
MSC121x
Precision ADC and DACs
with 8051 Microcontroller
and Flash Memory

User's Guide

March 2007 Data Acquisition

SBAU101A

2 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

Contents

Preface ... 9

1 Introduction ... 11
1.1 MSC121x Description... 12

1.2 MSC121x Pinout .. 14

1.2.1 Input/Output (I/O) Ports—P0, P1, P2, and P3.. 17

1.2.2 Oscillator XOUT (pin 1) and XIN (pin 2)... 20

1.2.3 Reset Line—RST (pin 13)... 20

1.2.4 Address Latch Enable—ALE (pin 45) ... 20

1.2.5 Program Store Enable—PSEN (pin 44) ... 20

1.2.6 External Access—EA (pin 48) .. 20

1.3 Enhanced 8051 Core ... 21

1.4 Family Compatibility... 22

1.5 Flash Memory.. 22

1.6 Internal SRAM ... 22

1.7 High-Performance Analog Functions ... 22

1.8 High-Performance Peripherals .. 22

2 MSC121x Addressable Resources .. 23
2.1 Introduction... 24

2.2 Program Memory and Data Memory.. 25

2.3 Scratchpad RAM and Special Function Registers .. 27

2.4 Beyond 64K Bytes .. 28

3 Special Function Registers .. 29
3.1 Introduction... 30

3.2 Referencing SFRs in Assembly and C Languages ... 31

3.3 SFR Types ... 31

3.4 SFR Overview ... 32

4 Programmer's Model and Instruction Set ... 39
4.1 Introduction... 40

4.2 Registers ... 41

4.3 Instruction Types and Addressing Modes.. 42

4.4 MSC121x Op-Code Table.. 46

4.5 Example of MSC121x Instructions .. 48

5 System Clocks, Timers, and Functions ... 51
5.1 Timing Chain and Clock Controls ... 52

5.2 System Clock Divider (MSC1211/12/13/14) ... 54

5.2.1 Behavior in Delay Mode (DIVMOD = '10') .. 54

5.3 Watchdog Timer ... 55

5.3.1 Watchdog Timer Example Program ... 56

5.4 Low-Voltage Detection.. 57

5.5 Hardware Configuration .. 58

5.6 Breakpoints... 60

6 Analog-To-Digital Converters ... 63

SBAU101A–July 2005–Revised March 2007 Contents 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

6.1 ADC Functional Blocks ... 64

6.2 ADC Signal Flow and General Description .. 65

6.3 Analog Input Stage.. 65

6.4 Input Impedance, PGA, and Voltage References... 67

6.5 Offset DAC ... 69

6.6 ADC Data Rate, Filters, and Calibration ... 70

6.7 32-Bit Summation Register .. 72

6.8 Accessing the ADC Multi-Byte Conversion in C .. 74

6.9 ADC Example Program... 75

7 Digital-To-Analog Converters ... 79
7.1 Introduction... 80

7.2 DAC Selection ... 81

7.3 DAC Configuration and Control ... 83

7.4 DAC Technology and Limitations ... 84

7.5 DAC Example Program... 84

8 Pulse-Width Modulator and Tone Generator .. 85
8.1 Description ... 86

8.2 PWM Generator Example .. 87

9 Inter-IC (I2C™) Subsystem ... 89
9.1 Introduction to the I2C Bus ... 90

9.2 I2C Terminology ... 90

9.3 I2C Bus Lines and Basic Timing... 91

9.4 I2C Data Transfers and the Acknowledge Bit.. 92

9.5 I2C Principal Registers.. 93

9.6 I2C Related Registers... 96

9.7 I2C Example—MSC1211/13 as a Master .. 97

9.8 I2C Example—MSC1211/13 as a Slave.. 99

9.9 I2C Example—MSC1211/13 as an Interrupt-Driven Slave ... 100

9.10 I2C Synchronization and Arbitration ... 101

9.11 I2C Fast Mode .. 101

9.12 I2C General Call.. 101

9.13 I2C 10-Bit Addressing ... 102

10 Serial Peripheral Interface (SPI™) ... 103
10.1 Description.. 104

10.2 SPI Configuration .. 104

10.3 SPI Interrupts... 107

10.4 SPI FIFO Buffer .. 108

10.5 SPI Examples .. 111

11 Timers and Counters ... 113
11.1 Description.. 114

11.2 Timer/Counters 0 and 1... 114

11.2.1 Modes 0 and 1 ... 116

11.2.2 Mode 2 .. 117

11.2.3 Mode 3 .. 117

11.2.4 Summary of Control Bits and SFRs for Timer/Counters 0 and 1................................ 118

11.3 Timer/Counter 2.. 119

11.3.1 16-Bit Timer/Counter with Optional Capture ... 120

4 Contents SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

11.3.2 16-Bit Timer/Counter with Automatic and Forced Reload.. 121

11.3.3 Baud Rate Generator ... 122

11.3.4 Summary of Timer/Counter 2 Mode Control ... 123

11.3.5 Summary of Control Bits and SFRs for Timer/Counter 2... 123

11.3.6 Summary of Timer Modes .. 123

11.4 Example Program Using Timers 0, 1, and 2 ... 124

12 Serial Ports (USART0 and USART1) .. 125
12.1 Description.. 126

12.2 Control Bits in SCON0 and SCON1 ... 126

12.3 Pin and Interrupt Assignments ... 127

12.4 Timer/Counters 1 and 2 Baud Rate Generation ... 127

12.5 Mode 0—8-Bit Synchronous ... 129

12.6 Mode 1—10-Bit Asynchronous... 130

12.7 Modes 2 and 3—11-Bit Asynchronous.. 131

12.8 Multiprocessor Communications ... 132

12.9 Example Program.. 132

13 Interrupts ... 135
13.1 Description.. 136

13.2 Standard and Extended Interrupts... 137

13.3 Auxiliary Interrupt Sources.. 139

13.4 Multiple Interrupts.. 140

13.5 Example of Multiple and Nested Interrupts... 140

13.6 Example of Wake Up from Idle .. 143

Revision History ... 145

SBAU101A–July 2005–Revised March 2007 Contents 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

