Application Brief **Optimizing LCR Meter and Impedance Analyzer Front-End Design for Accurate Impedance Measurements**

TEXAS INSTRUMENTS

Introduction

LCR meters and impedance analyzers are used to measure unknown values of passive components like resistors, capacitors, inductors, or a combination of these elements. These lab equipment are similar, except that an impedance analyzer allows measurements at different test frequencies. The autobalancing (ABB) method, compared to the other architectures, offers good measurement accuracy over a wide range of values of impedance, and is discussed in this technical report.

Auto-Balancing Method

Figure 1 shows a representative schematic of an analog front-end using the ABB method. Z_{DUT} is the unknown impedance (device under test or DUT) and R_F is a known feedback resistance in this circuit. A known voltage V_{IN} is forced at input to the signal chain. For a voltage V_{DUT} across Z_{DUT} and a current I_{DUT} flowing through it,

$$Z_{DUT} \angle \Theta_Z = \frac{V_{DUT} \angle \Theta_V}{I_{DUT} \angle \Theta_I} \tag{1}$$

Amplifier A1 is used as an inverting amplifier, whose output voltage is given as,

$$V_O = -R_F I_{DUT} \tag{2}$$

$$\Rightarrow I_{DUT} = \frac{-V_O}{R_F} \tag{3}$$

From (1) and (3), the unknown impedance Z_{DUT} is given by,

$$Z_{DUT} = \frac{V_{DUT}}{\left(\frac{-V_O}{R_F}\right)} \tag{4}$$

Figure 1. Representative Schematic of an LCR Meter Analog Front-End Using ABB Method

Design Challenges

A few things need careful consideration when designing an LCR meter analog front-end circuit using the ABB method:

- 1. A single value of R_F will not suffice for measuring a wide range of values of Z_{DUT} . To increase the measurement range and sensitivity of the LCR meter multiple feedback resistors ($R_{F1,2,3}$) are switched into the circuit through series switches (SW_{F1,2,3}), shown in Figure 2.
- 2. A large value of R_F forms a zero in the noise-gain transfer function causing 40 dB/decade rate-ofclosure and potential instability. Use of a capacitor C_F in parallel with the large R_F , shown in Figure 1, introduces a pole to cancel this zero and restores phase margin, but it is difficult to find a single value of C_F for stability with all values of capacitive Z_{DUT}. This problem is solved using series resistors R_{G123} with Z_{DUT} , as Figure 2 shows. Use of R_{G123} introduces a pole in noise-gain, cancelling the zero and restoring phase for a stable circuit. Multiple values of R_G (equal to corresponding R_{F1,2,3}) with corresponding series switches (SW_{G1,2,3}) need to be used. The same R_F and R_G pairs (marked with the same color in Figure 2) are switched in every time for the required measurement range to ensure stable operation.
- For high accuracy measurements with large value DUTs, V_{DUT} and I_{DUT} should be buffered with high-Z input amplifiers (A2 and A3 here, CMOS or FETinput amplifiers with ≈pA range bias currents).

1

Figure 2. Modified Circuit for High-Frequency Measurements Needing More Amplifiers and Differential ADCs

Amplifier A3 can be eliminated for a simplified analog front-end design; however, to maintain measurement accuracy, amplifier A1 should have a large enough open-loop gain (AOL), and hence a gain-bandwidth product at the highest measurement frequency of interest. With a large AOL at the test frequency, a virtual ground is maintained at A1's inverting input.

Eliminating A3 allows for single-point groundreferenced measurements with need for smaller number of amplifier channels and single-ended ADCs. A general rule-of-thumb is to ensure that A1 has >60dB AOL at the highest frequency of interest for high accuracy measurements. For higher test frequencies, ^{Vo} two-point measurements for V_{DUT} and I_{DUT} are needed to calculate Z_{DUT} with high-accuracy, which ^(todiff,ADC) requires more amplifiers (A3 in Figure 2) and differential input ADCs.

Conclusion

The TIDA-060029 reference design describes this LCR meter analog front-end and the associated challenges in detail. An analog front-end with impedance measurements accurate to 0.1% is implemented in this reference design. Impedance values in the range 1 Ω to 10 M Ω can be measured at frequencies from 100 Hz to 100 kHz. Table 1 lists Texas Instruments amplifiers suitable for use in an LCR meter design:

Table 1. Recommended Ampliners for LCR meter Design								
Device	Architecture	GBW	Quiescent Current	Noise	Function			
OPA810	FET-input, voltage-feedback	70 MHz	3.7 mA	6.3 nV/rtHz	Unity-gain buffer for V _{DUT} and I _{DUT} measurements			
OPA656	FET-input, voltage-feedback	230 MHz	14 mA	7 nV/rtHz	High-frequency V _{DUT} and I _{DUT} measurements			
THS4551	Low-power fully differential amplifier	135 MHz	1.37 mA	3.3 nV/rtHz	ADC input driver for differential V_{DUT} and I_{DUT} measurements			
BUF634A	High I _{OUT} buffer	210 MHz	8.5 mA	3.4 nV/rtHz	High I _{OUT} buffer for driving small-value DUT with V _{IN}			

Tahlo 1	Recommended	Amplifiors	for LCR	Motor Design	
i able i.	Recommended	Ampimers	IOI LOR	meter Design	

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated