
Application Note
TI Humidity Sensors: Programming & Integration Guide

Harry Gill

ABSTRACT

Relative humidity (RH) sensors play a critical role in today’s electronic systems, supporting accurate
environmental monitoring in a wide range of applications—from server rooms and industrial automation, to
electric vehicles and smart infrastructure. By providing real-time data on ambient conditions, these sensors help
protect sensitive systems, improve performance, and maintain overall reliability. This Application Note provides
practical guidance for selecting and integrating Texas Instruments’ humidity sensors across three product
generations: HDC1x (first generation), HDC2x (second generation), and HDC3x (third and latest generation).
While each device family offers temperature and humidity measurement capabilities, each series features unique
interface protocols and configuration options. The content presented in this application note is intended to
simplify the process of evaluating and implementing TI's humidity sensors for a given system design.

Note
Unless specified otherwise, this application note’s reference to digital interface/protocol strictly
pertains to I2C-based digital communication. This application note will focus on code examples using
the Arduino™ platform — a C-based open-source prototyping platform ideal for its simplicity and quick
implementation. Additional C code is available through links provided at the end of this document.

Furthermore, any use of the letter ‘x’ at the end of a device name such as HDC302x or HDC2x means
the following explanation applies to all applicable variants from the ‘x’ onwards:

HDC1x = HDC1010 / HDC1080

HDC2x = HDC2010 / HDC2021 / HDC2022 / HDC2080

HDC3x =HDC3020 / HDC3021 / HDC3022 / HDC3120

Table of Contents
1 Introduction...2
2 Digital I2C Interface Overview... 3

2.1 Register Map Protocol..3
2.1.1 A Quick Overview of I2C Register Map Protocol...3

2.1.1.1 HDC1x...4
2.1.1.2 HDC2x...6

2.2 Command Protocol.. 12
2.2.1 HDC302x... 12

2.2.1.1 Interfacing in Trigger-On Demand Mode (One-Shot)..14
2.2.1.2 Interfacing in Auto Measurement Mode (AMM).. 16
How to Check Measurement Data With CRC... 16

3 Analog Interface Overview...18
3.1 HDC3120... 18

4 Summary... 24
5 Development Support and Documentation..24

5.1 Software Support... 24
5.2 References...24

Trademarks
Arduino™ is a trademark of Arduino AG.

www.ti.com Table of Contents

SBOA631 – AUGUST 2025
Submit Document Feedback

TI Humidity Sensors: Programming & Integration Guide 1

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/product/HDC1010
https://www.ti.com/product/HDC1080
https://www.ti.com/product/HDC2010
https://www.ti.com/product/HDC2021
https://www.ti.com/product/HDC2022
https://www.ti.com/product/HDC2080
https://www.ti.com/product/HDC3020
https://www.ti.com/product/HDC3021
https://www.ti.com/product/HDC3022
https://www.ti.com/product/HDC3120
https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

GitHub™ is a trademark of GitHub, Inc.
BoosterPack™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.
1 Introduction

HDC3120

HDC1010
HDC1080
HDC2010
HDC202x
HDC2080

HDC302x

Analog Register Map Command

Humidity Sensor Interface Overview

Figure 1-1. Humidity Sensor Interface Overview

Texas Instruments offers a portfolio of humidity sensors with two main interface types: analog ratiometric and
digital I2C communication. These interface types can be broken up into three groups:

1. Digital I2C – Register Map Protocol
• Communication is register-based (similar to TI's Temperature sensors).
• Measurements are triggered and read by writing to and reading from specific register addresses.
• Devices: HDC1x and HDC2x (ex. HDC1080, HDC2022)

2. Digital I2C – Command-Based Protocol
• Communication is based on command sequences.
• The host sends a command to initiate a measurement and then retrieves the result using a separate read

command.
• Devices: HDC302x (for example, HDC3020, HDC3022)

3. Analog Output – Ratiometric Voltage
• Sensor outputs voltage signals proportional to temperature and humidity.
• These can be fed directly into an analog system or digitized using an external ADC.
• Device: HDC3120

Each interface type requires a different approach to reading sensor data. The following sections detail these
methods and provide code examples for Arduino-enabled microcontrollers.

Introduction www.ti.com

2 TI Humidity Sensors: Programming & Integration Guide SBOA631 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

2 Digital I2C Interface Overview
TI currently offers digital humidity sensors in two I2C interface styles: register map or command-based access.
The following sections explain the general procedure for programming sensors from each digital humidity sensor
family.

2.1 Register Map Protocol
Both HDC1x and HDC2x sensor families use a register map-based digital interface, where temperature and
humidity measurements are initiated and read by writing to specific registers.

While the communication concept is similar, the two families differ in functionality and configuration options.

The HDC2x series provides a more advanced feature set including:

• Alert Functionality
• Data ready or interrupt pin support
• Two Measurement Modes:

– Trigger-On Demand for user-controlled, real-time sampling
– Auto Measurement Mode (AMM) for low-power, periodic sampling

• Split registers for Temperature MSB/LSB (Temperature High or Low) and Humidity MSB/LSB (Humidity High
or Low)

The HDC1x series is designed for simpler implementations. This supports only Trigger-On Demand and uses a
basic register structure with one register each for temperature and humidity measurements.

In summary, the HDC2x series is recommended over the HDC1x for designs requiring advanced features,
configurable measurement modes, or low-power operation. The HDC1x series is designed for applications
where a straightforward, digital I2C interface and simpler coding requirements are sufficient.

2.1.1 A Quick Overview of I2C Register Map Protocol
1 9

Ack by

Slave

Start by

Master

SCL

SDA

Frame 1
7-bit Serial Bus Address Byte

R/WA2 A0A1A3A4A5A6

D7 D6 D5 D4 D3 D2 D1 D0

1 9

Ack by

Slave

Stop by

Master

1 9

D15 D14 D13 D12 D11 D10 D9 D8

Ack by

Slave

Frame 3
Data MSB from

MASTER

Frame 4
Data LSB from

MASTER

1 9

P7 P6 P5 P4 P3 P2 P1 P0

Ack by

Slave

Frame 2
Pointer Register Byte

SCL

SDA

Figure 2-1. HDC1080 Data Frame Example (Configuration Register)

In I2C-based sensors, the register map is a structured table of memory locations (registers) that define how the
device is controlled and accessed. Each register has a unique address that the host can read from or write to,
allowing direct interaction with the configuration of the sensor, status bits, and data. This organized layout makes
it straightforward to adjust settings, retrieve measurements, and monitor flag bits. For the HDC1x and HDC2x
devices, the data structure looks similar to that in Figure 2-1, where after sending the address byte, the controller
must send the pointer register byte before the controller can read data from the sensor.