List of Figures

1-1 MSC121x Block Diagram.. 12
1-2 MSC121x Pin Configuration .. 14
1-3 Standard 8051 I/O Pin Structure ... 17
1-4 CMOS Output Pin Structure .. 17
1-5 Open-Drain Output Pin Structure .. 17
1-6 Input Pin Structure ... 17
1-7 Comparison of MSC121x Timing to Standard 8051 Timing .. 21
2-1 On-Chip and Off-Chip Resources .. 24
2-2 Memory Map .. 25
5-1 MSC121x Timing Chain and Clock Control... 52
6-1 ADC Subsystem Elements .. 64
6-2 Input Multiplexer Configuration ... 66
6-3 Analog Input Structure without Buffer ... 67
6-4 Filter Frequency Responses .. 71
7-1 DAC Architecture ... 80
9-1 I2C Bus Connection of Standard and Fast Mode Devices .. 91
9-2 START and STOP Conditions .. 91
9-3 I2C-Bus Bit Transfer.. 91
9-4 I2C-Bus Data Transfer ... 92
9-5 I2C Acknowledge ... 92
10-1 SPI Master/Slave Interconnect.. 104
10-2 SPI Clock/Data Timing ... 106
10-3 SPI FIFO Operation .. 108
11-1 Timer 0/1—Modes 0 and 1 .. 116
11-2 Timer 0/1—Mode 2 ... 117
11-3 Timer 0—Mode 3 ... 117
11-4 Timer/Counter 2—16-Bit with Capture ... 120
11-5 Timer/Counter 2—16-Bit with Reload .. 121
11-6 Timer/Counter 2—Baud Rate Generator .. 122
12-1 Synchronous Receive at fCLK/4.. 129
12-2 Synchronous Transmit at fCLK/4 ... 129
12-3 Asynchronous 10-Bit Transmit Timing ... 130
12-4 Asynchronous 10-Bit Receive Timing .. 130
12-5 Asynchronous 11-Bit Receive... 131
12-6 Asynchronous 11-Bit Transmit .. 131
12-7 Serial Port with Software Buffer... 132
13-1 Interrupts ... 138

6 List of Figures SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

List of Tables

1-1 MSC121x Product Family Matrix ... 13
1-2 Pin Descriptions .. 15
1-3 Port 1 Alternate Functions .. 18
1-4 Port 3 Alternate Functions .. 19
2-1 Program Memory and External Data Memory Addresses .. 25
2-2 MSC121x Flash Memory Partitioning and Addresses... 26
2-3 On-Chip 8051 Memory .. 27
3-1 Special Function Register Map ... 30
3-2 SFR Overview .. 32
4-1 8051 Working Registers ... 41
4-2 Symbol Descriptions for Instruction List of Table 4-3.. 42
4-3 Instruction List .. 43
4-4 MSC121x Op-Codes... 46
5-1 SYSCLK—System Clock Divider Register.. 54
5-2 Watchdog Control Bits... 55
5-3 LVDCON—Low-Voltage Detect Control... 57
5-4 Low-Voltage Detect .. 57
5-5 HCR0—Hardware Configuration Register 0 .. 58
5-6 HCR1—Hardware Configuration Register 1 .. 59
5-7 MCON—Memory Control.. 60
5-8 BPCON—Breakpoint Control ... 60
5-9 BPL—Breakpoint Low Address for BP Register Selected in MCON at 95h.. 61
5-10 BPH—Breakpoint High Address for BP Register Selected in MCON at 95h....................................... 61
5-11 Breakpoints.. 61
6-1 ADMUX—ADC Multiplexer.. 66
6-2 Impedance Divisor (G) for a Given PGA .. 67
6-3 ADCON0—ADC Control Register 0 ... 68
6-4 ADCON0 PGA Bit Parameters ... 68
6-5 ADCON1—ADC Control Register 1 ... 70
6-6 ADC Interrupt Controls .. 72
6-7 Summation Register ... 72
6-8 SSCON—Summation/Shift Control .. 73
6-9 Summation Interrupt Controls .. 73
7-1 DACSEL Values .. 81
7-2 LOADCON SFR .. 81
7-3 DxLOAD Output Modes for DACx ... 81
7-4 DAC Control Registers .. 83
8-1 PWMCON—PWM Control .. 86
8-2 PWM Output .. 87
9-1 I2C Terminology .. 90
9-2 I2CCON—I2C Control Register .. 93
9-3 I2CDATA SFR .. 94
9-4 I2CGM—I2C General Call / Multiple Master Control... 94
9-5 I2CSTAT SFR .. 94
9-6 I2C Status Codes ... 95
9-7 PDCON of I2C and SPI .. 96
9-8 Interrupt Control for I2C.. 96
9-9 Address Allocation .. 102
10-1 SPICON—SPI Control ... 105

SBAU101A–July 2005–Revised March 2007 List of Tables 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

10-2 P1—Port 1 ... 105
10-3 P1DDRH—Port 1 Data Direction Register .. 105
10-4 SPIDATA—SPI Data Register .. 106
10-5 SPI Interrupts Have Highest Priority and Jump to Address 0033h... 107
10-6 PAI—Pending Auxiliary Interrupt Register... 107
10-7 SPISTART—SPI Buffer Start Address... 109
10-8 SPISEND—SPI Buffer End Address ... 109
10-9 SPIRCON—SPI Receive Control Register .. 110
10-10 SPITCON—SPI Transmit Control Register.. 110
11-1 TMOD—Timer Mode Control.. 114
11-2 TCON—Timer/Counter Control ... 115
11-3 Modes 0 and 1 Operation.. 116
11-4 Control Bit and SFR Summary for Timer/Counters 0 and 1 .. 118
11-5 T2CON—Timer 2 Control.. 119
11-6 Mode Control Summary for Timer/Counter 2 ... 123
11-7 Control Bit and SFR Summary for Timer/Counter 2 ... 123
11-8 Timer Modes .. 123
12-1 SCON0 and SCON1—Serial Port 0 and Serial Port 1 Control ... 126
12-2 USART Pin and Interrupt Assignments .. 127
12-3 Timer/Counter 2 Baud Rate Generation ... 127
12-4 Timer/Counter 1 Baud Rate Generation ... 127
12-5 USART Baud Rate Generation ... 128
13-1 Standard and Extended Interrupts.. 137
13-2 Auxiliary Interrupts with Highest Group Priority... 139
13-3 EWU—Enable Wake Up ... 143

8 List of Tables SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

Preface
SBAU101A–July 2005–Revised March 2007

About This Manual

This user's guide describes the function and operation of the MSC121x family of precision ADC and DACs
with 8051 microcontroller and flash memory.

This document applies to the following MSC devices:

• MSC1210
• MSC1211
• MSC1212
• MSC1213
• MSC1214

For convenience, the abbreviation MSC121x is used to indicate all of the MSC devices listed in this user's
guide, unless otherwise specified.

Related Documentation and Tools From Texas Instruments

Data Sheets Literature Number

MSC1210 SBAS203

MSC1211 SBAS323

MSC1212 SBAS323

MSC1213 SBAS323

MSC1214 SBAS323

User's Guides Literature Number

MSC120x User Guide SBAU112

MSC1211EVM User’s Guide SBAU086

MSC1210EVM User’s Guide SBAU073

MSC1210-DAQ-EVM User’s Guide SBAU083

For a complete list of application notes and related documentation, see the MSC web site at
www.ti.com/msc.

SBAU101A–July 2005–Revised March 2007 9
Submit Documentation Feedback

http://focus-webapps.ti.com/general/docs/sitesearch/searchdevice.tsp?partNumber=msc1210
http://focus-webapps.ti.com/general/docs/sitesearch/searchdevice.tsp?partNumber=msc1211
http://focus-webapps.ti.com/general/docs/sitesearch/searchdevice.tsp?partNumber=msc1212
http://focus-webapps.ti.com/general/docs/sitesearch/searchdevice.tsp?partNumber=msc1213
http://focus-webapps.ti.com/general/docs/sitesearch/searchdevice.tsp?partNumber=msc1214
http://www-s.ti.com/sc/techlit/sbas203
http://www-s.ti.com/sc/techlit/sbas323
http://www-s.ti.com/sc/techlit/sbas323
http://www-s.ti.com/sc/techlit/sbas323
http://www-s.ti.com/sc/techlit/sbas323
http://www-s.ti.com/sc/techlit/SBAU112
http://www-s.ti.com/sc/techlit/sbau086
http://www-s.ti.com/sc/techlit/sbau073
http://www-s.ti.com/sc/techlit/sbau083
http://www.ti.com/msc
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

Trademarks

Trademarks

I2C is a trademark of NXP Semiconductors.

SPI is a trademark of Motorola Inc.

All other trademarks are the property of their respective owners.

10 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

Chapter 1
SBAU101A–July 2005–Revised March 2007

Introduction

This chapter provides a functional overview of the MSC121x precision analog-to-digital
converter (ADC) and digital-to-analog converters (DACs) with 8051 microcontroller and
flash memory.

Topic .. Page

1.1 MSC121x Description .. 12
1.2 MSC121x Pinout.. 14
1.3 Enhanced 8051 Core ... 21
1.4 Family Compatibility.. 22
1.5 Flash Memory ... 22
1.6 Internal SRAM... 22
1.7 High-Performance Analog Functions... 22
1.8 High-Performance Peripherals .. 22

SBAU101A–July 2005–Revised March 2007 Introduction 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

1.1 MSC121x Description

ACC

MUX

AGND

+AVDD

AVDD

BUF PGA

VREF

Modulator

Up to 32K
FLASH

1.2K
SRAM

SPI
FIFO

Digital
Filter

8051

SFR

SYS Clock
Divider

LVD

BOR

POR

PORT1

PORT2

WDT

Timers/
Counters

Clock
Generator

PORT0

PORT3

8

8

8

EA

8

T2
SPI/EXT/I2C(4)

USART1

ADDR

ADDR
DATA

Alternate
Functions

USART0
EXT
T0
T1
PWM
RW

8−Bit
Offset DACIDAC0(3)/AIN0

IDAC1(3)/AIN1

VDAC2(3)/AIN2

VDAC3(3)/AIN3

AIN4

AIN5

AIN6

AIN7

AINCOM

AGND REFOUT/REF IN+(1) REF IN−(2) DVDD DGND

XIN XOUT

VDAC0

VDAC1

VDAC2

VDAC3

AIN2

AIN3

VDAC1(3)VDAC0(3)

ALE

PSEN

V/I
Converter

V/I
Converter

Temperature
Sensor

RST

RDAC1(3)

IDAC0/
AIN0

IDAC1/
AIN1

RDAC0(3)

NOTES: (1) On the MSC1210, the REF IN + (pin 30) and REFOUT (pin 31) functions are split onto two pins. On the MSC1211/12/13/14,

REFOUT and REF IN+ are combined onto pin 30, and the VDAC1 output is on pin 31.

(2) REF IN− must be tied to AGND when using internal VREF.

(3) DAC functions are only available on the MSC1211/12/13/14.

(4) I2C is available only on the MSC1211 and MSC1213.

MSC121x Description

The MicroSystem family of devices is designed for high-resolution measurement applications in smart
transmitters, industrial process control, weigh scales, chromatography, and portable instrumentation. They
provide cost-effective, high-performance, mixed-signal solutions. The MicroSystem family not only
includes high-performance analog features and digital processing capability, but also integrates many
digital peripherals to offer a unique and effective system solution.

