
Analog Engineer's Circuit Amplifiers **Adjustable-gain, current-output, high-side currentsensing circuit**

U TEXAS INSTRUMENTS

Input			Output			Error	Supply		
I _{LOAD}	I _{LOAD Max}	V_{CM}	I _{OUT Min}	I _{OUT Max}	Bandwidth	at I _{LOAD Min}	I _{Q Max}	V_{S}	V _{ee}
Min									
1A	10A	12V	88.3µA	883µA	200kHz	2.2% maximum, 0.3% typical	260 + 750µA	5V	GND (0V)

Design Description

This circuit demonstrates how to convert a voltage-output, current-sense amplifier (CSA) into a current-output circuit using an operational amplifier (op amp) and a current-setting resistor (R_{SET}). Taking advantage of the matched internal resistor gain network of the current-sense amplifier, this circuit utilizes the Howland Current Pump method to create a current source that is proportional to the sense current. The overall circuit gain is adjustable by changing the load resistor value (R_{OUT}). Additionally, multiple circuits can be summed together to determine total current from multiple sources.

1

Design Notes

- 1. The *Getting Started with Current Sense Amplifiers* video series introduces implementation, error sources, and advanced topics for using current sense amplifiers.
- 2. Choose precision 0.1% resistors to limit gain error at higher currents.
- 3. The output current (I_{OUT}) is sourced from the VS supply, which adds to the I_Q of the current sense amplifier.
- Use the V_{OUT} versus I_{OUT} curve ("claw-curve") of the CSA (U1) to set the I_{OUT} limit during I_{LOAD_Max}. If a higher amount of current is needed, then consider adding a buffer to the output of the current sense amplifier. A buffer on the output allows for smaller R_{OUT}.
- 5. For applications with higher bus voltages, simply substitute in a bidirectional current sense amplifier with a higher rated input voltage.
- 6. The V_{OUT} voltage is the input common-mode voltage (V_{CM}) for the op amp.
- 7. Offset errors can be calibrated out with one-point calibration given that a known sense current is applied and the circuit is operating in the linear region. Gain error calibration requires a two-point calibration.
- Include a small feed-forward capacitor (C_{SET}) to increase BW and decrease V_{OUT} settling time to a step response in current. Increasing C_{SET} too much introduces gain peaking in the system gain curve, which results in output overshoot to a step response.
- Multiple circuits can sum their current outputs into a single load resistor, but note that the headroom voltage for each individual circuit will decrease. The INA2181 and INA4181 devices are multi-channel CSAs that have similar performance to the INA185 device.
- 10.Follow best practices for printed-circuit board (PCB) layout according to the data sheet: decoupling capacitor close to the VS pin, routing the input traces for IN+ and IN– as a differential pair, and so forth.

Design Steps

1. To satisfy system requirements, the minimum shunt (V_{SHUNT_MIN}) voltage value must be sufficiently greater than the known offsets of the amplifiers. Here is the equation for the worst-case maximum output current:

$$I_{OUT_MAX_Worst-Case} = \frac{V_{SET_MAX}}{R_{SET} \cdot (1 - Tolerance_{Rset})}$$

$$I_{OUT_MAX_Worst-Case} = \frac{Gain_{INA185} \cdot (1 + GainError) \cdot \left[V_{SHUNT_MIN} + V_{OS_INA185}\right] + V_{OS_TLV9061}}{R_{SET} \cdot (1 - Tolerance_{Rset})}$$

2. Since offset errors dominate at the low currents, negate resistor tolerance and gain error for establishing V_{SHUNT MIN}. Set the error of V_{SET} to 2.2% to determine the following condition:

$$V_{SHUNT_MIN} > \left(\frac{1}{2.2\%}\right) \cdot \left\{V_{OS_INA185} + \frac{V_{OS_TLV9061}}{Gain_{INA185}}\right\}$$