For more information on I2C, see the following document on I2C Basics.

www.ti.com Digital I2C Interface Overview

SBOA631 – AUGUST 2025
Submit Document Feedback

TI Humidity Sensors: Programming & Integration Guide 3

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/an/sbaa565/sbaa565.pdf
https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

2.1.1.1 HDC1x

TI’s first-generation HDC1x devices all share the same register map (as illustrated in Table 2-1). Therefore, the
following explanation applies across the HDC1x family.

Table 2-1. HDC1x Register Map
Pointer Name Reset value Description
0x00 Temperature 0x0000 Temperature measurement output

0x01 Humidity 0x0000 Relative Humidity measurement output

0x02 Configuration 0x1000 HDC1080 configuration and status

0xFB Serial ID device dependent First 2 bytes of the serial ID of the part

0xFC Serial ID device dependent Mid 2 bytes of the serial ID of the part

0xFD Serial ID device dependent Last byte bit of the serial ID of the part

0xFE Manufacturer ID 0x5449 ID of Texas Instruments

0xFF Device ID 0x1050 ID of the device

To begin, users must write a 16-bit value to the register in Table 2-2 (0x02) to define the measurement sequence
– temperature, humidity or both sequentially.

Table 2-2. HDC1x Configuration Register (0x02)
NAME Bits DESCRIPTION
RST [15] Software reset

bit
0 Normal Operation, this bit self clears

1 Software Reset

Reserved [14] Reserved 0 Reserved, must be 0

HEAT [13] Heater 0 Heater Disabled

1 Heater Enabled

MODE [12] Mode of
acquisition

0 Temperature or Humidity is acquired.

1 Temperature and Humidity are acquired in sequence, Temperature first.

BTST [11] Battery Status 0 Battery voltage > 2.8V (read only)

1 Battery voltage < 2.8V (read only)

TRES [10] Temperature
Measurement
Resolution

0 14 bit

1 11 bit

HRES [9:8] Humidity
Measurement
Resolution

00 14 bit

01 11 bit

10 8 bit

Reserved [7:0] Reserved 0 Reserved, must be 0

In the example below, the HDC1x is configured to measure both temperature and humidity in sequence by
writing 0x10 (MSB) and 0x00 (LSB) to the register. Figure 2-2 illustrates the register bits that are set.

When the HDC1x is set to output temperature and humidity sequentially, users must initiate a 4-byte
read from the Temperature Register (0x00).

Digital I2C Interface Overview www.ti.com

4 TI Humidity Sensors: Programming & Integration Guide SBOA631 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RST Rsrvd Heat Mode BTST TRES HRES Reserved

Hex: 0x10

Set this bit to 1
for continuous

conversion, or 0 if
only humidity or
temperature is

desired.

— MSB of binary command translated to hex.

Hex: 0x00 — LSB of binary command translated to hex.

Figure 2-2. Configuration Register Bits for Temperature and Humidity Acquisition

The code for setting the configuration is as follows:

Wire.beginTransmission(0x40); // initiate communication with HDC1x
Wire.write(0x02); // point to configuration register
Wire.write(0x10); // write 8-bit configuration to config register (MSB)
Wire.write(0x00); // write 8 0s to Reserved bits (LSB)
Wire.endTransmission();

Next, trigger the measurement process by writing to the device address (0x40).

Wire.beginTransmission(0x40); // initiate communication with HDC1x
Wire.write(0x00); // start measurements
Wire.endTransmission();
delay(20); // wait 20ms for conversion to complete.

Since temperature and humidity are measured in sequence, a 4-byte read from register 0x00 is required. The
first two bytes correspond to the temperature while the next two bytes correspond to humidity data.

Wire.requestFrom(0x40, 4); // requesting 4 bytes from device

// once 4 bytes are received, store this in appropriate variables
if (Wire.available() == 4) {

 // stores raw temperature and humidity data
 // reads/stores first byte (MSB), then reads/stores second byte
 // combines each pair of bytes into a 16-bit integer

 uint16_t tempBytes = (Wire.read() << 8) | Wire.read();
 uint16_t humBytes = (Wire.read() << 8) | Wire.read();
}

www.ti.com Digital I2C Interface Overview

SBOA631 – AUGUST 2025
Submit Document Feedback

TI Humidity Sensors: Programming & Integration Guide 5

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

Finally, apply the standard conversion formulas from the HDC1x data sheet:

// equation for converting temperature output in Celsius
temp = (tempBytes / 65536.0) * 165.0 - 40.0;

// equation for converting humidity output
hum = (humBytes / 65536.0) * 100.0;

This Arduino example demonstrates how to read and store temperature and humidity data from the HDC1x
sensor when measurements are acquired sequentially. Once the raw data is stored, this can be converted to
physical temperature and humidity values using the formulas provided in the HDC1x data sheet.

A complete working sample is available on the TI GitHub repository for environmental sensors here.

2.1.1.2 HDC2x

The HDC2x family (HDC2010, HDC2021, HDC2022, HDC2080) also uses a register map-based digital interface,
similar to the HDC1x series. As illustrated in Table 2-3, all HDC2x devices share a common register layout, and
the following procedure applies across the family. This section outlines how to interface with these devices in
both Trigger-On Demand (One-Shot) and Auto Measurement (Continuous Conversion) modes.

Table 2-3. HDC2x Register Map
Pointer NAME RESET VALUE DESCRIPTION

0x00 TEMPERATURE LOW 0x00 Temperature [7:0]

0x01 TEMPERATURE HIGH 0x00 Temperature [15:8]

0x02 HUMIDITY LOW 0x00 Humidity [7:0]

0x03 HUMIDITY HIGH 0x00 Humidity [15:8]

0x04 INTERRUPT/DRDY 0x00 DataReady and interrupt configuration

0x05 TEMPERATURE MAX 0x00 Maximum measured temperature
(Not supported in Auto Measurement Mode)

0x06 HUMIDITY MAX 0x00 Maximum measured humidity
(Not supported in Auto Measurement Mode)

0x07 INTERRUPT ENABLE 0x00 Interrupt Enable

0x08 TEMP_OFFSET_ADJUST 0x00 Temperature offset adjustment

0x09 HUM_OFFSET_ADJUST 0x00 Humidity offset adjustment

0x0A TEMP_THR_L 0x00 Temperature Threshold Low

0x0B TEMP_THR_H 0xFF Temperature Threshold High

0x0C RH_THR_L 0x00 Humidity threshold Low

0x0D RH_THR_H 0xFF Humidity threshold High

0x0E RESET&DRDY/INT CONF 0x00 Soft Reset and Interrupt Configuration

0x0F MEASUREMENT CONFIGURATION 0x00 Measurement configuration

0xFC MANUFACTURER ID LOW 0x49 Manufacturer ID Low

0xFD MANUFACTURER ID HIGH 0x54 Manufacturer ID High

0xFE DEVICE ID LOW 0xD0 Device ID Low

0xFF DEVICE ID HIGH 0x07 Device ID High

Note
For the following HDC2x examples, an HDC2010 configured to address 0x40 (ADDR pin connected to
GND) was used, however a global variable is available to conveniently adjust the address according
to your setup.

Digital I2C Interface Overview www.ti.com

6 TI Humidity Sensors: Programming & Integration Guide SBOA631 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://github.com/TexasInstruments-Sandbox/ti-environmental-sensors/tree/main/devices/humidity%20sensors/hdc1x
https://www.ti.com/product/HDC2010
https://www.ti.com/product/HDC2021
https://www.ti.com/product/HDC2022
https://www.ti.com/product/HDC2080
https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

One key difference from the HDC1x series is the HDC2x devices use separate 8-bit registers for storing the most
significant and least significant bits of each measurement:

• Temperature: TEMP_LOW (LSB), TEMP_HIGH (MSB)
• Humidity: HUM_LOW (LSB), HUM_HIGH (MSB)

In addition to these data registers, the HDC2x series includes a Measurement Configuration Register, which
allow users to define measurement parameters.

The measurement process begins by writing to the Configuration Register, which controls key functions such as
(but not limited to):

• Heater Enable (HEAT_EN)
• Auto Measurement Mode (AMM)
• Soft Reset (SOFT_RES)

Subsequent steps involve setting measurement parameters and initiating conversions, which can be detailed in
the following subsections.

2.1.1.2.1 Interfacing in Trigger-On Demand Mode

In this example, an HDC2010 sensor is configured for Trigger-On Demand (One-Shot) mode, with Auto
Measurement Mode (AMM) disabled. The procedure begins by writing to the Configuration Register (0x0E) to
set the device in Trigger-On Demand mode. An illustration of the Configuration Register setup is provided in
Figure 2-3.

Table 2-4. Configuration Register (0x0E)
BIT FIELD TYPE RESET DESCRIPTION
7 SOFT_RES R/W 0 0 = Normal Operation mode, this bit is self-clear

1 = Soft Reset
EEPROM value reload and registers reset

[6:4] AMM[2:0] R/W 000 Auto Measurement Mode (AMM)
000 = Disabled. Initiate measurement via I2C
001 = 1/120Hz (1 samples every 2 minutes)
010 = 1/60Hz (1 samples every minute)
011 = 0.1Hz (1 samples every 10 seconds)
100 = 0.2Hz (1 samples every 5 second)
101 = 1Hz (1 samples every second)
110 = 2Hz (2 samples every second)
111 = 5Hz (5 samples every second)

3 HEAT_EN R/W 0 0 = Heater off
1 = Heater on

2 DRDY/INT_EN R/W 0 DRDY/INT_EN pin configuration
0 = High Z
1 = Enable

1 INT_POL R/W 0 Interrupt polarity
0 = Active Low
1 = Active High

0 INT_MODE R/W 0 Interrupt mode
0 = Level sensitive
1 = Comparator mode

www.ti.com Digital I2C Interface Overview

SBOA631 – AUGUST 2025
Submit Document Feedback

TI Humidity Sensors: Programming & Integration Guide 7

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

Hex: 0x00 — Binary command translated to hex.

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

SOFT_RST AMM HEAT_EN DRDY/
INT_EN HRES

Set AMM bits to 0 for one-shot
communication.

HRES

Figure 2-3. Configuration Register for Trigger-On Demand (One-Shot)

Wire.beginTransmission(0x40); // initiate communication with HDC2x sensor
Wire.write(0x0E); // write to Config Register
Wire.write(0x00); // configure device to Trigger-On Demand
Wire.endTransmission();

Next, configure the Measurement Configuration Register (0x0F) as shown in Figure 2-4.

The Measurement Configuration Register defines the following:

• Temperature and Humidity resolution (TRES and HRES)
• Measurement Type (temperature only, humidity only, or both)
• Measurement Trigger (MEAS_TRIG)

Table 2-5. Measurement Configuration Register (0x0F)
BIT FIELD TYPE RESET DESCRIPTION
7:6 TRES[1:0] R/W 00 Temperature resolution

00: 14 bit
01: 11 bit
10: 9 bit
11: NA

5:4 HRES[1:0] R/W 00 Humidity resolution
00: 14 bit
01: 11 bit
10: 9 bit
11: NA

3 RES R/W 0 Reserved

2:1 MEAS_CONF[1:0] R/W 00 Measurement configuration
00: Humidity + Temperature
01: Temperature only
10: NA
11: NA

Digital I2C Interface Overview www.ti.com

8 TI Humidity Sensors: Programming & Integration Guide SBOA631 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

Table 2-5. Measurement Configuration Register (0x0F) (continued)
BIT FIELD TYPE RESET DESCRIPTION
0 MEAS_TRIG R/W 0 Measurement trigger

0: no action
1: Start measurement
Self-clearing bit when measurement completed

Figure 2-4 provides an illustration of the Measurement Configuration Register.

Hex: 0x01 — Binary command translated to hex.

0 0 0 0 0 0 0 1

7 6 5 4 3 2 1 0

TRES[1:0] HRES[1:0] RES MEAS_CONF[1:0] MEAS_TRIG

Set TRES[1:0] and HRES[1:0] to 0
for 14-bit resolution.

Set MEAS_CONF[1:0] to 0 for
temperature and humidity data.

Figure 2-4. Measurement Configuration Register Setup

Wire.beginTransmission(0x40); // initiate communication with HDC2x sensor

Wire.write(0x0F); // write to Measurement Config Register

Wire.write(0x01); // set output to 14-bit temperature/humidity data
 // and trigger measurements

Wire.endTransmission();

In Trigger-On Demand mode, this sequence can be placed inside a loop for periodic polling, depending on the
system’s needs.

