
Application Note
Using State Machines in Programmable Logic

Owen Westfall

ABSTRACT

This application note provides a brief description of state machines before diving into applications that can use
state machines. The focus is on TI's new programmable logic family TPLD, showing how to setup and create
a complete design within InterConnect Studio, the software used to configure a TPLD, that contains a state
machine as the center of the design.

Table of Contents
1 What is a State Machine...2
2 Difference Between an Asynchronous and Synchronous State Machine...3
3 How to Configure a State Machine..4
4 Triggering a State Machine with User Inputs... 7
5 Summary... 9
6 References.. 9

Trademarks
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SCLA076 – DECEMBER 2024
Submit Document Feedback

Using State Machines in Programmable Logic 1

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SCLA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCLA076&partnum=

1 What is a State Machine
To understand a state machine we must first define what a state is. A state is a mode of operation that comes
with predefined behavior and a trigger condition either transitioning from the state or into the state. That behavior
can be a set of outputs expected for example one state can have a logic output of 0010, while another outputs
1011. A state machine (SM) is a system to control a device or program to step through these states. When
looking at SM diagrams the circle denotes the state and the behavior of that state is defined either within or
below that circle.

The simplest state machine is shown in Figure 1-1.The device sits idle in a power off mode. Once power is
applied the device powers on, and outputs 0. Thinking about programs and devices as state machines can often
simplify code, and enable easier debugging as the user targets specific states for specific predefined behaviors.

Power Off Idle State

VCC = HIGH

Output = 0Output = HI-Z

VCC = LOW

Figure 1-1. Basic State Machine

While many state machines are implicit some are explicit. An implicit state machine is one not clearly defined
in the design process such as the SM from Figure 1-1. An explicit state machine is one where A great example
of explicit state machines can be found in the TPLD family of devices, specifically the TPLD1202. The state
machine in the TPLD1202 has eight states, can be used to control eight different outputs per state, and
can transition from any single state to another. This state machine can operate as either an asynchronous
state machine or a synchronous state machine, and allows for a global reset to bring the state machine to a
predefined state at any point during operation.

What is a State Machine www.ti.com

2 Using State Machines in Programmable Logic SCLA076 – DECEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SCLA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCLA076&partnum=

2 Difference Between an Asynchronous and Synchronous State Machine
State machines in relation to hardware can often be divided into one of two main categories, an asynchronous
state machine (ASM) or a synchronous state machine (SSM).

An ASM is a style of state machine that can transition between the states without a clock being present. Benefits
of this style of state machine are the device can transition at any given time, and no clock is needed to be
running and consuming power when the state machine is running. A downside of this state machine is that you
cannot have two consecutive states tied to the same transition flag. An example of an ASM is a simple AND
gate as seen in Figure 2-1. In this ASM A, B, and VCC are inputs into the device, and there is one output. The
device powers on and remains in an idle state until the device sees one of the primary inputs go high. At this
point the SM transitions into a half state where the output does not change. Once the other input goes high the
SM transitions into the AND state. At which point the logic gate outputs a logic high.

Power Off Idle State

A Half state

B Half state

AND State

VCC = HIGH

Output = 0

Output = 0

Output = 0

Output = 1

A = HIGH

A = HIGH

A = LOW

A = LOW
B = LOW

B = HIGH

B = LOW

B = HIGH

Output = HI-Z

VCC = LOW

Figure 2-1. And Gate SM

A SSM is a state machine that has a clock attached to the transitions. This means that the state machine only
checks the transition flags on the rising edge of the clock cycle. The benefit of this style is allowing consecutive
state transitions to be run off the same transition flag. The clock allows for an inherent delay between switching
states, and can assist in synchronizing multiple different SMs. A downside to this style of SM is a clock must
always be running in the system consuming power.