The main components of a MicroSystem product include:

• High-performance analog functions
• Low-power enhanced 8051 microcontroller core
• RAM and Flash memory
• High-performance digital peripherals

The enhanced 8051 microcontroller includes dual data pointers and executes most instructions up to three
times faster than a standard 8051 core. This increased execution speed provides greater flexibility in
applications requiring a trade-off among speed, power and noise. A block diagram is shown in Figure 1-1.

Figure 1-1. MSC121x Block Diagram

12 Introduction SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

MSC121x Description

For some designers, the MSC121x is viewed as a microcontroller with integrated analog functions, while
to others it is a high-performance analog-to-digital converter (ADC) with an integrated microcontroller. The
MSC121x provides unparalleled analog and digital integration for all designers who are concerned with
embedded instrumentation and control.

Complementing the high-resolution ADC are a precision voltage reference, programmable gain amplifier
(PGA), and analog multiplexer (mux), as well as a temperature sensor and low voltage detectors.

Apart from numerous bit-wise programmable digital ports, there are two USARTs, three timer/counters, a
watchdog timer, and a serial (SPI™) bus. Up to 32k of FLASH memory and 1.2K RAM are included as
well. The MSC1211/13 also support I2C serial transfers.

Taken together, the MSC121x features blend analog and digital functions to significantly simplify the
overall system design, which reduces the design time and board space as well as the need for external
components.

For systems requiring additional memory, address and data lines are provided via multifunction I/O ports.

Table 1-1 compares the basic features and functionality of the MSC121x family.

Table 1-1. MSC121x Product Family Matrix
MSC1210 MSC1211 MSC1212 MSC1213 MSC1214

Clock Frequency 33 33 33 33 33(kB)

Flash Memory 32 32 32 32 32(kB)

SRAM 1.2 1.2 1.2 1.2 1.2(kB)

ADC 8 × 24 8 × 24 8 × 24 8 × 24 8 × 24(Channel x Resolution)

DAC Quad Voltage / Dual Quad Voltage / Dual Dual Voltage / Dual Dual Voltage / DualN/A(Channel x Resolution) Current × 16 Current × 16 Current × 16 Current × 16

Features: 34 I/O 34 I/O 34 I/O 34 I/O 34 I/O
32-Bit Accumulator External Memory External Memory External Memory External Memory External Memory

Internal VREF Dual USARTs Dual USARTs Dual USARTs Dual USARTs Dual USARTs
Internal PGA - - -I2C I2C

Internal Buffer Serial/Parallel Serial/Parallel Serial/ParallelSerial/Parallel Serial/Parallel
SPI Programming Programming ProgrammingProgramming Programming

Brownout Reset - System Clock Divider System Clock DividerSystem Clock Divider System Clock Divider
Low-Voltage Detect

Package TQFP-64 TQFP-64 TQFP-64 TQFP-64 TQFP-64

SBAU101A–July 2005–Revised March 2007 Introduction 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

1.2 MSC121x Pinout

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

EA

P0.6/AD6

P0.7/AD7

ALE

PSEN/OSCCLK/MODCLK

P2.7/A15

DVDD

DGND

P2.6/A14

P2.5/A13

P2.4/A12

P2.3/A11

P2.2/A10

P2.1/A09

P2.0/A08

NC

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

XOUT

XIN

P3.0/RxD0

P3.1/TxD0

P3.2/INT0

P3.3/ /TONE/PWMINT1

P3.4/T0

P3.5/T1

P3.6/WR

P3.7/RD

DVDD

DGND

RST

DVDD

DVDD

RDAC0 or NC(2)

P
1
.7

/
/

/S
C

K
S

C
L

IN
T

5
(1

)

P
1
.6

/I
N

T
4
/M

IS
O

/S
D

A
(1

)

P
1
.5

/
/M

O
S

I
IN

T
3

P
1
.4

/I
N

T
2
/S

S

P
1
.3

/T
x
D

1

P
1
.2

/R
x
D

1

D
V

D
D

D
G

N
D

P
1
.1

/T
2
E

X

P
1
.0

/T
2

P
0
.0

/A
D

0

P
0
.1

/A
D

1

P
0
.2

/A
D

2

P
0
.3

/A
D

3

P
0
.4

/A
D

4

P
0
.5

/A
D

5

V
D

A
C

0
o
r

A
G

N
D

(3
)

ID
A

C
0

/A
IN

0
(4

)

ID
A

C
1

/A
IN

1
(4

)

V
D

A
C

2
/A

IN
2

(5
)

V
D

A
C

3
/A

IN
3

(5
)

A
IN

4

A
IN

5

A
IN

6
/E

X
T

D

A
IN

7
/E

X
T
A

A
IN

C
O

M

A
G

N
D

A
V

D
D

R
E

F
 I
N

-

R
E

F
O

U
T

/R
E

F
 I
N

+
(6

)

V
D

A
C

1
o
r

R
E

F
O

U
T

(6
)

R
D

A
C

1
o
r

N
C

(2
)

64 63 62 61 60 59 58 57 56 55 54

17 18 19 20 21 22 23 24 25 26 27

53 52 51 50 49

28 29 30 31 32

MSC121x

Non-bolded pin names are on MSC1210.

(1) SCL and SDA not present on MSC1210/12/14.

(2) Pins 16 and 32 are not connected (NC) on MSC1210.

(3) AGND for MSC1210; VDAC0 for MSC1211/12/13/14.

(4) IDAC0 and IDAC1 on MSC1211/12/13/14.

(5) VDAC2 and VDAC3 on MSC1211/12.

(6) For MSC1210, REFOUT is on pin 31. For MSC1211/12/13/14, REFOUT is shared with REF IN+ on pin 30, and VDAC1 is on pin 31.

NOTES:

MSC121x Pinout

The names and functions of pins are similar to those found on most 8051-compatible devices, but with
extensions that are specific to the MSC121x. The pin configuration is shown in Figure 1-2, and the pin
descriptions are listed in Table 1-2.

Figure 1-2. MSC121x Pin Configuration

14 Introduction SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

MSC121x Pinout

Table 1-2. Pin Descriptions
Pin # Name Description

1 XOUT The output of an oscillator that supports parallel resonant AT-cut crystals and ceramic resonators.

2 XIN The input to the crystal oscillator that can also be used as an external clock input.

3-10 P3.0-P3.7 Port 3 is an 8-bit bidirectional Input/Output port with alternate functions.

Port 3.x Alternate Name(s) Alternate Use

P3.0 RxD0 Serial port 0 input

P3.1 TxD0 Serial port 0 output

P3.2 INT0 External Interrupt 0

P3.3 INT1/TONE/PWM External interrupt 1/TONE/PWM output

P3.4 T0 Timer 0 input

P3.5 T1 Timer 1 input

P3.6 WR External data memory write strobe

P3.7 RD External data memory read strobe

11, 14, 15, 42, 58 DVDD Digital power supplies. All must be used.

12, 41, 57 DGND Digital grounds. All must be used.

13 RST A high on the reset input for two clock cycles resets the device.

Alternate or Additional in
Base MSC1210 Pin Function MSC1211/12/13/14

16 NC No connection RDAC0 (MSC1211/12/13/14 only)

17 AGND Analog ground VDAC0 (MSC1211/12/13/14 only)

18 AIN0 Analog input channel 0 = AIN0 AIN0 and IDAC0 (MSC1211/12/13/14 only)

19 AIN1 Analog input channel 1 = AIN1 AIN1 and IDAC1 (MSC1211/12/13/14 only)

20 AIN2 Analog input channel 2 = AIN2 AIN2 and VDAC2 (MSC1211/12 only)

21 AIN3 Analog input channel 3 = AIN3 AIN3 and VDAC3 (MSC1211/12 only)

22 AIN4 Analog input channel 4 = AIN4 Same

23 AIN5 Analog input channel 5 = AIN5 Same

24 AIN6, EXTD Analog input channel 6 = AIN6 and digital low voltage Same
detect input

25 AIN7, EXTA Analog input channel 7 = AIN7 and analog low voltage Same
detect input

26 AINCOM Analog common for single-ended inputs Same

27 AGND Analog ground Same

28 AVDD Analog power supply Same

29 REF IN– Voltage reference negative input Same

30 REF IN + Voltage reference positive input REFOUT/REF IN+

31 REFOUT Voltage reference output VDAC1 (MSC1211/12/13/14 only)

32 NC No connection RDAC1 (MSC1211/12/13/14 only)

33 NC No connection Same

34-40, 43 P2.0-P2.7 Port 2 is an 8-bit bidirectional input/output port with alternate functions.

Port 2.x Alternate Name Alternate Use

P2.0 A8 Address bit 8

P2.1 A9 Address bit 9

P2.2 A10 Address bit 10

P2.3 A11 Address bit 11

P2.4 A12 Address bit 12

P2.5 A13 Address bit 13

P2.6 A14 Address bit 14

P2.8 A15 Address bit 15

SBAU101A–July 2005–Revised March 2007 Introduction 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

MSC121x Pinout

Table 1-2. Pin Descriptions (continued)
Pin # Name Description

44 PSEN, OSCCLK, Program store enable. Connected to optional external memory as a chip enable. PSEN provides an
MODCLK, Low or active low pulse. It is used in conjunction with RST and ALE to define serial or parallel programming

High mode. When not using external program memory, this pin can also be selected to output the oscillator
clock, ADC modulator clock, low or high. (See SFR PASEL, F2h.)

ALE PSEN Program Mode Selection (at reset)

NC NC Normal operation

0 1 Parallel programming of FLASH

1 0 Serial Programming of FLASH

0 0 Reserved

45 ALE, Low or High Address latch enable. Used for latching the low byte of the address during an access to external
memory. (See PSEN and SFR PASEL, F2h.)

48 EA If EA is low as RST falls, and neither ALE nor PSEN is low (see above), code access will always be to
external memory starting at address 0000h. Otherwise, internal program memory will be accessed
where available.

46, 47, 49-54 P0.0-P0.7 Port 0 is an 8-bit bidirectional input/output port with alternate functions.

Port 0.x Alternate Name Alternate Use

P0.0 AD0 Address/Data bit 0

P0.1 AD1 Address/Data bit 1

P0.2 AD2 Address/Data bit 2

P0.3 AD3 Address/Data bit 3

P0.4 AD4 Address/Data bit 4

P0.5 AD5 Address/Data bit 5

P0.6 AD6 Address/Data bit 6

P0.7 AD7 Address/Data bit 7

55, 56, 59-64 P1.0-P1.7 Port 1 is an 8-bit bidirectional input/output port with alternate functions.

Port 1.x Alternate Name Alternate Use

P1.0 T2 Address/Data bit 0

P1.1 T2EX Address/Data bit 1

P1.2 RxD1 Address/Data bit 2

P1.3 TxD1 Address/Data bit 3

P1.4 INT2/SS Address/Data bit 4

P1.5 INT3/MOSI Address/Data bit 5

P1.6 INT4/MISO/SDA (1) Address/Data bit 6

P1.7 INT5/SCL (1)/SCK Address/Data bit 7
(1) SCL and SDA not present on MSC1210/12/14.

Introduction16 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

1.2.1 Input/Output (I/O) Ports—P0, P1, P2, and P3

10kΩ

DVDD

Pn.n

Read Pin

Read Register

All Functions

Reg n.n

CMOS Output

Open−Drain
Output

Input

MSC121x Pinout

In principle, each port consists of eight bits, each of which may be placed low, high, or read by accessing
the corresponding bit in the appropriate special function register (SFR). However, when alternate functions
are used, the port SFRs are not usually accessed.

Every I/O port bit has an optional pull-up resistor that is enabled when the bit is in 8051-compatible mode
(default after reset), as configured by the PxDDRH and PxDDRL SFRs, where x = 0 to 3. The pull-up
resistor is disabled when the port bit is configured as either a CMOS output, open drain output or input, or
when accessing external memory, as shown in Figure 1-3 through Figure 1-6.