To read the temperature and humidity measurements for the HDC2x, users can choose between two possible
methods. The first method is to read/store the temperature and humidity bytes separately using the TEMP_LOW/
HUM_LOW and TEMP_HIGH/HUM_HIGH and combine the MSB and LSB bits into one 16-bit value, or burst
read multiple bytes in one communication frame as illustrated in the following code for humidity data acquisition:

Reading Measurement Data

The HDC2x stores measurement results across two 8-bit registers:

• Humidity: HUM_LOW (0x02), HUM_HIGH (0x03)
• Temperature: TEMP_LOW (0x00), TEMP_HIGH (0x01)

www.ti.com Digital I2C Interface Overview

SBOA631 – AUGUST 2025
Submit Document Feedback

TI Humidity Sensors: Programming & Integration Guide 9

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

One approach is to read each byte separately and combine them:

uint16_t getHum() {

 // RH LSB Acquisition

 Wire.beginTransmission(0x40); // start communication with HDC2x
 Wire.write(0x02); // set a pointer for Humidity Low register (0x02)
 Wire.requestFrom(0x02, 2); // request 2 bytes from HDC2x
 uint8_t humLow = Wire.read(); // store Humidity LSB data
 Wire.endTransmission();

 // RH MSB Acquisition

 Wire.beginTransmission(0x40); // start communication with HDC2x
 Wire.write(0x03); // set a pointer for Humidity High register (0x03)
 Wire.requestFrom(0x40, 2); // request 2 bytes from HDC2x
 uint8_t humHigh = Wire.read(); // store Humidity MSB data
 Wire.endTransmission();

 // combine MSB and LSB into 16-bit integer and return value

 return ((uint16_t) humHigh << 8) | humLow;

}

However, a more efficient method reads both bytes in a burst from the LSB registers:

uint16_t getHum2() {

 Wire.beginTransmission(0x40); // start communication with HDC2x
 Wire.write(0x02); // set a pointer for Humidity Low register (0x02)
 Wire.endTransmission(false);
 Wire.requestFrom(0x40, 2); // request 2 bytes from HDC2x

 uint8_t lsb = Wire.read(); // read and store LSB
 uint8_t msb = Wire.read(); // read and store MSB

 // adds MSB of data to an empty 16-bit variable
 // shifts 8 bits left, then "or" with LSB for final value

 return ((uint16_t) msb << 8) | lsb;

}

This approach leverages the HDC2x’s internal pointer behavior: after reading the LSB from the HUMIDITY_LOW
register, the pointer auto-increments to the HUMIDITY_HIGH register for the MSB. The same mechanism
applies for reading temperature.

Visit the following link to view the full sample code for the HDC2x in Trigger-On Demand Mode.

2.1.1.2.2 Interfacing Using Auto Measurement Mode (AMM)

This section outlines how to configure HDC2x devices to operate in Auto Measurement Mode (AMM) and
highlights key differences compared to Trigger-On Demand mode.

In AMM, the device automatically performs measurements at a user-defined sampling frequency, eliminating the
need for manual measurement triggers from the MCU. Unlike Trigger-On Demand, where each measurement
must be initiated manually, AMM requires only a single trigger to start periodic conversions.

In this example, the HDC2010 is configured to sample once every 5 seconds (0.2Hz). This is accomplished by
writing the appropriate setting to the Configuration Register (0x0E). An illustration of the Configuration Register
setup is provided in Figure 2-5.

Digital I2C Interface Overview www.ti.com

10 TI Humidity Sensors: Programming & Integration Guide SBOA631 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://github.com/TexasInstruments-Sandbox/ti-environmental-sensors/blob/main/devices/humidity%20sensors/hdc2x/HDC2x_TriggerOnDemand_Example_1_0.ino
https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

Hex: 0x40 — Binary command translated to hex.

0 1 0 0 0 0 0 0

7 6 5 4 3 2 1 0

SOFT_RST AMM HEAT_EN DRDY/
INT_EN HRES

Set AMM bits to 1 0 0 for AMM
with 1 sample every 5 seconds.

HRES

Figure 2-5. Configuration Register for Auto Measurement Mode (AMM)

// set device to Auto Measurement Mode for 0.2Hz (1 sample/5 seconds)

Wire.beginTransmission(0x40); // start communication with HDC2x

Wire.write(0x0E); // point to register 0x0E (Measurement Config)
Wire.write(0x40); // write value to register

Wire.endTransmission(); // end communication

The Measurement Configuration Register uses the same configuration explained in the Trigger-On Demand
section.

Visit the following link to view the full sample code for the HDC2x in Auto Measurement Mode.

www.ti.com Digital I2C Interface Overview

SBOA631 – AUGUST 2025
Submit Document Feedback

TI Humidity Sensors: Programming & Integration Guide 11

Copyright © 2025 Texas Instruments Incorporated

https://github.com/TexasInstruments-Sandbox/ti-environmental-sensors/blob/main/devices/humidity%20sensors/hdc2x/HDC2x_AMM_Example_1_0.ino
https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

2.2 Command Protocol

2.2.1 HDC302x

The HDC302x family introduces a command-based interface, marking a departure from the register map-based
scheme used in prior generations. Instead of writing to specific registers, HDC302x devices respond to well-
defined command codes to initiate measurements, configure settings, or retrieve data. Table 2-6 shows an
example of supported commands by the HDC302x devices.

This approach simplifies the interface and reduces the number of required I2C transactions, particularly in
applications where only basic measurements are needed.

The forthcoming sections demonstrate how to interface with the HDC302x in both Trigger-On Demand and Auto
Measurement modes, providing examples of how command-based communication is implemented in each case.

Table 2-6. HDC302x Command Table Snippet
HEX CODE

(MSB)
HEX CODE

(LSB) COMMAND COMMAND DETAIL

24 00
Trigger-On Demand Mode
Single Temperature (T) Measurement
and Relative Humidity (RH) Measurement

Low Power Mode 0 (lowest noise)

24 0B Low Power Mode 1

24 16 Low Power Mode 2

24 FF Low Power Mode 3 (lowest power)

20 32

Auto Measurement Mode
1 measurement per 2 seconds.

Low Power Mode 0 (lowest noise)

20 24 Low Power Mode 1

20 2F Low Power Mode 2

20 FF Low Power Mode 3 (lowest power)

21 30

Auto Measurement Mode
1 measurement per second.

Low Power Mode 0 (lowest noise)

21 26 Low Power Mode 1

21 2D Low Power Mode 2

21 FF Low Power Mode 3 (lowest power)

22 36

Auto Measurement Mode
2 measurements per second.

Low Power Mode 0 (lowest noise)

22 20 Low Power Mode 1

22 2B Low Power Mode 2

22 FF Low Power Mode 3 (lowest power)

23 34

Auto Measurement Mode
4 measurements per second.

Low Power Mode 0 (lowest noise)

23 22 Low Power Mode 1

23 29 Low Power Mode 2

23 FF Low Power Mode 3 (lowest power)

27 37

Auto Measurement Mode
10 measurements per second.

Low Power Mode 0 (lowest noise)

27 21 Low Power Mode 1

27 2A Low Power Mode 2

27 FF Low Power Mode 3 (lowest power)

2C 06 Trigger-On Demand Mode
Single Temperature (T) Measurement
and Relative Humidity (RH) Measurement

Low Power Mode 0 (lowest noise)

2C 0D Low Power Mode 1

2C 10 Low Power Mode 2

Digital I2C Interface Overview www.ti.com

12 TI Humidity Sensors: Programming & Integration Guide SBOA631 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/gpn/hdc3020
https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

Table 2-6. HDC302x Command Table Snippet (continued)
HEX CODE

(MSB)
HEX CODE

(LSB) COMMAND COMMAND DETAIL

30 93

Auto Measurement Mode

Exit, then return to Trigger-on Demand Mode.

E0 00
Measurement Readout of T and RH
(Note: if RH and T are not updated, data read
outs all FFs)

E0 01 Measurement Readout of RH only

E0 02 Measurement History Readout of Minimum T.

E0 03 Measurement History Readout of Maximum T.

E0 04 Measurement History Readout of Minimum RH.

E0 05 Measurement History Readout of Maximum RH.

www.ti.com Digital I2C Interface Overview

SBOA631 – AUGUST 2025
Submit Document Feedback

TI Humidity Sensors: Programming & Integration Guide 13

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

2.2.1.1 Interfacing in Trigger-On Demand Mode (One-Shot)

This section demonstrates how to configure and read measurements from an HDC302x device using highest
resolution settings. All example codes utilize a global variable for the I2C address and can be easily changed
based off the user’s device configuration.

Note
The HDC302x sensor used in this example is configured for address 0x44 (ADDR and ADDR1 pin
connected to GND), but a global variable is available in the code to conveniently adjust the address
according to your layout.

Before measurements can be read, the device must first be configured. This is done by sending a specific
command sequence to the HDC302x. An illustration of the configuration is shown in Figure 2-6.

HDC

I2C Controller
S I2C Address W A

Trigger On Demand - Low Power Mode 0

0x24 A 0x00 A

0x44

Figure 2-6. Trigger-On Demand Command Selection

Wire.beginTransmission(0x44); // Initiate communication with HDC302x

Wire.write(0x24); // Write Command MSB to device.

Wire.write(0x00); // Write Command LSB to device.

Wire.endTransmission();

delay(25); //wait 25ms before reading

A delay is required to ensure the measurement conversion has completed before initiating a read. For
this example, a 15ms delay was used since the measurement configuration is based on the highest
resolution and repeatability. Engineers should consult the data sheet prior to setting the appropriate
delay, though a minimum delay of 15ms should be implemented.

HDC
I2C Controller

S I2C Address W A P

Trigger On Demand - Low Power Mode 0

T
(MSB) A NA CRC A0x24 A 0x00 A Sr I2C Address R A T

(LSB)
RH

(MSB) A A CRCRH
(LSB)

Temperature Relative Humidity

Temp CRC RH CRC0x44 ≥ 15ms Delay

Figure 2-7. HDC302x Trigger-On Demand Communication Structure

void loop() {

 float humidity;
 float temp;

 // send device command for highest repeatability
 Wire.beginTransmission(0x44);
 Wire.write(0x24); //send MSB of command
 Wire.write(0x00); //command LSB
 Wire.endTransmission();

Digital I2C Interface Overview www.ti.com

14 TI Humidity Sensors: Programming & Integration Guide SBOA631 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

 delay(15); //wait 15ms before reading

 Wire.requestFrom(0x44, 6); //request 6 bytes from HDC device
 Wire.readBytes(HDC_DATA_BUFF, 6); //move 6 data bytes into
buffer

 temp = getTemp(HDC_DATA_BUFF);
 Serial.print("Temp (C): "); // print final temp value
 Serial.println(temp);

 delay(1000); // wait 1 second (optional)

 humidity = getHum(HDC_DATA_BUFF);
 Serial.print("Humidity (RH): "); // print final humidity value
 Serial.print(humidity);
 Serial.println("%");

 delay(1000); // wait 1 second (optional)

}

Data Conversion Functions

Temperature and humidity are calculated using the formulas provided in the HDC302x data sheet:

// function processes raw temperature values and returning final value
float getTemp(uint8_t humBuff[]) {

 float tempConv;
 float celsius;

 TEMP_MSB = humBuff[0] << 8 | humBuff[1]; //shift 8 bits of data in
 //first array index to get
 //MSB then OR with LSB

 tempConv = (float)(TEMP_MSB); // convert uint8_t temp value
 celsius = ((tempConv / 65535) * 175) - 45; // calculate celcius

 return celsius;

}

// function for processing raw humidity values and returning final value
float getHum(uint8_t humBuff[]) {

 float humConv;
 float humidity;

 HUM_MSB = (humBuff[3] << 8) | humBuff[4]; //shift 8 bits of data in
 //first array index to get
 //MSB then OR with LSB

 humConv = (float)(HUM_MSB); // convert uint8_t humidity value
 humidity = (humConv / 65535) * 100; // calculate humidity

 return humidity;

}

Note on Buffer Structure

The six-byte buffer HDC_DATA_BUFF contains:

• Bytes 0-1: Raw temperature data (MSB, LSB)
• Byte 2: Temperature CRC (optional)
• Bytes 3-4: Raw humidity data (MSB, LSB)
• Byte 5: Humidity CRC (optional)

Although this example does not use the CRC bytes, the bytes are included in the buffer for completeness and
can be checked for data integrity if needed.

Visit the following link to view the full sample code for the HDC302x in Trigger-On Demand Mode.

www.ti.com Digital I2C Interface Overview

SBOA631 – AUGUST 2025
Submit Document Feedback

TI Humidity Sensors: Programming & Integration Guide 15

Copyright © 2025 Texas Instruments Incorporated

https://github.com/TexasInstruments-Sandbox/ti-environmental-sensors/blob/main/devices/humidity%20sensors/hdc302x/HDC302x_TriggerOnDemand_Example_1_0.ino
https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

2.2.1.2 Interfacing in Auto Measurement Mode (AMM)

This section outlines how to configure the HDC302x for AMM and explains the key differences compared to
Trigger-On Demand mode.

The main distinction between Auto Measurement Mode and Trigger-On Demand is if users intend to read from
the HDC302x sensor in a fixed interval, Auto Measurement Mode would be more suitable for its programmable
output interval. Figure 2-8 illustrates the command sequence for programming an HDC302x to output a single
measurement every second with the lowest noise and highest repeatability.

HDC
I2C Controller

S I2C Address W A P

AMM: 1 Measurement/sec - Low Power Mode: 0

T
(MSB) A NA CRC A0x21 A 0x30 A Sr I2C Address R A T

(LSB)
RH

(MSB) A A CRCRH
(LSB)

Temperature Relative Humidity

Temp CRC RH CRC0x44 ≥ 15ms Delay

Figure 2-8. HDC302x Auto Measurement Mode (AMM) Communication Structure

// configure HDC302x for Auto Measurement Mode (1 measurement/sec)
// lowest noise, highest repeatability
void deviceInit() {

 Wire.beginTransmission(0x44);
 Wire.write(0x21); //send MSB of command
 Wire.write(0x30); //command LSB
 Wire.endTransmission();
 delay(15); //wait 15ms before reading

}

After the device is configured for Auto Measurement Mode, and sufficient time has passed for a conversion to
complete (one second in this case), the following function is used to request the stored measurement data:

// Helper function for requesting data when in Auto Measurement Mode
void requestData() {

 Wire.beginTransmission(DEVICE_ADDR); // initiate communication
 Wire.write(0xE0); // send MSB of read command
 Wire.write(0x00); // send LSB of read command
 Wire.endTransmission();

}

To continuously poll the device in AMM, you can issue the read command to retrieve the latest measurement
data at the configured sampling rate (measurements per second).

A complete Arduino example demonstrating HDC302x operation in AMM – including device configuration,
measurement polling, and data readout is available in the TI GitHub™ repository for environmental sensors here.

How to Check Measurement Data With CRC

Performing CRC checks on the HDC302x's measurement output can be an important step to ensure data
integrity and prevent false readings, particularly in critical applications such as medical devices, cold chain, or
weather stations. This section provides a simple code example that can be readily implemented into the existing
code for the HDC302x. This example specifically focuses on performing a CRC check on the temperature and
humidity readings.

The HDC3020 follows the CRC-8 standard as it outputs a unique 8-bit CRC value for temperature and humidity
measurements. This is illustrated above in Figure 2-8. Depending on whether the user wants to check humidity
or temperature data, the algorithm below accepts a total of three bytes—MSB, LSB and CRC as a parameter
and the total number of bytes sent. It then performs a calculation using the specified polynomial value from the
datasheet, 0x31. Equation 1 illustrates the polynomial used for the CRC check calculation.0x31 = x8+ x5+ x4+ 1 (1)

Digital I2C Interface Overview www.ti.com

16 TI Humidity Sensors: Programming & Integration Guide SBOA631 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://github.com/TexasInstruments-Sandbox/ti-environmental-sensors/blob/main/devices/humidity%20sensors/hdc302x/HDC302x_AMM_Example_1_0.ino
https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

Once both measurement data and the CRC byte are processed, if the final value is 0x00, the CRC check has
passed and the program proceeds to output the measurement readings; else, it outputs an error message in the
console.

// function for checking CRC for HDC measurements
uint8_t checkMeasurementCRC(uint8_t data[], uint8_t dataLength){

uint8_t crc = 0xFF; // initial value per HDC302x datasheet
uint8_t byte;
uint8_t bit;

for (byte =0; byte < dataLength; byte++){ // loops through each byte of input data
 crc ^= data[byte]; // XOR next data byte into current CRC value
 for (bit = 0; bit < 8; bit++){ // process each bit from the data byte
 if (crc & 0x80) // if MSB of CRC is 1
 crc = (crc << 1) ^ 0x31; // shift left and apply polynomial
 else
 crc = (crc << 1); // else shift left, but no polynomial application
 }
}
Serial.print("CRC Check Result: "); // optional; prints CRC value for debugging
Serial.println(crc);
return crc; // return final CRC value
}

This function can then be called while temperature or humidity is read to check data integrity.

Humidity Read Example w/ CRC Check:

uint8_thumCheck[3] = {HDC_DATA_BUFF[3], HDC_DATA_BUFF[4], HDC_DATA_BUFF[5]};

// if algorithm output equals final byte value of 0x00, CRC check passes, else output error message
if ((checkMeasurementCRC(humCheck, 3)) == 0x00){

Serial.println("Humidity CRC check passed.");
humidity = getHum(HDC_DATA_BUFF);
Serial.print("Humidity (RH): ");
Serial.print(humidity);
Serial.println("%");

} else {

 Serial.println("Error: Humidity CRC Check Failed.");

}

A sample output is provided below in Figure 2-9. The same method can be implemented for checking
temperature data integrity.

Figure 2-9. CRC Check Example Output

www.ti.com Digital I2C Interface Overview

SBOA631 – AUGUST 2025
Submit Document Feedback

TI Humidity Sensors: Programming & Integration Guide 17

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

An example for checking Alert CRC in C can be found in TI's GUI-based code generator, ASC Studio.

3 Analog Interface Overview

3.1 HDC3120
The HDC3120 is Texas Instruments’ first humidity sensor with an analog ratiometric output. The HDC3120
provides continuous voltage signals corresponding to temperature and relative humidity, making this well-
designed for low-noise, analog front-end systems.

Unlike digital sensors which require communication protocols, the HDC3120 allows direct access to sensor
outputs without writing I2C commands or configuring registers. This simplifies integration in systems where an
analog-to-digital converter (ADC) is already available.

To interpret the output signals, users can apply the appropriate conversion equations (provided below) to
translate voltage levels into temperature (°C) and relative humidity (%RH).

An important characteristic of the HDC3120 is the ratiometric behavior. The output voltages for temperature
and humidity scale linearly with the device’s supply voltage (VDD), which also serves as the internal reference.
This design provides immunity from noise and drift in the power supply, enabling reliable measurements. This
relationship is illustrated in the following graphs for both temperature and humidity output curves.

Figure 3-1. Ratiometric Temperature Output Profile and Conversion Equation

T °C = 218.75 × VOUTVDD − 66.875 (2)

Figure 3-2. Ratiometric Relative Humidity Output Profile and Conversion Equation

Analog Interface Overview www.ti.com

18 TI Humidity Sensors: Programming & Integration Guide SBOA631 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://dev.ti.com/sysconfig/index.html?product=ascstudio&module=/ti/sensors/humiditysensor/HDC3020
https://www.ti.com/product/HDC3120
https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

%RH = 125 × VOUTVDD − 12.3 (3)

Understanding the ratiometric nature of the HDC3120 output is critical – especially when interfacing with an ADC
since the sensor’s output voltage directly scales with the supply voltage (VDD). If the chosen ADC also uses
its supply as a reference, measurement consistency is preserved in the event noise or drift appears within the
voltage supply. This alignment eliminates gain mismatch issues and helps maintain consistent sensor readings.

How to Choose an ADC for the HDC3120:

VDD

GPIO

GND

HDC3120

VDD

GND

RH

TEMP

RESET_EN
HEAT_EN GPIO

ADC

Figure 3-3. HDC3120 to ADC

Table 3-1 provides some ADCs for the HDC3120:

Table 3-1. ADCs for the HDC3120
ADC Resolution Ratiometric Automotive Grade Supply Range When to Select

ADS7142 12-bit Yes Q100 1.65-3.6V

Integrated alert
functionality for

exceeding system
limits; up to two

single-ended inputs

ADS7138 12-bit Yes Q100 2.35V-5.5V

Heater/enable control
through GPIO pins;
up to eight single-

ended inputs

ADS7066 16-bit Yes — 3V-5.5V

Heater/enable control
via GPIO pins; up

to eight single-ended
inputs

ADS1015 12-bit No Q100 2V-5.5V

Programmable Gain
Amplifier (PGA) for
wider input voltage
range; up to four

single-ended inputs

When selecting an ADC for the HDC3120, the following process must be considered.

1. Determine the ADC’s least significant bit (LSB)
2. Calculate the HDC3120 temperature LSB
3. Calculate the HDC3120’s humidity LSB
4. Compare LSB Values

Choose an ADC LSB that is smaller than the HDC3120’s temperature LSB. The same consideration can be
used for humidity LSB, however, since the HDC3120's temperature sensor has a higher accuracy, it is used to
determine the minimum LSB required for an ADC.

www.ti.com Analog Interface Overview

SBOA631 – AUGUST 2025
Submit Document Feedback

TI Humidity Sensors: Programming & Integration Guide 19

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/product/ADS7142
https://www.ti.com/product/ADS7142-Q1
https://www.ti.com/product/ADS7138
https://www.ti.com/product/ADS7138-Q1
https://www.ti.com/product/ADS7066
https://www.ti.com/product/ADS1015
https://www.ti.com/product/ADS1015-Q1
https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

The ADS1015 cannot perform ratiometric measurements since it only has an internal reference, and
offers no option for an external reference. Additionally, the LSB will need to be solved for using the
following equation:

LSB = FSR2n ; FSRADS1015 = 2 × VREFgain (4)

Where FSR (Full Scale Range) represents the scaling factor and VREF is the ADC's reference voltage.
In the case of the ADS1015, the gain is determined by setting of the programmable gain amplifier
(PGA) using Table 7-1 in the ADS1015 datasheet.

Additional information on pairing the HDC3120 with an ADC can be found in section 8.2.2 in the HDC3120
datasheet.

Example Scenario:

For this example, the BOOSTXL-ADS7142-Q1 EVM was paired with the HDC3120EVM. Both devices were
powered using the same 3.3V supply. From here the LSB’s of both devices can be compared using the steps
above:

1. Determine the ADC’s least significant bit (LSB) using the following equation:FSRResolution = LSBADC (5)

a. Since the operating voltage is 3.3V and the ADC features a 12-bit resolution, the LSB is:

3 . 3V212 = 0 . 805mV (6)

2. Calculate the HDC3120's Temperature LSB using the following equation:VTEMP = VDD × T °C × 4 . 571mV°C (7)

TempLSB = 3 . 3V × 0 . 1 × 4.571mV℃ = 1 . 508 mV/°C (8)

The value for temperature (T(°C)) is 0.1 to reflect the HDC3120's typical temperature sensing
accuracy.

3. Calculate the HDC3120's Humidity LSB using Equation 9:VRH = VDD × %RH × 8 mV%RH (9)

RHLSB = 3 . 3V × 1 . 0 × 8 mV%RH = 26 . 4 mV/ %RH (10)

The value for humidity (%RH) is 1.0 to reflect the HDC3120's typical humidity sensing accuracy.
4. Compare LSB Values

a. Since the Temperature LSB size of the HDC3120 is 1.508mV at 3.3V, and the ADS7142 has an LSB
of 0.805mV; this means users retains measurement precision of at least 1°C. If a higher degree of
precision is desired, such as 0.5°C, a higher resolution ADC such as the ADS7066 should be used.

In this example setup, the HDC3120EVM was connected to the BOOSTXL-ADS7142-Q1 EVM. Both devices
shared the same VDD rail. The setup procedure is as follows:

1. Connect the TEMP output from the HDC3120EVM to the AIN0 input on the BOOSTXL-ADS7142-Q1 EVM
BoosterPack™ using a jumper wire as illustrated in Figure 3-4.

Analog Interface Overview www.ti.com

20 TI Humidity Sensors: Programming & Integration Guide SBOA631 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/ds/symlink/hdc3120.pdf
https://www.ti.com/product/ADS7066
https://www.ti.com/tool/HDC3120EVM
https://www.ti.com/tool/BOOSTXL-ADS7142-Q1
https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

T_ALERT

GND

TEMP

RH

GND

RH_ALERT

Figure 3-4. HDC3120EVM Outputs

Figure 3-5. BOOSTXL-ADS7142-Q1 EVM BoosterPack™ Pin Connection Location
2. Connect RH output from the HDC3120EVM to AIN1 on the BOOSTXL-ADS7142-Q1 EVM BoosterPack™.
3. Launch the ADS7142EVM GUI and navigate to the homepage.
4. Click the gear icon to access the configuration menu, then under Conversion Modes, select I2C Command

Mode.
5. Select Auto SEQ Mode from the Operating Mode drop-down menu and click the red SET button.
6. Once configured, click Start Sequence to begin capturing measurements in 12-bit decimal format.

www.ti.com Analog Interface Overview

SBOA631 – AUGUST 2025
Submit Document Feedback

TI Humidity Sensors: Programming & Integration Guide 21

Copyright © 2025 Texas Instruments Incorporated

https://dev.ti.com/gallery/view/PADC/ADS7142-Q1/
https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

Note
The equations for converting the HDC3120's temperature and humidity outputs below are specifically
for the application with the 12-bit BOOSTXL-ADS7142-Q1 EVM.

To interpret the results, users can apply the HDC3120’s conversion equations. Equation 11 and Equation 12
illustrate the reinterpretation of the ratios from the HDC3120's conversion equations. Equation 13 provides
additional definitions for the variables.VRHVDD = RHADC212 (11)

VTEMPVDD = TEMPADC212 (12)

TEMPADC HDC3120 to ADC temperature decimal outputRHADC HDC3120 to ADC relative humidity decimal output212 represents the 12 − bit resolution of the ADC outputs
(13)

Note
Due to the wiring configuration for this example, pin AIN0 (Temperature) represents Channel 0 in the
GUI while pin AIN1 (Humidity) represents Channel 1. Make sure both are toggled on to receive output
data.

Figure 3-6 plots temperature and humidity measurements of the HDC3120. Channel 0 (top graph) represents
the temperature reading, while Channel 1 (bottom graph) represents the humidity reading. The latest data is
provided next to "Latest Data" for each channel. The curves in the graph represent approximately 3-second
intervals where HDC3120 heater was enabled for three seconds before being disabled via the heater enable
switch on the HDC3120EVM. Therefore, a peak is observed for temperature each time the heater was enabled,
while a trough (opposite peak) was observed for humidity as the device dries from heating (this is normal
behavior within humidity sensors with integrated heating elements).

Heater ON Heater ON

Temperature

Humidity

Figure 3-6. HDC3120 Output Interpretation With the BOOSTXL-ADS7142-Q1 EVM

The calculations below utilize the most recently collected data point for temperature and humidity.

Temperature:

Analog Interface Overview www.ti.com

22 TI Humidity Sensors: Programming & Integration Guide SBOA631 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

ADC Temperature Output (Channel 0): 1725

HDC3120 to ADS7142 Temperature Conversion Equations:

T °C = − 66 . 875 + 218 . 75 × VTEMPVDD = − 66 . 875 + 218 . 75 × TEMPADC212 (14)

T °F = − 88 . 375 + 393 . 75 × VTEMPVDD = − 88 . 375 + 393 . 75 × TEMPADC212 (15)

Using Equation 14, the converted temperature result is: 25.2°C

Humidity:

ADC Humidity Output (Channel 1): 1833

HDC3120 to ADS7142 Humidity Conversion Equation:

%RH = − 12 . 5 + 125 × VRHVDD = − 12 . 5 + 125 × RHADC212 (16)

Using Equation 16 the converted humidity result is: 43.4 %RH

www.ti.com Analog Interface Overview

SBOA631 – AUGUST 2025
Submit Document Feedback

TI Humidity Sensors: Programming & Integration Guide 23

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

4 Summary
Texas Instruments offers a growing family of humidity sensors which provide end systems with critical
environmental information. Understanding how to appropriately program TI's humidity sensors can help
designers achieve the best performance for in cutting-edge systems. The provided code for each family of
humidity sensor aims to serve as a reference to help engineers understand the process and avoid common
debugging issues. For more information on sensor applications and device characteristics, please see the linked
documents below.

5 Development Support and Documentation
5.1 Software Support
For rapid prototyping with Arduino™-based controllers, visit TI's GitHub™ repository for environmental sensors to
get started. This repository offers sample code for all available humidity sensors.

For deeper, C-based driver-level support, visit TI's GUI-based code generator, ASC Studio to get started.

For additional assistance, visit the TI E2E Sensors Support Forum.

5.2 References
Texas Instruments, How to Debug RH Accuracy Issues in RH Sensors, application note.

• Offers explanations and prevention strategies for RH accuracy errors.

Texas Instruments, Humidity Sensor-Based Water Ingress Monitoring for Automotive Electronics, application
note.

• Offers a humidity sensor-based detection method utilizing the HDC3020 sensor to rapidly identify water
ingress in sealed or vented electronic enclosures.

Texas Instruments, HDC3x Silicon User's Guide, user's guide.

• Helpful storage and handling guidelines for HDC3x family of sensors.

Texas Instruments, HDC2x Silicon User's Guide, user's guide.

• Helpful storage and handling guidelines for HDC2x family of sensors.

Texas Instruments, NIST Traceability for Temperature and Humidity Sensors, product overview

• Highlights NIST traceable devices and explains importance in modern applications.

Summary www.ti.com

24 TI Humidity Sensors: Programming & Integration Guide SBOA631 – AUGUST 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://github.com/TexasInstruments-Sandbox/ti-environmental-sensors
https://dev.ti.com/sysconfig/index.html?product=ascstudio&module=/ti/sensors/humiditysensor/HDC3020
https://e2e.ti.com/support/sensors-group/sensors/f/sensors-forum
https://www.ti.com/lit/pdf/snaa427
https://www.ti.com/lit/pdf/snaa420
https://www.ti.com/lit/pdf/snau265
https://www.ti.com/lit/pdf/snau250
https://www.ti.com/lit/pdf/sbat024
https://www.ti.com
https://www.ti.com/lit/pdf/SBOA631
https://www.ti.com/feedbackform/techdocfeedback?litnum=SBOA631&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully
indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale, TI’s General Quality Guidelines, or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products
are standard, catalog, general purpose devices.
TI objects to and rejects any additional or different terms you may propose.
IMPORTANT NOTICE

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com/lit/pdf/SZZQ076
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 Digital I2C Interface Overview
	2.1 Register Map Protocol
	2.1.1 A Quick Overview of I2C Register Map Protocol
	2.1.1.1 HDC1x
	2.1.1.2 HDC2x
	2.1.1.2.1 Interfacing in Trigger-On Demand Mode
	2.1.1.2.2 Interfacing Using Auto Measurement Mode (AMM)

	2.2 Command Protocol
	2.2.1 HDC302x
	2.2.1.1 Interfacing in Trigger-On Demand Mode (One-Shot)
	2.2.1.2 Interfacing in Auto Measurement Mode (AMM)
	How to Check Measurement Data With CRC

	3 Analog Interface Overview
	3.1 HDC3120

	4 Summary
	5 Development Support and Documentation
	5.1 Software Support
	5.2 References

