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IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright   1996, Texas Instruments Incorporated
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Introduction

The Case for Low Voltage

LVL, or low-voltage logic, in the context of this application report, refers to devices designed specifically to operate from a
3.3-V power supply. Initially, an alternative method of achieving low-voltage operation was to use a device designed for 5-V
operation, but power it with a 3.3-V supply. Although this resulted in 3.3-V characteristics, this method resulted in significantly
slower propagation time. Subsequently, parts were designed to operate using a 3.3-V power supply.

A primary benefit of using a 3.3-V power supply as opposed to the traditional 5-V power supply is the reduced power
consumption. Because power consumption is a function of the load capacitance, the frequency of operation, and the supply
voltage, a reduction in any one of these is beneficial. Supply voltage has a square relationship in the reduction of power
consumed, whereas load capacitance and frequency of operation have a linear effect. As a result, a small decrease in the supply
voltage yields significant reduction in the power consumption. Equation 1 provides the dynamic component of the power
calculation. (The calculation for computing the total power consumed is provided in Power Considerations.)

PD(dynamic)� [(Cpd� CL)� VCC
2
� f] N SW

Where:

Cpd = Power dissipation capacitance (F)
CL = External load capacitance (F)
VCC = Supply voltage (V)
f = Operating frequency (Hz)
NSW = Total number of outputs switching

A reduction of power consumption provides several other benefits. Less heat is generated, which reduces problems associated
with high temperature. This may provide the consumer with a product that costs less. Furthermore, the reliability of the system
is increased due to lower temperature stress gradients on the device, and the integrity of the signal is improved due to the
reduction of ground bounce and signal noise. An additional benefit of the reduced power consumption is the extended life of
the battery when a system is not powered by a regulated power supply.

Although a complete migration may not be feasible for a particular application, beginning to integrate 3.3-V components in
a system still has benefits. If system parts are designed using 3.3-V parts, then when the remaining parts become available,
converting the system completely to 3.3-V parts is a much smaller task. For example, having the internal parts of a personal
computer powered from a 3.3-V power supply while having the memory powered from a 5-V power supply is a fairly common
current configuration. Although LVL devices are not used throughout the entire design, this system is easily adapted to a
complete 3.3-V system when 3.3-V memory becomes cost effective.

(1)
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Considerations for Interfacing to 5-V Logic

Interfacing 3.3-V devices to 5-V devices requires consideration of the logic switching levels of the driver and the receiver.
Figure 1 illustrates the various switching standards for 5-V CMOS, 5-V TTL, and 3.3-V TTL. The switching levels for the 5-V
TTL and the 3.3-V TTL are identical, whereas the 5-V CMOS switching levels are different. The impact of this must be
considered when interfacing 3.3-V systems with 5-V systems.
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0
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Figure 1. Comparison of 5-V CMOS, 5-V TTL, and 3.3-V TTL Switching Standards

Depending on the specific parts used in a system, four different cases can result. These cases are illustrated in Figure 2.
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5-V
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3.3-V
LVC

3.3-V
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Case 1: 5-V TTL Device Driving 3.3-V TTL Device (LVC)

Case 2: 3.3-V TTL Device (LVC) Driving 5-V TTL Device

Case 3: 5-V CMOS Device Driving 3.3-V TTL Device (LVC)

Case 4: 3.3-V TTL Device (LVC) Driving 5-V CMOS Device

Figure 2. Summary of Four Cases When Interfacing 3.3-V Devices With 5-V Devices
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Case 1

Case 1 addresses a 5-V TTL device driving a 3.3-V TTL device. As shown in Figure 1, the switching levels for 5-V TTL and
3.3-V LVC are the same. Since 5-V tolerant devices can withstand a dc input of 6.5 V, interfacing these two devices does not
require additional components or further design efforts.

TI’s crossbar technology (CBT) switches can be used to translate from 5-V TTL to 3.3-V devices that are not 5-V tolerant.
This is accomplished by using an external diode to create a 0.7-V drop (reducing 5 V to 4.3 V) with the CBT (of which the
field effect transistor has a gate-to-source voltage drop of 1 V) that results in a net 3.3-V level. TI produces a CBTD device
that incorporates the diode as part of the chip, thereby eliminating the need for an external diode.

Case 2

Case 2 occurs when a 3.3-V TTL device (LVC) drives a 5-V TTL device. The switching levels are the same and it is possible
to interface in this configuration without additional circuitry or devices. Driving a 5-V device from a 3.3-V device without
additional complications or circuitry may seem odd, but as long as the 3.3-V device produces VOH and VOL levels of 2.4 V
and 0.4 V, the input of the 5-V device reads them as valid levels since VIH and VIL are 2 V and 0.8 V.

Case 3

Case 3 occurs when a 5-V CMOS device drives a 3.3-V TTL device (LVC). Two different switching standards that do not match
(see Figure 1) are interfacing. Upon further analysis of the 5-V CMOS VOH and VOL and the 3.3-V LVC VIH and VIL switching
levels, Figure 1 shows that although a disparity exists, a 5-V tolerant 3.3-V device can function properly with 5-V CMOS input
levels. With a 5-V tolerant LVC device, the configuration of a 5-V CMOS part driving a 3.3-V LVC part is possible.

Case 4

Case 4 occurs when a 3.3-V TTL device (LVC) drives a 5-V CMOS device. Two different switching standards are interfacing.
As shown in Figure 1, the specified VOH for a 3.3-V LVC is 2.4 V (higher output levels up to 3.3 V are possible), whereas the
minimum required VIH for a 5-V CMOS device is 3.5 V. As such, driving a 5-V CMOS device with a 3.3-V LVC (or any other
standard 3.3-V logic) device is impossible because, even at the maximum VOH of 3.3 V, the minimum VIH of 3.5 V is never
attained. To accommodate this occurrence, TI designed a series of split-rail devices; e.g., the SN74ALVC164245 and the
SN74LVC4245, which have one side of the device powered at a 3.3-V level and the other side powered at a 5-V level. By having
two different power supplies on the same device, the minimum voltage levels required for switching can be met and a 3.3-V
logic part can essentially drive a 5-V CMOS device.
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ac Performance

A desirable objective is for systems to operate at faster speeds that allow less time for performing operations. For example,
consider the impact a continually increasing operating frequency has on accessing memory or on performing arithmetic
computations; the faster the system runs, the less time is available for other support functions to be performed.

To meet this need, advances have been made in the fabrication of integrated circuits (ICs). Specifically in the low-voltage arena,
the LV, LVC, ALVC, and LVT logic family fabrication geometries have undergone changes that have consistently improved
their performance. This is shown in Figures 3 through 5, which compare the propagation delay times of LV, LVC, ALVC, and
LVT devices for differing values of operating free-air temperature, number of outputs switching, and load capacitance.
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Figure 3. Propagation Delay Time Versus Operating Free-Air Temperature
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Figure 3. Propagation Delay Time Versus Operating Free-Air Temperature (Continued)
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Figure 5. Propagation Delay Time Versus Load Capacitance (Continued)

Power Considerations

The continued general industry trend is to make devices more robust and faster while reducing their size and power
consumption. The LVC family of devices uses a CMOS output structure that has low power consumption and provides a
medium drive current capability.

When calculating the amount of power consumed, both static (dc) and dynamic (ac) power must be considered. A variable
when computing static power is ICC and is provided in the data sheet for each specific device. The LVC family ICC typically
offers one-half of the LV family ICC, one-fourth of the ALVC family ICC, and a small fraction of the LVT family ICC.

The majority of power consumed is dynamic due to the charging and discharging of internal capacitance and external load
capacitance. The internal parasitic capacitances are known as Cpd and are expressed by Equation 2.

