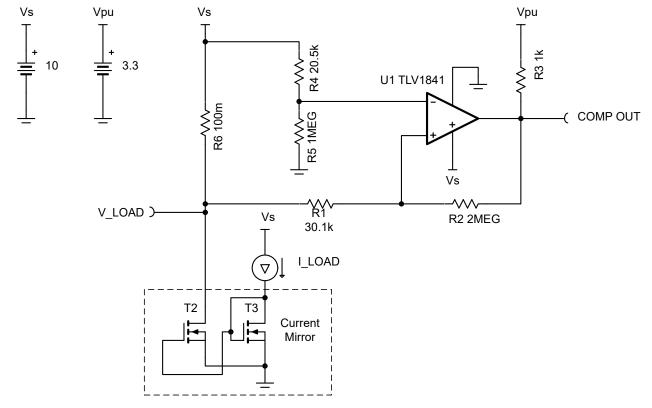
High-Side Current Sensing With Comparator Circuit



Design Goals

Load Current (I _L)		System Supply (V _S)	Comparator Output Status	
Overcurrent (I _{OC})	Recovery Current (I _{RC})	Typical	Overcurrent	Normal Operation
1A	0.5A	10V	V _{OL} < 0.4V	V _{OH} = V _{PU} = 3.3V

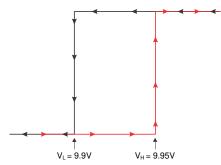
Design Description

This high-side, current sensing circuit uses one comparator with a rail-to-rail input common-mode range to create an overcurrent alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1A. The OC-Alert signal in this implementation is active low. So when the 1A threshold is exceeded, the comparator output goes low. Hysteresis is implemented such that OC-Alert returns to a logic high state when the load current reduces to 0.5A (a 50% reduction). This circuit utilizes an open-drain output comparator to level shift the output high logic level for controlling a digital logic input pin. For applications needing to drive the gate of a MOSFET switch, a comparator with a push-pull output is preferred.

Design Notes

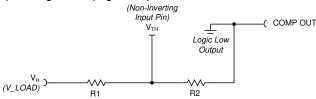
- 1. Select a comparator with rail-to-rail input common-mode range to enable high-side current sensing.
- 2. Select a comparator with an open-drain output stage for level-shifting.
- 3. Select a comparator with low input offset voltage to optimize accuracy.
- 4. Calculate the value for the shunt resistor (R_6) so the shunt voltage (V_{SHUNT}) is at least ten times larger than the comparator offset voltage (V_{IO}).

Design Steps


1. Select the value of R_6 so V_{SHUNT} is at least 10 times greater than the comparator input offset voltage (V_{IO}). Making R_6 very large improves OC detection accuracy but reduces supply headroom.

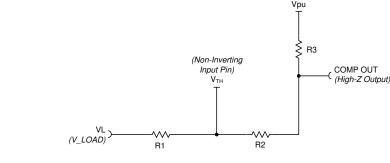
$$V_{SHUNT} = (I_{OC} \times R_6) \ge 10 \times V_{IO} = 55 \text{mV}$$

set $R_6 = 100 \text{m}\Omega$ for $I_{OC} = 1 \text{A}$ and $V_{IO} = 5.5 \text{mV}$


2. Determine the desired switching thresholds for when the comparator output transitions from high-to-low (V_L) and low-to-high (V_H) . V_L represents the threshold when the load current crosses the OC level, while V_H represents the threshold when the load current recovers to a normal operating level.

$$V_L = V_S - (I_{OC} \times R_6) = 10 - (1 \times 0.1) = 9.9V$$

$$V_H = V_S - (I_{RC} \times R_6) = 10 - (0.5 \times 0.1) = 9.95V$$



3. With the non-inverting input pin of the comparator labeled as V_{TH} and the comparator output in a logic low state (ground), derive an equation for V_{TH} where V_H represents the load voltage (V_{LOAD}) when the comparator output transitions from low to high. Note that the simplified diagram for deriving the equation shows the comparator output as ground (logic low).

$$V_{TH} = V_H \times \left(\frac{R_2}{R_1 + R_2}\right)$$

4. With the non-inverting input pin of the comparator labeled as V_{TH} and the comparator output in a high-impedance state, derive an equation for V_{TH} where V_L represents the load voltage (V_{LOAD}) when the comparator output transitions from high to low. Applying *superposition* theory to solve for V_{TH} is recommended.

$$V_{TH} = V_L \times \left(\frac{R_2 + R_3}{R_1 + R_2 + R_3}\right) + V_{PU} \times \left(\frac{R_1}{R_1 + R_2 + R_3}\right)$$

5. Eliminate variable V_{TH} by setting the two equations equal to each other and solve for R₁. The result is the following quadratic equation. Solving for R₂ is less desirable since there are more standard values for small resistor values than the larger ones.