V_{OUT_MIN} also needs to be large enough so the common-mode voltage (V_{CM}) and output voltage (V_{OUT_TLV9061}) of the TLV9061 device are in the optimal operating region. The TLV9061 device is a rail-to-rail-input-output (RRIO) op amp so it can operate with very small V_{CM} and output voltages, but A_{OL} will vary. Testing conditions for data sheet CMRR and A_{OL} show that choosing V_{OUT_MIN} > 50 mV will provide sufficient A_{OL} when circuit sensing minimum load current.

$$V_{\text{OUT}_{\text{TLV9061}}} = V_{\text{CM}_{\text{TLV9061}}} = V_{\text{OUT}}$$

 $V_{_{OUT}\ MIN} > 50\,mV$ for good TLV9061 A $_{_{OL}}$

- 4. The scaling of R_{OUT} and R_{SET} can be determined by setting three parameters: V_{O_MAX}, I_{OUT_MAX}, and R_{OUT}. It is critical that I_{OUT_MAX} does not exceed the driving capability of the CSA or else V_{O_MAX} will droop and the circuit will loose headroom voltage. Use the swing-to-rail specification and the V_{OUT} versus I_{OUT} data sheet curve to determine optimal values.
 - a. Choose V_{O MAX} = 4.9V
 - b. Choose $I_{OUT_MAX} = 900 \mu A$

- c. Choose $R_{OUT} = 1k\Omega$
- Using the system of equations for V_{OUT}, solve for R_{SET}. Choose the closest larger 1% resistor value. Note that rounding up the R_{SET} value will decrease the I_{OUT MAX} from initially chosen 900µA.

$$\begin{split} V_{\text{SET}_MAX} &= I_{\text{OUT}_MAX} \cdot R_{\text{SET}} \\ V_{\text{OUT}_MAX} &= I_{\text{OUT}_MAX} \cdot R_{\text{OUT}} \\ V_{\text{OUT}_MAX} &= V_{\text{O}_MAX} - V_{\text{SET}_MAX} \\ R_{\text{SET}} &= \frac{V_{\text{O}_MAX} - I_{\text{OUT}_MAX} \cdot R_{\text{OUT}}}{I_{\text{OUT}_MAX}} = 4444.3\Omega \\ R_{\text{SET}} &= 4530\Omega, 1\% \end{split}$$

 Now choose an INA185 gain variant and solve for R_{SHUNT}. Choose a 1% resistor value. Note that R_{SET} is independent of gain and R_{SHUNT} can be calculated for each gain variant.

$$V_{OUT_MAX} = I_{OUT_MAX} \cdot R_{OUT} = 900 \text{ mV}$$

$$V_{SET_MAX} = V_{O_MAX} - V_{OUT_MAX} = 4V$$

$$V_{IN_MAX} = \frac{V_{SET_MAX}}{Gain_{INA185A2}} = \frac{4V}{50\frac{V}{V}} = 80 \text{ mV}$$

$$R_{SHUNT} = \frac{V_{IN_MAX}}{I_{LOAD_MAX}} = \frac{80 \text{ mV}}{10 \text{ A}}$$

$$R_{SHUNT} = 8 \text{ m}\Omega$$

7. Now check if V_{OUT_MIN} and V_{SHUNT_MIN} are large enough to achieve 2% error at 1A with updated values. Use the maximum offset specifications of the devices when calculating error.

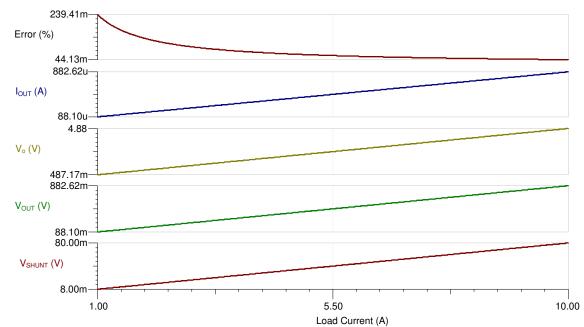
$$V_{SHUNT_MIN} > \left(\frac{1}{2.2\%}\right) \cdot \left\{V_{OS_INA185A2} + \frac{V_{OS_TLV9061}}{GAIN_{INA185A2}}\right\} = 45.45 \cdot \left\{130 \mu V + \frac{2mV}{50\frac{V}{V}}\right\} = 7.73 mV$$