An example of this style of state machine is a traffic light as shown in Figure 2-2. Using newer style traffic signals
that have an induction loop to detect if a car is currently waiting at the light. Once a car is detected the trigger
to transition states is set, but a traffic light can not transition without the cross traffic transitioning at the same
time so the state machine inside them waits for the clock to signify that a change is allowed to happen. The
SM enters the Green light stage and waits until a car is detected at the cross road. Once that happens the SM
transitions to yellow then red at the next clock pulse. The SM starts all over again once at this point.

Red Green Yellow

Induction sensor
Induction sensor

of crossroad
Wait for

crossroad

Yellow

On clock

On clock

Figure 2-2. Traffic Signal State Machine

www.ti.com Difference Between an Asynchronous and Synchronous State Machine

SCLA076 – DECEMBER 2024
Submit Document Feedback

Using State Machines in Programmable Logic 3

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SCLA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCLA076&partnum=

3 How to Configure a State Machine
InterConnect Studio (ICS) is the software used to configure a TPLD. Once ICS is launched and a device is
selected adding a state machine to the design enables configuration of the dedicated state machine block.
Figure 3-1 shows the default configuration when the state machine is added. To add additional states click the
plus icon highlighted in Figure 3-1. The only input to the state machine by default is the NRST input. This input is
active low and causes the state machine to revert back to the initial state. By default this is st0 and this input is
asynchronous even when the synchronous mode of the state machine is selected.

Figure 3-1. Default State Machine with Add State Button Highlighted

The state options in this state machine are name, output value, and transitions from shown in Figure 3-2. The
Name configurable simply adjusts the reference of the state in the SM view and the configuration space, but has
no affect on the actual design. Output value is a hex representation of the binary values present at OUT7 - OUT0
while the state machine is in that state. Each output can be connected to an internal port, or routed to output
pins for external use. The Transitions From drop-down menu enables the transitions from one state to another.
In this drop-down menu selecting any option adds a transition from the option into the current selected state For
example, if the current state selected is st0, selecting st1 in that drop-down menu creates a transition event from
st1 to st0 as shown in Figure 3-3.

How to Configure a State Machine www.ti.com

4 Using State Machines in Programmable Logic SCLA076 – DECEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://ti.com/tool/TPLD-ICS
https://www.ti.com
https://www.ti.com/lit/pdf/SCLA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCLA076&partnum=

Figure 3-2. State Settings

Figure 3-3. Example Transition From st1 to st0

www.ti.com How to Configure a State Machine

SCLA076 – DECEMBER 2024
Submit Document Feedback

Using State Machines in Programmable Logic 5

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SCLA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCLA076&partnum=

Creating the transition events is not enough to cause the state machine to transition the state also needs a
trigger to spark that transition. Figure 3-4 shows a very basic implementation of the SM at work. NRST is tied
to POR so the state machine never resets. Once pin0 goes high this state machine transitions out of it's default
state st1 into st0.

Figure 3-4. Basic State Machine

How to Configure a State Machine www.ti.com

6 Using State Machines in Programmable Logic SCLA076 – DECEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SCLA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCLA076&partnum=

4 Triggering a State Machine with User Inputs
A state machine can be used to detect inputs from a single button to perform different actions. A design like
this can be used as the primary controller in many simple systems, or alternately can be used to offload some
complexity for the firmware development to an external TPLD device when using a microcontroller.

In Figure 4-1 you can see a state machine that is designed to sort the inputs from a single button into 4 different
common input formats. Those options are a single press, 1s hold, 2s hold, and double press. This state machine
can be utilized in the TPLD as shown in Figure 4-2. The outputs of the state machine are driving the timers for
the double press timing, and some LED's on our EVM board to show the device transitioning into different states.

