Set the value to 0.

3.1.2 USBDCDCCompositeInit

This function is to initialize the required parameters for the specific CDC device and assign the structure data
entry point to the psCompEntry[] array to build the composite device descriptor in USBDCompositeInit function.
There is no return code with this function.

Table 3-2. USBDCDCCompositeInit API Input Variables and Descriptions
Input Variables Description

ui32Index Specifies the USB controller whose mode of operation is to be set. There is only one USB IP in
F28P55 so this parameter must be set to 0.

psCDCDevice Points to a structure containing customizing operation parameters of the USB CDC device.

psCompEntry[] Composite device entry to initialize when creating a composite device.

3.1.3 USBDHIDCustomCompositeInit

This function is to initialize the necessary parameters for the specific HID device and assign the structure data
entry point to the psCompEntry[] array to build the composite device descriptor in USBDCompositeInit function.
The USBDHIDCustomCompositeInit() calls USBDHIDCompositeInit() to realize the underlay HID composite
device descriptor configuration. There is no return code with this function.

Table 3-3. USBDHIDCustomCompositeInit API Input Variables and Descriptions
Input Variables Description

ui32Index Specifies the USB controller whose mode of operation is to be set. There is only one USB IP in
F28P55 so this parameter must be set to 0.

psCustomDevice Points to a structure containing parameters customizing the operation of the HID device.

psCompEntry[] Composite device entry to initialize when creating a composite device.

www.ti.com Software Realization

SDAA062 – SEPTEMBER 2025
Submit Document Feedback

Implement HID and CDC USB Composite Device With TMS320F28P559SJ-
Q1 in IVI

11

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA062
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA062&partnum=

3.1.4 USBDCompositeInit

This function uses the structures that are initialized by USBDCDCCompositeInit and USBDHIDCompositeInit to
initialize basic operation and prepare for the enumeration composite class device. There is no return code with
this function.

Table 3-4. USBDCompositeInit API Input Variables and Descriptions
Input Variables Description

ui32Index Specifies the which mode of operation is to be set. There is only one USB IP in F28P55 so this
parameter must be set to 0.

psDevice Points to a structure containing parameters customizing the operation of the composite device. The
parameters are specified by USBDCDCCompositeInit and USBDHIDCompositeInit in psCompEntry[].

ui32Size The size in bytes of the data pointed to by the pui8Data parameter.

pui8Data The data area that the composite class can use to build up descriptors.

3.2 APIs for USB Composite Device CDC Data Report
APIs use the USB buffers to transmit and receive the CDC data which is received and transmitted by the SCIA
interface.

3.2.1 USBBufferSpaceAvailable

This function returns the number of free bytes in the buffer. This API is called in ReadSCIData() function in
USBSCIRXIntHandler() to check the number of bytes that can be read from the USB controller before the buffer
is full.

Table 3-5. USBBufferSpaceAvailable API Input Variables and Descriptions
Input Variables Description

psBuffer The pointer to the buffer instance which is to be queried.

3.2.2 USBBufferWrite

This function writes the supplied data into the transmit buffer. This API is called in ReadSCIData() function
in USBSCIRXIntHandler(). The transmit buffer data is packaged according to the constraints imposed by the
lower layer in use and sent to the USB controller as soon as possible. Once a packet is transmitted and
acknowledged, a USB_EVENT_TX_COMPLETE event is sent to the application callback indicating the number
of bytes that are sent from the buffer. Attempts to send more data than the transmit buffer range results in data
loss. The value returned by the function indicates the actual number of bytes written to the buffer.

Table 3-6. USBBufferWrite API Input Variables and Descriptions
Input Variables Description

psBuffer The pointer to the buffer instance that is to be queried.

pui8Data The first byte of data that is to be written.

ui32Length The number of bytes of data to write to the buffer.

3.2.3 USBBufferRead

This function reads up to ui32Length bytes of data received from the USB host into the supplied application
buffer. If the receive buffer contains fewer than ui32Length bytes of data, the data that is present is copied and
the return code indicates the actual number of bytes copied to pui8Data.