Cpd� [(I CC(dynamic)� (VCC� f)] � CL

Where:

ICC = Measured value of current into the device (A)
VCC = Supply voltage (V)
f = Frequency (Hz)
CL = External load capacitance (F)

When comparing the dynamic power consumed between LV, LVC, ALVC and LVT, Figure 6 shows that pure CMOS devices
(the LV, LVC, and ALVC families) consume approximately the same power as BiCMOS devices (the LVT family) around the
frequency of 10 MHz, but consume significantly less power as the frequency approaches 100 MHz.

(2)
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For an LVC device, the overall power consumed can be expressed by the following equation:

PT� P(static)� P(dynamic)

Where:
for inputs with rail-to-rail signal swing:

PS� VCC� ICC

PD� [(Cpd� CL)� VCC
2
� f] � NSW

and for TTL-level inputs:

PS� VCC[I CC� (NTTL� �ICC� DCd)]

PD� [(Cpd� CL)� VCC
2
� f] � NSW

Where:

VCC = Supply voltage (V)
ICC = Power supply current (A)
Cpd = Power dissipation capacitance (F)
CL = External load capacitance (F)
f = Operating frequency (Hz)
NSW = Total number of outputs switching
NTTL= Total number of outputs (where corresponding input is at the TTL level)
∆ICC = Power supply current (A) when inputs are at a TTL level
DCd = % duty cycle of the data (50% = 0.5)

(3)

(4)

(5)
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Input Characteristics

The LVC family input structure is such that the 3.3-V CMOS dc VIL and VIH fixed levels of 0.8 V and 2 V are ensured, meaning
that while the threshold voltage of 1.5 V is typically where the transition from a recognized low input to a recognized high input
occurs (see Figure 7), it is at the levels of 0.8 V and 2 V where the corresponding output state is ensured. Additionally, a
reduction in overall bus loading exists in the LVC family due to the relatively high impedance and low capacitance
characteristics of CMOS input circuitry.
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Figure 7. Supply Current Versus Input Voltage

LVC Input Circuitry

The simplified LVC input circuit shown in Figure 8 consists of two transistors, sized to achieve a threshold voltage of 1.5 V
(see Figure 9). Since VCC is 3.3 V and the threshold voltage is commonly set to be centered around one-half of VCC in a pure
CMOS input (see Figure 1), additional circuitry to reduce the voltage level is not required and the resulting simplified input
structure consists of two transistors. When the input voltage VI is low, the PMOS transistor (Qp) turns on and the NMOS
transistor (Qn) turns off, causing current to flow through Qp, resulting in the output voltage (of the input stage) to be pulled
high. Conversely, when VI is high, Qn turns on and Qp turns off, causing current to flow through Qn, resulting in the output
voltage (on the input stage) to be pulled low.

VCC

Qp

Qn

VI

Figure 8. Simplified Input Stage of an LVC Circuit
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Figure 9 is a graph of VO versus VI. An input hysteresis of approximately 100 mV is inherent to the LVC process geometry,
which ensures the devices are free from oscillations by increasing the noise margin around the threshold voltage.
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Figure 9. Output Voltage Versus Input Voltage

Figure 10 is a graph of II versus VI. The inputs of all LVC devices are 5-V tolerant and have a recommended operating condition
range from 0 V to 5.5 V. If the input voltage is within this range, the functionality of the device is ensured.
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Input Current Loading

Minimal loading of the system bus occurs when using the LVC family due to the EPIC submicron process CMOS input
structure; the only loading that occurs is caused by leakage current and capacitance. Input current is low, typically less than
100 pA, as shown in Figure 11 and Table 1. Capacitance for transceivers can be as low as 3.3 pF for Ci and 5.4 pF for Cio. Since
both of the variables that can affect bus loading are relatively insignificant, the overall impact on bus loading on the input side
using LVC devices is minimal and, depending upon the logic family being used, bus loading can decrease as a result of using
LVC parts.
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Figure 11. Input Leakage Current Versus Input Voltage

Table 1. Input Current Specifications

PARAMETER TEST CONDITIONS
SN74LVC245A

PARAMETER TEST CONDITIONS
MIN MAX

II VI = 5.5 V or GND, VCC = 3.6 V ±5 µA

IOZ† VO = VCC or GND, VCC = MIN to MAX ±10 µA

IOZ† VO = 3.6 V or 5.5 V, VCC = MIN to MAX ±50 µA

† For I/O ports, the parameter IOZ includes the input leakage current.
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Supply Current Change ( ∆ICC)

LVC devices operate using the switching standard levels shown in Figure 1. However, because the input circuitry is CMOS,
an additional specification, ∆ICC, is provided to indicate the amount of input current present when both p- and n-channel
transistors are conducting. Although this situation exists whenever a low-to-high (or high-to-low) transition occurs, the
transition usually occurs so quickly that the current flowing while both transistors are conducting is negligible. It is more of
a concern, however, when a device with a TTL output drives the LVC part. Here, a dc voltage that is not at the rail, is applied
to the input of the LVC device. The result is that both the n-channel transistor and the p-channel transistor are conducting and
a path from VCC to GND is established. This current is specified as ∆ICC in the data sheet for each device and is measured one
input at a time with the input voltage set at VCC – 0.6 V, while all other inputs are at VCC or GND. Table 2 provides the ∆ICC
specification, which is contained in the data sheet for any LVC part.

Table 2. ∆ICC Current Specifications

PARAMETER TEST CONDITIONS
SN74LVC245A

PARAMETER TEST CONDITIONS
MIN MAX

∆ICC One input at VCC – 0.6 V, Other inputs at VCC or GND, VCC = 2.7 V to 3.6 V 500 µA

Proper Termination of Unused Inputs and Bus Hold

A characteristic of all CMOS input structures is that any unused inputs should not be left floating; they should be tied high to
VCC or low to GND via a resistor. The value of the resistor should be approximately 1kΩ . If the inputs are not tied high or
low but are left floating, excessive output glitching or oscillations can result due to induced voltage transients on the parasitic
lead inductance inherent to the device input and output structure.

Implementation of the bus-hold feature on select devices is a recent enhancement to the LVC logic family. Bus hold eliminates
the need for floating inputs to be tied high or low by holding the last known state of the input until the next input signal is present.
Bus hold is a circuit composed of two back-to-back inverters with the output fed to the input via a resistor. Figure 12 is a
simplified illustration of the bus-hold circuit. Figure 13 shows II(hold) as VI is swept from 0 to 4 V. Bus hold is beneficial because
of the decreased expense of purchasing additional resistors, reduced overall power consumption, and because it frees up limited
board space.

Input
Inverter
Stage

Bus-Hold
Input Cell

I/O Pin

Figure 12. Bus Hold



15

–300

–200

–100

0

100

200

300

0 1 2 3 4

VCC = 2.7 V

VCC = 3.6 V
VCC = 3.3 V
VCC = 3 V

VI – V

A
µ

I  
   

   
   

– 
I(

ho
ld

)

Figure 13. I I(hold)  Versus V I

Not all LVC devices have the bus-hold feature. Those that do are identified by the letter H added to the device name; e.g.,
SN74LVCH245. Additionally, any device with bus hold has an II(hold) specification in the data sheet. Finally, bus hold does
not contribute significantly to input current loading or output driving loading because it has a minimum hold current of 75 µA
and a maximum hold current of 500 µA as shown in Table 3.

Table 3. Bus-Hold Specifications [I I(hold) ]

PARAMETER TEST CONDITIONS
SN74LVC245

PARAMETER TEST CONDITIONS
MIN MAX

VI = 0.8 V, VCC = 3 V 75 µA

∆II(hold) VI = 2 V, VCC = 3 V –75 µAI(hold)
VI = 0 to 3.6 V, VCC = 3.6 V ±500 µA

Output Characteristics

The LVC family uses a pure CMOS output structure. This is true of all low-voltage families except the LVT family, which uses
both bipolar and CMOS circuitry. The LVC family has the dc characteristics shown in Table 4.

Table 4. LVC Output Specifications

PARAMETER TEST CONDITIONS
SN74LVC244A

PARAMETER TEST CONDITIONS
MIN TYP MAX

IOH = –100 µA, VCC = MIN to MAX VCC–0.2 V

VOH
IOH = –12 mA, VCC = 2.7 V 2.2 V

VOH
IOH = –12 mA, VCC = 3 V 2.4 V

IOH = –24 mA, VCC = 3 V 2.2 V

IOL = 100 µA, VCC = MIN to MAX 0.2 V

VOL IOL = 12 mA, VCC = 2.7 V 0.4 VOL
IOL = 24 mA, VCC = 3 V 0.55 V

IOZ† VO = VCC or GND, VCC = MIN to MAX ±10 µA

IOZ† VO = 3.6 V to 5.5 V, VCC = MIN to MAX ±50 µA

Co VO = VCC or GND, VCC = 3.3 V 5 pF

† For I/O ports, the parameter IOZ includes the input leakage current.
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LVC Output Circuitry

Figure 14 shows a simplified output stage of an LVC circuit. When the NMOS transistor (Qn) turns off and the PMOS transistor
(Qp) turns on and begins to conduct, the output voltage (VO) is pulled high. Conversely, when Qp turns off, Qn begins to conduct
and VO is pulled low.

VCC

Qp

Qn

VO

Figure 14. Simplified Output Stage of an LVC Circuit

Output Drive

Figure 15 illustrates values of IOL and IOH and the corresponding values of VOL and VOH for a typical LVC device.

–100

–80

–60

–40

–20

0

20

40

60

–1 –0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

VOL – V

–20

0

20

40

60

80

100

–0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

TA = 25°C, VCC = 3 V, 
VIH = 3 V, VIL = 0 V,
All Outputs Switching

TA = 25°C, VCC = 3 V,
VIH = 3 V, VIL = 0 V,
All Outputs Switching

VOH – V

I O
L

 –
 m

A

I O
H

 –
 m

A

Figure 15. Typical LVC Output Characteristics

Partial Power Down

To partially power down a device, no paths from VI to VCC or from VO to VCC can exist. With the LVC family, a path from
VI to VCC has never been an issue. However, early LVC devices that were not 5-V tolerant do have a path from VO to VCC.
For these devices, when VCC begins to diminish, a diode from VO to VCC begins to conduct and current flows, resulting in
damage to the power supply and or to the device. Today, the 5-V tolerant LVC devices are designed in such a way that this path
from VO to VCC is eliminated. As such, 5-V tolerant devices are capable of being partially powered down.

Proper Termination of Outputs

Depending on the trace length, special consideration may need to be given to the termination of the outputs. As a general rule,
if the trace length is less than four inches, no additional components are necessary to achieve proper termination. If the trace
length is greater than four inches, reflections begin to appear on the line and the system may appear noisy and generate
unreliable data. The solution to this is to terminate the outputs in an appropriate manner to minimize the reflections.
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Figure 16 illustrates five different techniques for terminating the outputs. The ideal situation is to identically match the
impedance (ZO) of the trace and eliminate all reflections. In practice, however, exactly matching ZO is not always possible and
settling for a close enough match that adequately minimizes the reflections may be the only option.

ZOD R

R

Single Resistor

Resistor and Capacitor

C

R2

Split Resistor

Series Resistor

R1

VCC

RT =
R1R2

R1 + R2

Diode

a
b

a) Off Chip
b) On Chip

Technique 1 Technique 2

Technique 3 Technique 4

Technique 5

D RZO

R

ZOD R

D RZO
R

D RZO

Figure 16. Termination Techniques

Technique 1

Technique 1 consists of a single resistor tied to GND. The ideal value of the resistor is R = ZO, and the best placement for it
is as close to the receiver as possible. A heavy increase in power occurs, but no further delay is present. There is a relatively
low dc noise margin in this configuration.