Figure 1-3. Standard 8051 I/O Pin Structure

Figure 1-4. CMOS Output Pin Structure

Figure 1-5. Open-Drain Output Pin Structure

Figure 1-6. Input Pin Structure

Note that:

• When a port pin is to act as an input to an alternate function, it is essential that the pin not be
configured as an output.

• To make use of the alternate functions associated with Ports 1 and 3, the corresponding port output
latches should be high, with the data direction bits defined in a manner appropriate to the alternate
function.

• A special case exists for the 8051 mode, which has a weak pull-up resistor and offers bidirectional
capability.

SBAU101A–July 2005–Revised March 2007 Introduction 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

1.2.1.1 Port 0—P0

1.2.1.2 Port 1—P1

MSC121x Pinout

By default, Port 0 provides eight independently-programmable input/output bits. However, it may be
configured to provide eight multiplexed, low-order address and data lines so that external memory may be
accessed. See bit 1 of hardware configuration register 1 (HCR1).

External memory cycles may occur if:

1. The EA pin is low when the RST pin is released;
2. An instruction is fetched from an address that is not associated with on-chip FLASH; or
3. When EGP0 (of HCR1) = 0 and a MOVC or MOVX instruction executes.

Port 1 provides not only eight independently-programmable bits, but also a variety of alternate functions,
as shown in Table 1-3.

Table 1-3. Port 1 Alternate Functions
Port 1 Bit Name Alternate Function

P1.0 (T2) Clock source for Timer/Counter 2 when C/T2 (T2CON.1) is 1.

If Timer/Counter 2 is in auto-reload mode and EXEN2 (T2CON.3) is 1, a negative edge (1–0 transition) causesP1.1 (T2EX) Timer/Counter 2 to be reloaded and EXF2 (T2CON.6) to be set, which in turn may cause an interrupt.

P1.2 (RxD1) Serial input to USART1. An external receiver is needed to level shift RS-232 signals.

P1.3 (TxD1) Serial output from USART1. An external driver is needed to level shift RS-232 signals.

P1.4 (INT2/SS) Positive-edge triggered external 2 interrupt or active-low Slave-Select output during SPI operations.

P1.5 (INT3/MOSI) Negative-edge triggered external 3 interrupt or the Master-Out/Slave-In during SPI operations.

P1.6 (INT4/MISO/SDA) Positive-edge triggered external 4 interrupt or Master-In/Slave-Out during SPI operation, serial data during I2C operation.

P1.7 (INT5/SCK/SCL) Negative-edge triggered external 5 interrupt or serial clock output for SPI operations, serial clock during I2C operation.

Introduction18 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

1.2.1.3 Port 2—P2

1.2.1.4 Port 3—P3

MSC121x Pinout

By default, Port 2 acts as eight general-purpose input/output signals. However, its alternate function is to
provide the upper byte of a 16-bit external address as determined by the EA pin and bit 0 (EGP23) of
HCR1. If EA is low when RST is de-asserted, all memory accesses are external, and Port 2 continually
outputs the high-order byte of 16-bit addresses. It also outputs bits of an address if EGP23 is 0 and a
MOVX instruction is executed, regardless of EA. This is either the upper byte of the data pointer or the
value in MPAGE at 92h, depending on whether the MOVX instruction references DPTR or @Rx,
respectively.

When EA causes external memory accesses, the read and write strobes at P3.7 and P3.6, respectively,
are enabled automatically. Selective external accesses must enable these strobes by clearing bit 1
(EGP0) or bit 0 (EGP23) of HCR1 to 0.

If EGP23 = 1 and EA = 1, Port 2 output pins are always derived from its data latch.

Port 3 provides not olny eight independently programmable bits, but also a variety of alternate functions,
as shown in Table 1-4.

Table 1-4. Port 3 Alternate Functions
Port 3 Bit Name Alternate Function

P3.0 (RxD0) Serial input to USART0. An external receiver is needed for RS-232 signals.

P3.1 (TxD0) Serial output from USART0. An external driver is needed for RS-232 signals.

P3.2 (INT0) Active-low or negative-edge triggered interrupt. Gate for Timer/Counter 0.

P3.3 (INT1/TONE/PWM) Active-low or negative-edge triggered interrupt. Tone or Pulse-Width-Modulated output. Gate for Timer/Counter 1.

P3.4 (T0) Clock source for Timer/Counter 0 if TMOD.2 is 1. See description of the Timer/Counters for gated conditions.

P3.5 (IT1) Used as a clock source for Timer/Counter 1 if TMOD.6 is 1. See description of the Timer/Counters for gated conditions.

P3.6 (WR) Active-low write strobe for external memory if used.

P3.7 (RD) Active-low read strobe for external memory if used.

SBAU101A–July 2005–Revised March 2007 Introduction 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

1.2.2 Oscillator XOUT (pin 1) and XIN (pin 2)

1.2.3 Reset Line—RST (pin 13)

1.2.4 Address Latch Enable—ALE (pin 45)

1.2.5 Program Store Enable—PSEN (pin 44)

1.2.6 External Access—EA (pin 48)

MSC121x Pinout

In many applications, a quartz crystal or ceramic resonator is connected between XOUT and XIN to
provide a reference clock that is between 1MHz and approximately 30MHz. The static design of the
MSC121x allows a digital clock to be applied to XIN that is between 0MHz and 30MHz. A commonly-used
crystal for exact baud rates is 11.0592MHz.

Note: The load capacitors for the crystal must be verified to work over the operating conditions
of the application. It is generally better to use lower value load capacitors than those
recommended by the crystal manufacturer because of the design of the oscillator circuit.

RST is the master reset line. When it is brought high for two or more clock cycles, the MSC121x is reset.
All SFRs are placed at their default values and the program counter is reset to 0000h. The contents of
internal SRAM are not affected by a reset, and instruction execution begins when RST is brought low,
when both PSEN and ALE are high. If either PSEN or ALE is low when RST is brought low, the MSC121x
enters Flash Programming mode.

The RST pin has a CMOS Schmitt-trigger input that permits the use of a simple RC network to achieve
reset when power is first applied. For the MSC1210, the internal pull-down resistor is typically 200kΩ. For
the MSC1211/12/13/14, there is no internal pull-down resistor.

As RST is de-asserted (low), ALE temporarily acts as an input with a 9kΩ internal pull-up resistor and is
used in conjunction with PSEN to place the MSC121x in a programming mode. If neither ALE nor PSEN
are pulled low, the MSC121x begins normal operation, where ALE is always an output that usually
controls a strobed latch to demultiplex the address appearing on Port 0.

When no external memory is present, ALE may be used as an independent output that can be placed low
or high via the ALE mode bits in PASEL at F2h.

As RST is de-asserted (low), PSEN temporarily acts as an input with a 9kΩ internal pull-up resistor, and is
used in conjunction with ALE to place the MSC121x in a programming mode. If neither ALE nor PSEN are
pulled low, the MSC121x begins normal operation, where PSEN is always an output that usually acts as
an active-low strobe to read from external program memory.

When no external memory is present, PSEN may be used as an independent output that can be placed
low, high, or reflect the ADC modulator clock, via PSEN mode bits in PASEL at F2h.

EA is sampled as the RST pin is de-asserted (low) and determines whether the MSC121x fetches
instruction codes from internal or external memory. When EA is high, code is fetched from internal
memory; otherwise, code is always fetched from external memory. Changing the level on EA during
normal operation has no effect.

Code is fetched at addresses pointed to by the Program Counter (PC) during program execution and also
when a MOVC instruction is executed. In either case, if EA is high but there is no internal memory
associated with a particular address, an external fetch will occur.

Introduction20 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

1.3 Enhanced 8051 Core

ALE

PSEN

AD0−AD7

PORT 2

ALE

PSEN

AD0−AD7

PORT 2

CLK

S
ta

n
d

ar
d

80
51

Ti
m

in
g

M
S

C
12

1x
Ti

m
in

g

Single−Byte, Single−Cycle
Instruction

Single−Byte, Single−Cycle
Instruction

12 Cycles

4 Cycles

Enhanced 8051 Core

All members of the MSC121x family of mixed-signal microcontrollers use a core that is
instruction-set-compatible with the industry-standard 8051. All instruction codes have the same binary
patterns and produce exactly the same logical changes. However, the MSC121x is approximately three
times faster in execution for the same clock frequency; instead of using 12 clocks per instruction cycle, the
MSC121x uses four, as shown in Figure 1-7.

Figure 1-7. Comparison of MSC121x Timing to Standard 8051 Timing

The designer can either make use of the increased speed of execution or achieve the same speed, but at
a lower clock frequency. A lower clock speed results in less system noise and lower power dissipation.

When porting existing 8051 code to the MSC121x, the designer/programmer may need to consider the
change in performance associated with all software timing loops and make adjustments where necessary.
By default, hardware timers are still clocked every 12 clock cycles, but can be changed to every four
cycles, if required.

Existing software development tools for the 8051/8052 can be used directly to develop programs for the
MSC121x.

SBAU101A–July 2005–Revised March 2007 Introduction 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

1.4 Family Compatibility

1.5 Flash Memory

1.6 Internal SRAM

1.7 High-Performance Analog Functions

1.8 High-Performance Peripherals

Family Compatibility

The MSC121x family allows the most cost-effective part to be used for each application and ensures a
migration path towards larger memories when required. Code written for the 4K byte part runs unaltered
on 8K, 16K, and 32K parts. Between the MSC1210 and MSC1211, the allocation and meaning of pins are
similar, but not identical because of the different functions that are provided.

The MSC121x parts feature flexible Flash memory that can be partitioned into program and data areas
that are best suited for each application. They may be programmed over the entire operating voltage
range and temperature range using serial, parallel, and self-programming methodologies.

The MSC121x contains a total of 1280 bytes of static random access memory (SRAM). 128 bytes are
directly addressable using instructions that incorporate the address. An additional 128 bytes are indirectly
addressable via instructions using a register as a pointer, while 1024 bytes are logically external but
physically internal and accessed with the MOVX instruction.

The analog functionality of the MSC121x is state-of-the-art. The ADC is extremely low-noise, and meets
the most stringent requirements for analog instrumentation. The integrated programmable gain amplifier
(PGA) further improves the performance of the ADC, which then achieves nanovolt resolution.

The integrated low-drift, high-accuracy voltage reference complements the performance of the ADC and
usually eliminates the need for an external reference. However, ratiometric measurements are still
possible and easily implemented.

Also present are a programmable filter, an analog multiplexer for single-ended and differential signals, a
temperature sensor, burnout current sources, an analog input buffer, and an offset DAC.

Additional digital peripherals are included, which offload CPU processing and control functions from the
core to improve further the overall efficiency. In particular, there is a 32-bit accumulator closely associated
with the ADC, an SPI-compatible serial port with a FIFO buffer, two USARTs, power-on reset, brownout
reset, low-voltage detection, multiple digital ports with configurable I/O, a 16-bit pulse-width modulator
(PWM), a watchdog timer, and three timer/counters.

The SPI interface and FIFO buffer allow synchronous serial communications with minimal CPU overhead.
For the MSC1211 and MSC1213, an I2C interface may be enabled, which replaces the SPI.

The 32-bit accumulator significantly reduces the processing overhead associated with multi-byte data. It
allows automatic 32-bit additions from the ADC, and shifts without using CPU registers. 32-bit addition is
supported with minimal program interaction.

22 Introduction SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

Chapter 2
SBAU101A–July 2005–Revised March 2007

MSC121x Addressable Resources

This chapter provides a detailed description of the MSC121x addressable resources.