$$0 = \left({{V_{PU}}} \right) \times {R_1}^2 + \left({{V_{PU}} \times {R_2} + {V_L} \times \left({{R_3} + {R_2}} \right) - {V_H} \times {R_2}} \right) \times {R_1} + \left({{V_L} - {V_H}} \right) \times \left({{R_2}^2 + {R_2} \times {R_3}} \right)$$

6. Select values for R3 and R2. R_3 is significantly smaller than R_2 ($R_3 << R_2$). Avoid increasing R_3 since an increase in R_3 causes the comparator logic high-output level to increase beyond V_{PU} . For example, increasing R_3 to a value of $100k\Omega$ can cause the logic high output to be 3.6V. In this case, select $R_2 = 2M$ and $R_3 = 1k\Omega$.

$$R_2 = 2M\Omega$$

$$R_3 = 1k\Omega$$

7. Calculate R_1 after substituting in numeric values for V_{PU} , R_2 , V_L , V_H , and R_3 . For this design, set V_{PU} = 3.3, R_2 = 2M, V_L = 9.9, V_H = 9.95, and R_3 = 1k Ω .

$$0 = (3.3) \times R_1^2 + (6.591M) \times R_1 - (200.1G)$$

the positive root for $R_1=29.9 \mathrm{k}\Omega$

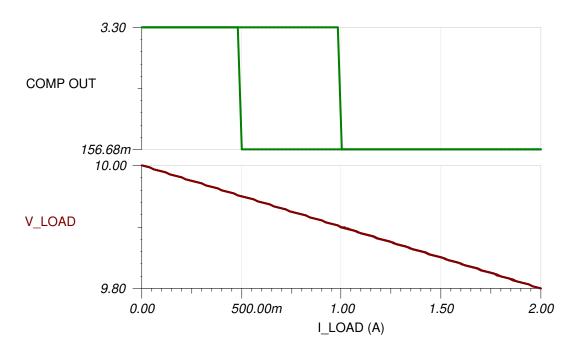
using standard 1 % resistor values, $\,R_1=30\,.\,1k\Omega$

8. Calculate V_{TH} using the equation derived in *Design Step 3*; use the calculated value for R₁. Note that V_{TH} is less than V_L since V_{PU} is less that V_L.

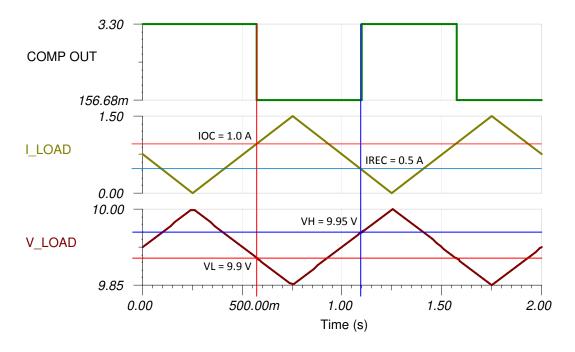
$$V_{TH} = V_H \times \left(\frac{R_2}{R_1 + R_2}\right) = 9.802V$$

9. With the inverting terminal labeled as V_{TH} , derive an equation for V_{TH} in terms of R_4 , R_5 , and V_S .

$$V_{TH} = V_S \times \left(\frac{R_5}{R_4 + R_5}\right)$$


10. Calculate R_4 after substituting in numeric values R_5 = 1M, V_S = 10, and the calculated value for V_{TH} .

$$R_4 = \left(\frac{R_5 \times (V_S - V_{TH})}{V_{TH}}\right) = 20.15 \text{k}\Omega$$


using standard 1 % resistor values, $R_4 = 20.5 k\Omega$

Design Simulations

DC Simulation Results

Transient Simulation Results

www.ti.com Trademarks

Design References

See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

See Circuit SPICE Simulation File SLOM456.

Design Featured Comparator

Parameters	TLV184x	TLV183x
Vs	2.7V to 40V	2.7V to 40V
V _{inCM}	2.7V to 40V	2.7V to 40V
V _{OUT}	Open-Drain	Push-Pull
Vos	500µV	500μV
ΙQ	70μA/Ch	70μA/Ch
t _{PD(HL)}	65ns	65ns
#Channels	1, 2, 4	1, 2, 4
	TLV184x	TLV183x

Design Alternate Comparator

	TLV902x_3x	TLV323x	
Vs	1.6V to 5.5V	2.7V to 5.5V	
V _{inCM}	Rail-to-rail	Rail-to-rail	
V _{OUT}	Open-Drain, Push-Pull	Push-Pull	
Vos	300μV	500µV	
IQ	16μA/Ch	200μA/Ch	
t _{PD(HL)}	100ns	20ns	
#Channels	1, 2, 4	1, 2	
	TLV902x_3x	TLV3231	

Trademarks

All trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated