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Introduction

Zero-crossover amplifiers use a unique topology 
which eliminates the error induced by the crossover 
region that standard rail-to-rail amplifiers have. TI’s 
zero-crossover topology assures high linearity across 
the entire common-mode voltage range and lowest 
distortion for precision and general applications. 
This application brief explains the differences 
between standard rail-to-rail input and zero-crossover 
amplifiers.

Traditional rail-to-rail CMOS input

A traditional rail-to-rail input CMOS architecture 
contains two differential pairs. Figure 1 highlights two 
differential pairs; one PMOS transistor pair (blue) and 
one NMOS transistor pair (red). PMOS transistors can 
operate in common-mode input voltages from VSS 
to (VDD-1.8 V) and NMOS transistors can operate 
in common-mode input voltages from (VDD-1.8 V) to 
VDD. The two input transistor pairs have independent 
and uncorrelated input offset voltages, temperature 
coefficients, and noise.
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Figure 1. Simplified PMOS, NMOS Differential Pair

During the transition from the PMOS pair to the 
NMOS pair, and vice versa, there is a crossover 
region at approximately 1.8 V below the positive 
rail where both inputs are conducting (see Figure 
2). Within this region, the DC input offset voltage 
can change. This is a source of distortion known as 
input crossover distortion. This offset error can be 
simulated using the TINA-TI SPICE tool.
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Figure 2. Transistor IV Curves
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Figure 3. Simulated Crossover Performance

Figure 3 shows the simulated results of applying a
[–2.4 V, 2.4 V] DC sweep to a traditional rail-to-rail 
CMOS input, buffer-configured op amp. The graph 
shows the input offset voltage abruptly shifts when the 
common-mode voltage is within the crossover region. 
If this error source is beyond the error budget, a zero-
crossover amplifier is required.

How zero-crossover works

Zero-crossover topology uses a internal voltage 
charge pump to achieve linear operation with input 
voltages up to the rail with a single input transistor 
pair (PMOS or NMOS). This use of a single transistor 
pair allows true rail-to-rail operation without distortion 
over the entire input common-mode range since there 
is no crossover region. Zero-crossover amplifiers such 
as the OPA388 include an internal voltage charge 
pump. The charge pump boosts the input stage 
voltage approximately 1.8 V above VDD. This is 
enough to overcome the non-linearity that occurs 
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when the transistor enters triode operation at VDS 
< 1.8 V. Figure 4 shows a simplified representation 
of the charge pump topology used in zero-crossover 
amplifiers.
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Figure 4. Simplified Zero-Crossover Charge Pump 
Topology

Figure 3 also shows the simulated results of applying 
a [–2.4 V, 2.4 V] DC sweep on a buffer-configured 
OPA388. The input offset voltage trace in the graph 
shows no abrupt shift with input common-mode 
change because there is no crossover region. Figure 
5 contrasts the measured performance between a 
complementary rail-to-rail input and zero-crossover 
amplifier. Note the large variance in offset voltage 
across the input common-mode voltage.
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Figure 5. Measured Crossover Performance

Zero-crossover vs. rail-to-rail CMOS results

A zero-crossover and a standard rail-to-rail CMOS 
amplifier were used in identical, unity-gain buffer 
configurations. These amplifiers were both fed a pure 
sine wave with an amplitude of 2 V (4 VPP). The 
outputs of these circuits were captured and the FFT 
was computed. Figure 6 shows the output voltage 
spectrum for the OPA388 (red) and a typical CMOS 
rail-to-rail amplifier (black). The output of the zero-
crossover amplifier contains few spurs and harmonics 
compared to the typical rail-to-rail CMOS amplifier. 
This is the effect of eliminating the crossover region 
with zero-crossover topology.

±140 

±120 

±100 

±80 

±60 

±40 

±20 

0

10 100  1k  10k

F
F

T
 S

p
e
c
tr

a
l 
C

o
n
te

n
t 

(d
B

V
) 

Frequency (Hz) C004 

Traditional Rail-to-Rail 
Input Stage 

OPA388 Zero-Crossover Input Stage 

Figure 6. Buffer FFT Spectrum

Conclusion

Traditional rail-to-rail input CMOS op amps use two 
parallel differential input transistor pairs. When the 
common-mode is in the transition region (deadband), 
there is an abrupt shift in the input offset voltage 
which results in output voltage error and distortion. 
Zero-crossover op amps vastly reduce any changes 
in input offset voltage across the entire input common-
mode range.

Additional Resources

Table 1 lists some of TI’s zero-crossover amplifiers. 
For a full list, see the operational amplifiers parametric 
search tool.

Table 1. Alternative Device Recommendations
Device Optimized Parameters

OPA328 Vos(max): 25 μV, GBW: 40 MHz, CMRR: 120 dB, IB(max): 1 pA, 
2.2 V < VS < 5.5 V, Noise: 9.8 nV / √Hz

OPA323 Vos(max): 1.25 mV, CMRR: 114 dB, GBW: 20 MHz, IB(max): 20 
pA, Noise: 5.5 nV / √Hz, Slew Rate: 33 μV, 1.7 V < VS < 5.5 V

OPA388 Zero-drift, Vos(max): 5 μV, dvos/dt(max): 0.05 μV / °C,
CMRR: 138 dB, GBW: 10 MHz, Noise: 7 nV / √Hz

OPA320 Vos(max): 150 μV, CMRR: 114 dB, IB(max): 0.9 pA,
GBW: 20 MHz, 1.8 V < VS < 5.5 V, Noise: 7 nV / √Hz

OPA325 Vos(max): 150 μV, CMRR: 114 dB, IB(max): 10 pA,
GBW: 10 MHz, 2.2 V < VS < 5.5 V, Noise: 9 nV / √Hz

OPA365 Vos(max): 200 μV, CMRR: 120 dB, GBW: 50 MHz,
Noise: 4.5 nV / √Hz, Slew rate: 25 V / μs, 1.8 V < VS < 5.5 V

OPA322 Vos(max): 2 mV, CMRR: 100 dB, GBW: 20 MHz,
Noise: 8.5 nV / √Hz, Slew Rate: 10 V / µs, 1.8 V < VS < 5.5 V

OPA363,
OPA364

Vos(max): 2.5 mV, CMRR: 90 dB, GBW: 7 MHz,
Noise: 17 nV / √Hz, IB(typ): 1 pA, 1.8 V < VS < 5.5 V

OPA369 Vos(max): 750 µV, CMRR: 114 dB, GBW: 12 kHz,
IB(typ): 10 pA, 1.8 V < VS < 5.5 V

Table 2. Related Documentation
SBOA182 Zero-drift Amplifiers: Features and Benefits

SBOT037 Offset Correction Methods: Laser Trim, e-Trim™, and 
Chopper

SBOA558 Reference-Buffer, ADC-Driver and Transimpedance 
Applications for OPAx328
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