Technique 2

Technique 2 involves two split resistors; one resistor (R1) is tied to VCC and the other (R2) is tied to GND. The ideal value of
the resistors is R1 = R2 = 2ZO; RT = (R1 x R2)/(R1 + R2), and the best placement for the resistors is as close to the receiver
as possible. Technique 2 results in a heavy increase in power, with no delay being experienced, and is primarily used in
backplane designs where proper drive currents must be maintained.

Technique 3

Technique 3 has a capacitor in series with a resistor, both of which are running parallel to GND. The ideal value of the resistor
is R = ZO, and the value of the capacitor should be 60pF < C < 330 pF. To determine the ideal value of the capacitor, it is
recommended that a model simulation tool be used. The ideal placement of the resistor and capacitor is as close to the receiver
as possible. Technique 3 has the highest amount of power consumed as the frequency increases, but no additional delay is
experienced. Note that this termination technique can be optimized for only one given signal frequency.
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Technique 4

Technique 4 consists of a resistor in series with the output of the driving device and can be divided into two alternatives,
depending on whether the resistor is physically located on or off the driving device. If the resistor is not located on the device,
the value of the resistor should be R = ZO – ZD, where ZD is the output impedance of the driver, and the best placement is as
close to the driver as possible. Although a delay occurs, no power increase is experienced and this technique has a relatively
good noise margin. If the resistor is integrated on the device and part of the chip, its value is usually 25 = < R = <33 Ω. This
setup has a slight delay, has no increase in power, has good undershoot clamping, and is useful for point-to-point driving.

Technique 5

Technique 5 consists of a diode to GND that should be located as close as possible to the receiver. An increase in power is not
experienced, no delay occurs, and this configuration is useful for standard backplane terminations.

Technique 5 is the most attractive of all techniques since there is no power increase and no delay occurs. However, since the
delay associated with Technique 4 is so minimal and since no additional devices are required, whereas in all the other
techniques at least one additional component is required, Technique 4 is usually the technique recommended by the Advanced
System Logic department of Texas Instruments.

These five techniques, together with their advantages and disadvantages, are summarized in Table 5.

Table 5. Termination Techniques Summary

TECHNIQUE
ADDITIONAL

DEVICES
POWER

INCREASE

SETS
STATIC

LINE
LEVEL

DELAY IDEAL VALUE COMMENTS

Single resistor 1 Significant Yes No R = ZO Low dc noise margin

Split resistor 2 Significant Yes No R1 = R2 = 2ZO
Good for backplanes due to
maintaining drive current

Resistor and
capacitor

2 Yes No No
R = ZO

60 < C < 330 pF
Increase in frequency and power

Series resistor,
off device

1 No No Yes R = ZO – ZD Good noise margin

Series resistor,
on device

0 No No Small 25 = < R = < 33 Ω
Good undershoot clamping;
useful for point-to-point driving

Diode 1 No No No NA
Good undershoot clamping; useful
for standard backplane terminations
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Signal Integrity

System designers often are concerned with the performance of a device when the outputs are switched. The most common
method of assessing this is by observing the impact on a single output when multiple outputs are switched.

The phenomenon of simultaneous switching can be measured with respect to GND or with respect to VCC. When measuring
with respect to GND, the voltage output low peak (VOLP) is the impact on one quiet, logic-low output when all the other outputs
are switched from high to low. The converse is true when measuring simultaneous switching with respect to VCC; i.e., the
voltage output high valley (VOHV) is the impact on one quiet, logic-high output when all the other outputs are switched from
low to high. Figure 17 shows an example of simultaneous switching with respect to VOLP and VOHV.
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Figure 17. Simultaneous Switching Noise Waveform

One technique to reduce the impact of simultaneous switching on a device is to increase the number of power and GND pins.
The strategy is to disperse them throughout the chip to reduce mutual inductances between signals (see Advanced Packaging).
For a complete discussion of simultaneous switching, refer to TI’s Simultaneous Switching Evaluation and Testing application
report or the Advanced CMOS Logic Designer’s Handbook, literature number SCAA001A.
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