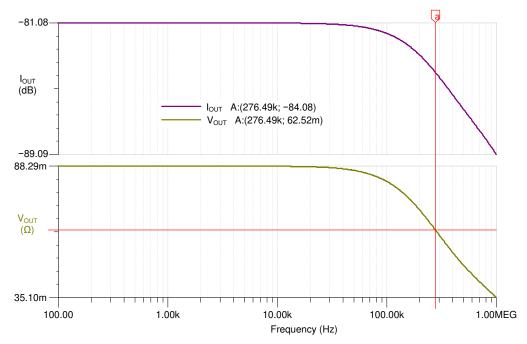
 $V_{SHUNT MIN} = 1A \cdot 8m\Omega = 8mV > 7.73mV$

$$V_{\text{OUT}_\text{MIN}} = V_{\text{SHUNT}_\text{MIN}} \cdot \text{Gain}_{\text{INA185A2}} \cdot \frac{R_{\text{OUT}}}{R_{\text{SET}}}$$

$$V_{\text{OUT}_\text{MIN}} = 8mV \cdot 50 \frac{V}{V} \cdot \frac{1k\Omega}{4.53k\Omega} = 88mV > 50mV$$

8. Run a simulation in TINA-TI software using available models. Note that these models use typical specifications. Calculate *Error* in the TINA-TI *Post-processor* window.


Post-processor		-	
Available curves: IOUT Vo2 VOUT VSET VSHUNT	Add >> << Remove	Curves to insert: Error	Cancel
Line Edit	User defined curve Built-in functions:	es +	
100* ((50*VSHUNT	(x) *1000/4530) -VOUT (x)))/VOUT(x)	
<			
Advanced Edit		New function name:	
{This is a template}		Error	Create
{Don't modify the fu Function F(x);	inctionname }	☐ <u>A</u> dvanced edit	Preview


Design Simulations

DC Simulation Results

The following graph shows a linear output response for load currents from 1A to 10A.

AC Simulation Result – I_{LOAD} to I_{OUT} (V_{OUT}) circuit gain

Design References

See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

See the circuit SPICE simulation file SBOMAI6.

Getting Started with Current Sense Amplifiers video series

https://training.ti.com/getting-started-current-sense-amplifiers

Current Sense Amplifiers on TI.com

http://www.ti.com/amplifier-circuit/current-sense/products.html

Comprehensive Study of the Howland Current Pump

http://www.ti.com/analog/docs/litabsmultiplefilelist.tsp? literatureNumber=snoa474a&docCategoryId=1&familyId=78

For direct support from TI Engineers use the E2E community

http://e2e.ti.com

Design Featured Current Sense Amplifier

INA185A2				
Vs	2.7V to 5.5V (operational)			
V _{CM}	0V to 26V			
Swing to V _S (V _{SP})	V _S – 0.02V			
V _{OS}	$\pm 25 \mu V$ to $\pm 130 \mu V$ at 12V V_{CM}			
Ι _Q	200µA to 260µA			
I _{IB}	75µA at 12V			
BW	210kHz at 50V/V (A2 gain variant)			
# of channels	1			
Body size (including pins)	1.60 mm × 1.60 mm			
http://www.ti.com/product/ina185				

Design Featured Operational Amplifier

TLV9061 (TLV9061S is shutdown version)		
Vs	1.8V to 5.5V	
V _{CM}	$(V-) - 0.1V < V_{CM} < (V+) + 0.1V$	
CMRR	103dB	
A _{OL}	130dB	
V _{os}	±1.6mV maximum	
۱ _Q	750µA maximum	
I _B (input bias current)	± 0.5pA	
GBP (gain bandwidth product)	10MHz	
# of channels	1 (2 and 4 channel packages available)	
Body size (including pins)	0.80 mm × 0.80 mm	
http://www.ti.com/product/tlv9061		

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated