
1SBOA117A–May 2009–Revised April 2013
Submit Documentation Feedback

Copyright © 2009–2013, Texas Instruments Incorporated

Demystifying the Operational Transconductance Amplifier

All trademarks are the property of their respective owners.

Application Report
SBOA117A–May 2009–Revised April 2013

Demystifying the Operational Transconductance Amplifier

Xavier Ramus ...................................................................................................... High-Speed Products

ABSTRACT
Operational transconductance amplifiers (OTAs) are often among the least understood analog
components. However, these devices serve a very useful function that is being implemented on a regular
basis in many integrated circuits as an element for more advanced purposes; the current feedback
amplifier is among the most prominent example. The purpose of this application report is to show how this
building block operates. It also develops several examples of how this type of component can be put to
good use for many applications.
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1 Operational Transconductance Overview
OTAs are versatile building blocks that intrinsically offer wide bandwidth for many types of amplifiers. The
OTA, or voltage-controlled current source, can be viewed as an ideal transistor. As the transistor model, it
has three terminals: a high input impedance (base, or B); a low-impedance input/output (emitter, or E);
and a current output (collector, or C). However, unlike a bipolar transistor, the OTA is self-biased and has
bipolar output, meaning that the output current source can either source or sink the output current. The
output current is zero for a zero base-emitter voltage. AC-inputs centered on zero produce an output
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current that is bipolar and also centered on zero. The transconductance element is traditionally adjustable
with an external resistance, allowing trade-offs in bandwidth, quiescent current, and gain. Used as a basic
building block, an OTA element simplifies designs of automatic gain control (AGC) amplifiers, light-emitting
diode (LED) driver circuits, fast-pulse integrators, control loops for capacitive sensors, and active filters, as
well as other applications.

1.1 Definitions
Over the years and depending on the writer, an OTA has been referred to as a diamond transistor, a
voltage-controlled current source, a transconductor, a macro transistor, and a positive second-generation
current conveyor or CCII+. Figure 1 illustrates these terms and the corresponding symbols generally used
to represent each.

Figure 1. Typical OTA Elements and Accepted References

Regardless of how it is illustrated or defined, the OTA has a high impedance terminal (B); a low
impedance terminal (E) that can be considered either as an input or an output depending on the circuit;
and a output current source terminal (C). The output current source terminal is high impedance. Looking
at the transconductor, any voltage that appears between B and E will generate a current that flows out of
C. For the balance of this document, however, we will consider circuits. The first circuit that demonstrates
how an OTA operates is shown in Figure 2.

Figure 2. Basic OTA Circuit Architecture

Looking at the internal architecture of the OTA as shown in Figure 2, a buffer is present between the B-
input and the E-output. This buffer places a copy of the input voltage to the E-output. The voltage present
on the E-output generates a current through the RE resistor. The current flowing out of the RE resistor is
then duplicated and flows out of the C-output. This current is converted back to a voltage by passing
through the load resistance. The total gain for the circuit illustrated in Figure 2 is set by RL/RE. The input is
high impedance and the output impedance is set by the load resistance. Note that a 100Ω resistance is
placed in series with the B-input. This resistance helps isolate the parasitic input capacitance of the OTA
from the earlier voltage-mode stage to help ensure stability. A value ranging from 25Ω to 100Ω is normally
recommended. If a current-mode stage is used, this series resistor is not needed.
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1.2 Recommended OTA Devices
Texas Instruments offers three devices that include an OTA:
• OPA860 (an OTA and a closed-loop buffer)
• OPA861 (an OTA)
• OPA615 (a wide-bandwidth dc restoration circuit that contains an OTA and a switching OTA, or SOTA)

Information on these products is available through the TI web site at http://www.ti.com.

2 Direct Use of an OTA
Most circuits for the OTA section of a given application consist of variations on a few basic types. These
variations are best understood by analogy to a typical transistor. When used in voltage mode, the OTA
section can operate in one of three basic states: common emitter, common base, and common collector.
In current mode, the OTA can be used for analog computation such as a current amplifier, a current
differentiator, a current integrator, and a current summing device. This section discusses the use of an
OTA in either voltage mode or current mode.

2.1 Voltage Mode
Figure 3 through Figure 5 illustrate the options for using an OTA in voltage mode.

Figure 3. Voltage Mode: Common-E Amplifier

The gain for the common-E amplifier configuration is set by Equation 1, and the transconductance shown
in Equation 2. Note that a new term appears in the equation, gm. This term is the transconductance of the
OTA stage. It may be best understood as the output impedance of the E-terminal with a value of 1/gm.

(1)

(2)
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Figure 4. Voltage Mode: Common-C Amplifier

The gain for the common-C amplifier configuration is set by Equation 3, and the output impedance shown
in Equation 4.

(3)

(4)

Figure 5. Voltage Mode: Common-B Amplifier

The gain for the common-B amplifier configuration is set by Equation 5.

(5)
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2.2 Current Mode
The different current-mode OTA circuits are summarized in Table 1.

Table 1. Current-Mode Analog Computation Using an OTA Circuit

Functional Element Transfer Function Equation Implementation with an OTA Circuit

Current Amplifier

Current Integrator

Current Summer

Weighted Current
Summer
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3 Advanced Uses of OTA Architecture
This section describes several advanced uses of an OTA element in typical applications.

3.1 Current-Feedback Amplifier (CFB)
Combining a transconductance amplifier with a buffer and then adding negative feedback produces the
architecture of a current-feedback (CFB) amplifier. Figure 6 shows a typical CFB block diagram.

Figure 6. Typical CFB Amplifier Block Diagram

The circuit shown in Figure 6 makes use of the OPA860 because this device integrates both a buffer
section and an OTA section. Notice that the E-input/-output is normally defined as inverting input in
operational amplifier nomenclature. The B-input is the noninverting input and the output of the buffer is the
operational amplifier output. The C-output of the OTA is connected to the high impedance input of the
buffer. Note that R1, C1, and C2 are parasitic components of both the OTA and the buffer. R2 is an optional
component that may help de-Q a potential RLC network as a result of component and package parasitics.
If a slower amplifier were desired, to select the frequency response a capacitor in parallel with C2 can be
added. Alternatively, the feedback resistor RF can be increased.

3.2 Control-Loop Amplifier
The input stage of the control-loop amplifier shown in Figure 7 is composed of two OTAs. This
combination provides a high input impedance as well as excellent rejection to any common-mode signals.
One C-output is left unconnected and the other C-output of the input stage is connected to an RC
network, in effect forming an integrator from dc to the frequency defined by the RC time constant. A
second integrator stage is then used before isolating the C-output of the second stage with a buffer to
ensure ac performance and to drive subsequent output stages.

Figure 7. Control-Loop Amplifier Circuit Model
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3.3 DC-Restore Circuit
Multiple dc-restore circuits can be developed using a modular OTA element. The circuit illustrated in
Figure 8 uses a SOTA to restore the signal when it is triggered. This architecture allows a precise
selection of the dc-restore point. For this purpose, we used the OPA615.

Figure 8. DC-Restore Circuit Example with the OPA615

In this example, the CHOLD capacitor is being charged by the sampling OTA (SOTA), triggered at the exact
point of interest. The OTA provides a means to amplify the signal. Note that because of the very high input
impedance of the OTA, a small CHOLD capacitor can be used for higher frequency applications; or, if a
large CHOLD is desired, a very low-frequency high-pass filter can be defined. The OPA615 is the fastest
OTA offered by Texas Instruments with a bandwidth in excess of 700MHz. This circuit can easily be
adapted to operate continuously without any trigger requirements by adding a capacitor on the SOTA
inverting input. This capacitor will form, with the 100Ω series resistance at the input, a low-pass filter that
allows the SOTA to charge and discharge the hold capacitor only in relation to the low frequency.

Figure 9 shows another possible implementation of a dc-restore circuit using a current conveyor Type 2
(CCII) OTA.

Figure 9. DC-Restore Circuit Example (CC Type 2) with the OPA656
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Here, the OTA amplifier works as a current conveyor (CCII), with a current gain of 1. R1 and C1 set the dc
restoration time constant. D1 adds a propagation delay to the dc restoration. R2 and C1 set the decay time
constant.

The output voltage of the operational amplifier (in this case, an OPA656), is compared to a reference
level. When the signal is below the level, a current is driven into the noninverting input of the amplifier,
thereby raising the dc level.

3.4 Sample/Hold Circuit
The OPA615 can also be reconfigured as a sample/hold circuit using the approach presented in
Figure 10.

Figure 10. Sample/Hold Circuit Example

Ignoring the hold/track control of the SOTA for now, or considering that the SOTA is in a track mode, you
may recognize a voltage-feedback amplifier architecture. The SOTA is used as the input stage, with the
OTA (in a buffer configuration) to play the output stage role of a traditional voltage-feedback architecture.
You can see that for any change of voltage at the input, the output will track the input with a gain of 2V/V.

Activating the hold mode, the SOTA C-output is now disconnected. The charge held by the hold capacitor
is set and droops only as a result of the B-input bias current of the OTA. The output voltage is set. The E-
output of the OTA will then see a total load of (600Ω ∥ Load).

As you go from track mode to hold mode, you effectively realize a sample/hold application. With a 2.5ns
control delay and greater than 700MHz bandwidth, the OPA615 answers several medium- to high-speed
sample/hold needs.
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3.5 Instrumentation Amplifier
Figure 11 shows an instrumentation amplifier using three OPA861s to form the high-impedance front-end.
Two OTAs are used to create the differential input stage. The third OTA is present to invert the current
flowing out of the IN2 OTA. Remember that the current is flowing out of the C-output. Ground VIN2 for a
moment and set a positive voltage on VIN1. This method generates a current that flows across RG from top
to bottom, exiting the IN1 OTA and entering the IN2 OTA. The current flowing out of the C-output then
flows out of the IN1 OTA and into the IN2 OTA, indicating that both currents will be of same amplitude but
180° out of phase. To be able to add the currents together at the inverting pin of the operational amplifier,
one of the input stage current must be inverting. That function is realized by the third OTA. To
compensate for the propagation delay of the second amplifier, an RC network was used. Having two
currents with the same amplitude and phase, we can simply add them together and drive a
transimpedance amplifier.

Figure 11. Instrumentation Amplifier Approach with the OPA861

Because any common-mode signal will try to generate the same opposing currents across the gain
resistor, this circuit exhibits very good common-mode rejection.
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4 Advanced OTA Circuits
From a conceptual standpoint, filtering applications using an OTA element are the most challenging
because thinking in a current-mode approach is not a popular technique. However, current-mode
amplifiers allow more bandwidth for a reduced quiescent current in most cases. This section describes a
simple filtering circuit as well as a high-performance filter developed on an OTA element.

4.1 Simple Filtering Circuit
The low-pass filter circuit illustrated in Figure 12 achieves filtering through the use of a negative
impedance converter.

Figure 12. Low-Pass Filter Circuit Example

Equation 6 provides the design equation of the filter.

(6)

with:

This circuit may require some buffering, because the input impedance is set as shown in Equation 7.

(7)
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4.2 Advanced Filtering Circuit
A universal active filter can be achieved with an OTA using an integrator, as Figure 13 shows. Note that
not all OTAs are required for different filtering functions (such as low-pass filters, high-pass filters, or
band-pass filters). This circuit implements a second-order filter. Higher-order filters are possible by simply
adding an additional integrator stage with its two corresponding, current-weighted OTAs.

Figure 13. Universal Active Filter with OTA Architecture

With 80MHz OTAs, filter bandwidths as high as 50MHz have been achieved without considering any
parasitics for predistortion reasons. These 50MHz/80MHz results compare favorably with the ratio of
50MHz/1GHz that is achieved when traditional operational amplifier circuits are considered.

Equation 8 gives the design equation for the filter shown in Figure 13.

(8)

4.2.1 Filter Characteristics
Five filter types can be designed with this structure. These five types include the following:
• For a low-pass filter, set R2 = R3 = ∞
• For a high-pass filter, set R1 = R2 = ∞
• For a bandpass filter, set R1 = R3 = ∞
• For a band rejection filter, set R2 = ∞, and R1 = R3

• For an all-pass filter, set R1 = R1p; R2 = R2p; and R3 = R3p
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