Table 3-7. USBBufferRead API Input Variables and Descriptions
Input Variables Description

psBuffer The pointer to the buffer instance from which data is to be read.

pui8Data The buffer into which the received data is written.

ui32Length The size of the buffer pointed to by pui8Data.

Software Realization www.ti.com

12 Implement HID and CDC USB Composite Device With TMS320F28P559SJ-
Q1 in IVI

SDAA062 – SEPTEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA062
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA062&partnum=

3.2.4 USBDCDCTxHandler

This function is called by the CDC driver to query the events related to operation of the transmit data channel
(the IN channel carrying data to the USB host). Only a USB_EVENT_TX_COMPLETE event is acceptable for
this function. The function is pending here if there are any other events happening when DEBUG is enabled. The
return code of this function is 0.

Table 3-8. USBDCDCTxHandler API Input Variables and Descriptions
Input Variables Description

pvCBData Customized callback pointer for this channel.

ui32Event Identifies the event that is causing the notification.

ui32MsgValue Event-specific value.

pvMsgData Event-specific pointer.

3.2.5 USBDCDCRxHandler

This function is called by the CDC driver to query the events related to operation of the receive data
channel (the OUT channel carrying data from the USB host). The CDC driver fills the SCI FIFO once
USB_EVENT_RX_AVAILABLE event occurs. The return code 1 indicates that SCI is in the transmission
process. The return code 0 indicates that SCI is currently idle.

Table 3-9. USBDCDCRxHandler API Input Variables and Descriptions
Input Variables Description

pvCBData Customized callback pointer for this channel.

ui32Event Identifies the event that is causing the notifications.

ui32MsgValue Event-specific value.

pvMsgData Event-specific pointer.

www.ti.com Software Realization

SDAA062 – SEPTEMBER 2025
Submit Document Feedback

Implement HID and CDC USB Composite Device With TMS320F28P559SJ-
Q1 in IVI

13

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA062
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA062&partnum=

3.3 APIs for USB Composite Device HID Data Report
The APIs use the USB buffers to transmit the simulated HID data. This includes the ten points touchpad position
and the keyboard characters. Before calling the HID Report API, g_eCustomState==MOUSE_STATE_IDLE must
be checked. Otherwise the report is unreliable.

3.3.1 USBDHIDCustomTouchEvent

This function is called by MultTouchSimHandler() to report touchpad state changes and touch position to the
USB host. The return code indicates whether the transmission is successful or has an error.

Table 3-10. USBDHIDCustomTouchEvent API Input Variables and Descriptions
Input Variables Description
pvCustomDevice Pointer to the HID device instance structure.

psEvent Relative touch pointer movement event report.

3.3.2 USBDHIDCustomReportKey

This function is called by KeySimHandler () to report a keyboard input to the USB host. There is no return code
with this function.

Table 3-11. USBDHIDCustomReportKey API Input Variables and Descriptions
Input Variables Description
pvCustomDevice Pointer to the hid device instance structure.

ui8Key Key board input event report.

3.4 APIs for USB Composite Device Simulation
The APIs call the underlay APIs described in APIs for USB Composite Device Initialization to APIs for USB
Composite Device HID Data Report to realize the USB HID and CDC data report.

3.4.1 MultTouchSimHandler

This function is to simulate the ten points touch event and report the touchpad position to the USB host.

3.4.2 KeySimHandler

This function is to simulate the keyboard input event and report the keyboard characters to the USB host.

3.5 APIs for USB Device Operate States Query
The APIs use the callback function to indicate the USB device working state.

3.5.1 USBDCDCControlHandler

This function is called by the CDC driver to perform control-related operations on behalf of the USB host. These
functions include setting and querying the serial communication parameters, setting handshake line states, and
sending break conditions.

Table 3-12. USBDCDCControlHandler API Input Variables and Descriptions
Input Variables Description

pvCBData Client-supplied callback pointer for this channel.

ui32Event Identifies the event the user is being notified about.

ui32MsgValue Event-specific value.

pvMsgData Event-specific pointer.

Software Realization www.ti.com

14 Implement HID and CDC USB Composite Device With TMS320F28P559SJ-
Q1 in IVI

SDAA062 – SEPTEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA062
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA062&partnum=

3.5.2 CustomHandler

This function is called by the customer HID driver to perform control-related operations and query device
information on behalf of the USB host.

Table 3-13. CustomHandler API Input Variables and Descriptions
Input Variables Description

pvCBData Client-supplied callback pointer for this channel.

ui32Event Identifies the event that is being notified about.

ui32MsgValue Event-specific value.

pvMsgData Event-specific pointer.

4 System Test
This section shows how to verify the functions with the demo project.

4.1 Test Setup
Setting up the test bench with TMDSCNCD28P55X controlCARD evaluation module is simple. The MCU USB
port physical interface is already integrated in the broad with a USB-C socket. Users can connect the XDS110
debugger USB and the MCU USB to the PC with two USB cables. Once the hardware connection is connected,
build and download the firmware to the board. Click Resume to run the example.

Figure 4-1. Hardware Setup for Test

www.ti.com Software Realization

SDAA062 – SEPTEMBER 2025
Submit Document Feedback

Implement HID and CDC USB Composite Device With TMS320F28P559SJ-
Q1 in IVI

15

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA062
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA062&partnum=

4.2 USB SCI CDC Device Function Test
To verify the CDC device function, users can see a new USB Serial Device is added to Ports (COM&LPT) in
window device manager, as shown in Figure 4-2. Users can open the SCI host such as TeraTerm or sscom in
PC and connect to both XDS110 Class Application/User UART(COMx) and USB Serial Device (COMx) and set
the baud rates to 115200 to do the loopback test.

Figure 4-2. PC Device Manager View of USB Ports

4.3 USB Touch Screen HID Device Function Test
To verify the button HID device function, users can see a new HID-compliant touch screen is added to human
interface devices in the Window Device Manager, as shown in Figure 4-3. Users can see the 10 points
movement in the screen if the PC screen can support touch function.

Figure 4-3. PC Device Manager View of USB HID Touch Screen Devices

System Test www.ti.com

16 Implement HID and CDC USB Composite Device With TMS320F28P559SJ-
Q1 in IVI

SDAA062 – SEPTEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA062
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA062&partnum=

4.4 USB Button HID Device Function Test
To verify the Button HID device function, users can see a new HID Keyboard Device is added to Keyboards in
Window Device Manager, as shown in Figure 4-4. Users can open the text editing tools such as Notepad, and
see the numbers one through eight that are printed in the text file.

Figure 4-4. PC Device Manager View of USB HID Keyboard Devices

5 Summary
This application note shows the design to implement HID and CDC USB composite device to realize the SCI,
button, and touchscreen device enumeration and data report with TMS320F28P559SJ-Q1. The demo code and
test case are also shared in C2000ware SDK v6.01.

6 References
• Texas Instruments, TMS320F28P55x Real-Time Microcontrollers, data sheet.
• Texas Instruments, TMS320F28P55x Real-Time Microcontrollers, technical reference manual.
• Texas Instruments, TMDSCNCD28P55X controlCARD Information Guide, user's guide.
• USB, USB Documentation Library, documentation.
• USB-IF, USB-IF HID Descriptor tool, descriptor tool.
• USB, Device Class Definition for Human Interface Devices (HID), firmware specification.
• USB, HID Usage Tables, usage tables.

www.ti.com System Test

SDAA062 – SEPTEMBER 2025
Submit Document Feedback

Implement HID and CDC USB Composite Device With TMS320F28P559SJ-
Q1 in IVI

17

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/gpn/tms320f28p559sj-q1
https://www.ti.com/lit/pdf/spruj53
https://www.ti.com/lit/pdf/spruja7
https://www.usb.org/documents
https://github.com/microsoft/hidtools
https://www.usb.org/sites/default/files/documents/hid1_11.pdf
https://www.usb.org/sites/default/files/documents/hut1_12v2.pdf
https://www.ti.com
https://www.ti.com/lit/pdf/SDAA062
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA062&partnum=

A Appendix

USB Full Speed Transmission Limitation and Workaround

The USB full speeds only allows maximum 64 bytes data transmission in one package. If there are multiple
package transmissions required such as with HID touch screen data, TxPktRdy cannot be cleared by the
hardware in time. This causes data loss during multiple package transmissions.

Related Code

usbdenum.c:USBDEP0StateTx()[2580]:
g_psDCDInst[0].iEP0State = eUSBStateTx;
if(ui32NumBytes > EP0_MAX_PACKET_SIZE)
 ui32NumBytes = EP0_MAX_PACKET_SIZE;
pui8Data = (uint8_t *)g_psDCDInst[0].pui8EP0Data;
g_psDCDInst[0].ui32EP0DataRemain -= ui32NumBytes;
g_psDCDInst[0].pui8EP0Data += ui32NumBytes;
USBEndpointDataPut(USB_BASE, USB_EP_0, pui8Data, ui32NumBytes);
usb.c:USBEndpointDataPut()[2806]:
if(HWREGB(ui32Base + USB_O_CSRL0 + ui32Endpoint) & ui8TxPktRdy)
 return(-1);

Workaround

Add enough delay cycle to make sure the TxPktRdy is cleared by the hardware correctly.

Related Code

if(HWREGB(ui32Base + USB_O_CSRL0 + ui32Endpoint) & ui8TxPktRdy)
{
 for (ui8Timeout = 0; ui8Timeout < 5; ui8Timeout++) {
 USBDelay(1);
 if(!(HWREGB(ui32Base + USB_O_CSRL0 + ui32Endpoint) & ui8TxPktRdy))
 {
 break;
 }
 }
 if(HWREGB(ui32Base + USB_O_CSRL0 + ui32Endpoint) & ui8TxPktRdy)
 {
 //Force clean rdy bit
 HWREGB(ui32Base + USB_O_CSRL0 + ui32Endpoint) &= ~ui8TxPktRdy;
 }
}

Appendix www.ti.com

18 Implement HID and CDC USB Composite Device With TMS320F28P559SJ-
Q1 in IVI

SDAA062 – SEPTEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA062
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA062&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	1.1 Intelligent Cabin and IVI System
	1.2 USB Interface Application in IVI
	1.3 TMS320F28P55x Introduction

	2 USB Composite Device Enumeration and Data Report
	2.1 USB Composite Device Enumeration
	2.1.1 Descriptor Structure
	2.1.2 Descriptor Types
	2.1.2.1 Device Descriptor
	2.1.2.2 Configuration Descriptor
	2.1.2.3 Interface Descriptor
	2.1.2.4 Endpoint Descriptor
	2.1.2.5 String Descriptor

	2.2 USB Composite Device HID Data Report
	2.2.1 Data Report Item
	2.2.2 HID Report Descriptor Structure
	2.2.2.1 Main Item
	2.2.2.2 Global Item
	2.2.2.3 Local Item

	2.3 Example of Building a HID Report Descriptor

	3 Software Realization
	3.1 APIs for USB Composite Device Initialization
	3.1.1 USBStackModeSet
	3.1.2 USBDCDCCompositeInit
	3.1.3 USBDHIDCustomCompositeInit
	3.1.4 USBDCompositeInit

	3.2 APIs for USB Composite Device CDC Data Report
	3.2.1 USBBufferSpaceAvailable
	3.2.2 USBBufferWrite
	3.2.3 USBBufferRead
	3.2.4 USBDCDCTxHandler
	3.2.5 USBDCDCRxHandler

	3.3 APIs for USB Composite Device HID Data Report
	3.3.1 USBDHIDCustomTouchEvent
	3.3.2 USBDHIDCustomReportKey

	3.4 APIs for USB Composite Device Simulation
	3.4.1 MultTouchSimHandler
	3.4.2 KeySimHandler

	3.5 APIs for USB Device Operate States Query
	3.5.1 USBDCDCControlHandler
	3.5.2 CustomHandler

	4 System Test
	4.1 Test Setup
	4.2 USB SCI CDC Device Function Test
	4.3 USB Touch Screen HID Device Function Test
	4.4 USB Button HID Device Function Test

	5 Summary
	6 References
	7 Appendix