Idle

Button = HIGH
Detect

Single

Press

Button = Low

Double

Press

Button = HIGH

AND Timer = HIGH

Hold 1s Hold 2s

Button = HIGH

AND Timer = HIGH
Button = HIGH

AND Timer = HIGH

Toggle

IO1 LED

Toggle

IO2 LED

IO3

Toggles

IO3 starts

blinking

Start hold timer &

start double timer

Start second

hold timer

Figure 4-1. Single Button State Machine

Figure 4-2. Button State Machine Built into TPLD Design

Whenever the RST pin from the design in Figure 4-2 is low the device resets into an idle state this is also the
default startup state of the device. Whenever the RST pin is high (button on the EVM is pressed) the SM is
active and watching for inputs albeit still in the idle state. Assume for the rest of this section the RST is being
held high. A single click of the button triggers the double timer block, and transitions our SM to the Single state.
The duration of this timer can be configured by increasing or decreasing the control data of the "Double timer"
block. If the button is pressed again before the timer runs out the SM transitions from Single to Double. The
outputs of Single and Double state are simply fed into a DFF CLK input thus transitioning the associated LED
from ON to OFF or OFF to ON. If the button is pressed and remains pressed for the duration of the 1s Timer
block the SM transitions from Idle to Hold 1s. This does a similar toggling as the Single and Double states,

www.ti.com Triggering a State Machine with User Inputs

SCLA076 – DECEMBER 2024
Submit Document Feedback

Using State Machines in Programmable Logic 7

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SCLA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCLA076&partnum=

but also triggers a second 1s Timer block. The reason the Hold 1s state does not retrigger the same block is
because this SM is asynchronous and we want to prevent any accidental skips by connecting the input to two
consecutive states to the same trigger. If the button remains held for another second the oneshot0 enables cnt0
to flash the DFF thus resulting in a flashing LED. The behavior of this design can be observed in Figure 4-3, and
Figure 4-4.

IO9 Bu�on

IN0 RST

IO2 Double Click

IO3 Hold

IO1 Single Click

Figure 4-3. Waveform of Single and Double Click Behavior

IO9 Bu�on

IN0 RST

IO2 Double Click

IO3 Hold

IO1 Single Click

Figure 4-4. Waveform of Hold Behavior

The functionality of this circuit is just to highlight the SM, so the surrounding functionality while necessary to
accomplish this task is largely simplified versus a final design.

Triggering a State Machine with User Inputs www.ti.com

8 Using State Machines in Programmable Logic SCLA076 – DECEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SCLA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCLA076&partnum=

5 Summary
State machines are central to many designs. The single press button design can be utilized as a starting point in
your design by selecting the TPLD1202 device in InterConnect Studio, and searching for smart button controller.
TI's new programmable logic family gives a great way to declare and design a state machine without having to
use programming languages, an FPGA, or an MCU.

More information for the TPLD family of devices can be found at Programmable Logic Devices (PLD) and refer
to Table 5-1 for some available devices and evaluation modules to prototype.

Table 5-1. Order Table
Device EVM
All TPLD TPLD-PROGRAM

TPLD1202DYYR TPLD1202-DYY-EVM

TPLD1202RWBR TPLD1202-RWB-EVM

6 References
• Texas Instruments, InterConnect Studio, user's guide.

www.ti.com Summary

SCLA076 – DECEMBER 2024
Submit Document Feedback

Using State Machines in Programmable Logic 9

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/logic-voltage-translation/configurable-programmable-logic/programmable-logic-devices/overview.html
https://www.ti.com/product/TPLD-PROGRAM/part-details/TPLD-PROGRAM?s=g1511120r6al0r7p3d
https://ti.com/product/TPLD1202DYYR
https://www.ti.com/tool/TPLD1202-DYY-EVM
https://ti.com/product/TPLD1202RWBR
https://www.ti.com/tool/TPLD1202-RWB-EVM
https://www.ti.com/lit/pdf/SLLU371
https://www.ti.com
https://www.ti.com/lit/pdf/SCLA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCLA076&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 What is a State Machine
	2 Difference Between an Asynchronous and Synchronous State Machine
	3 How to Configure a State Machine
	4 Triggering a State Machine with User Inputs
	5 Summary
	6 References