Topic .. Page

2.1 Introduction.. 24
2.2 Program Memory and Data Memory .. 25
2.3 Scratchpad RAM and Special Function Registers 27
2.4 Beyond 64K Bytes... 28

SBAU101A–July 2005–Revised March 2007 MSC121x Addressable Resources 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

2.1 Introduction

64K bytes
addressable

Program
Space

On-chip
FLASH,

ROM, RAM
and/or

external
memory

128 bytes

directly

addressable

RAM

128 bytes

indirectly

addressable

RAM

128 bytes

directly

addressable

SFRs

FFFF

0000

FF

00

80

7F

On-Chip Resources On-Chip and Off-Chip Resources

64K bytes
addressable

‘External’
Data Space

On-chip
FLASH,

RAM
and/or

external
memory

Introduction

Some microprocessors have a single unified address space that is used for program code, data values
and input/output ports. However, most 8051 cores (and thus the MSC121x), have several distinct
addressable spaces that serve different purposes, as shown in Figure 2-1. In fact, the MSC121x
implements all address spaces found in the 8051, but with a feature that permits self-modifiable code.

Direct and indirect 8-bit addresses access up to 384 bytes of on-chip resources, comprised of 256 bytes of
static random access memory (SRAM) and up to 128 SFRs. 16-bit pointers (PC and DPTR) allow up to
64K bytes of program memory and 64K bytes of extended data memory to be accessed, which may be
on-chip and/or off-chip.

Memory for data may be allocated in different places, depending upon the size of the data, how frequently
it is altered, and how efficiently it is accessed. The resources available on the MSC121x are:

• 256 bytes of on-chip SRAM for working registers, bit-wide variables, byte and multi-byte variables, and
a stack. This memory is accessed by the majority of data-processing instructions.

• 1024 bytes of on-chip extended SRAM, which is considered by the architecture as logically external
data. It is used for variables that are needed less frequently and accessed only with MOVX (X for
external) instructions, even though it is on-chip.

• A configurable number of kilobytes of on-chip FLASH memory that is accessed only with MOVX (X for
external) instructions, even though it is on-chip. Typically, data here consist of lookup tables.

• A configurable number of kilobytes of user-defined, read-only memory (ROM) that is off-chip. It is
accessed only with MOVX instructions.

Figure 2-1. On-Chip and Off-Chip Resources

Memory for program code may be on-chip or off-chip. On-chip, it is realized by FLASH, ROM, or SRAM
within the address range of 0000 to FFFFh. During program execution, if a code address is referenced
that is not associated with on-chip memory, off-chip memory will be accessed. Even if on-chip program
memory is present, off-chip memory will be used, as long as EA is low when the RST (reset) pin is
released. EA also overrides access to on-chip SRAM that is mapped into code space.

Both program memory and data memory have 16-bit address spaces. They are logically distinct and
usually physically separate.

MSC121x Addressable Resources24 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

2.2 Program Memory and Data Memory

1k RAM or External1k RAM or External

1k RAM or External

External Memory

S
e
le

c
t
in

H
C

R
0

0000h, 0k

1FFFh, 8k (Y3)

0FFFh, 4k (Y2)

3FFFh, 16k (Y4)

8400h

7FFFh, 32k (Y5)

2k Internal Boot ROM
F800h

FFFFh

External

Program

Memory

Mapped to Both

Memory Spaces

(von Neumann)

8800h

03FFh, 1k

13FFh, 5k (Y2)

23FFh, 9k (Y3)

43FFh, 17k (Y4)

83FFh, 33k (Y5)

FFFFh

External

Data

Memory

Program
Memory

Data
Memory

8800h

On- Chip

Flash

On- Chip

Flash

Flash

Programming

Mode

Address

User

Application

Mode

Address
(1)

NOTE: (1) Can be accessed using CADDR

or the Boot ROM routine.faddr_data_read

UAM: Read Only

FPM: Read Only

UAM: Read Only

FPM: Read/Write

UAM: Read Only

FPM: Read/Write

807Fh

8000h

8070h

7Fh

8079h 79h

00h

70h

Configuration
Memory

S
e
le

c
t
in

M
C

O
N

S
e
le

c
t
in

M
C

O
N

Program Memory and Data Memory

Figure 2-2 and Table 2-1 show the addresses associated with program memory and external data
memory, which may be located on-chip or off-chip. Accessing off-chip memory requires additional circuitry
and the use of numerous pins. Additional memory is gained at the expense of other functions associated
with these pins.

Figure 2-2. Memory Map

Table 2-1. Program Memory and External Data Memory Addresses
Program (Code) Memory (1) Data Memory (1)

Address Location Address Location

FFFF 2K Boot ROM (2)
Note 2 FFFF(if EBR is 1)F800

30K off-chip Note 3
F7FF

28K off-chip Note 3 8800 (3)

8800

87FF 87FF
1K on-chip or off-chip Note 4 1K on-chip or off-chip (4) Note 4

8400 8400

83FF 83FF Y51K off-chip 16K 32K8000 4400

7FFF 43FFY5 Y416K 8K32K 16K4000 2400

3FFF 23FFY4 Y38K 4K16K 8K2000 1400

1FFF 13FFY3 Y24K 4K8K 4K1000 0400

0FFF 03FFY54K 1K on-chip or off-chip (4) Note 432k0000 0000
(1) The Y2,Y3,Y4 or Y5 suffix on a part code indicates total FLASH of 4K, 8K, 16K and 32K, respectively. This may be partitioned

between code and external data spaces, The shaded cells shows the areas that can be defined.
(2) All MSC121x devices have 2K bytes of on-chip Boot ROM. This is enabled by default (see EBR, bit 4 of HCR0) and gives the

user program access to a number of useful routines. When disabled, the space is available for external program memory.
(3) To permit off-chip expansion, all MSC121x devices have a region for external code and/or data memory; that is, 8800h to

F7FFh (boot ROM enabled) or 8800h to FFFFh (boot ROM disabled) for code and 8800h to FFFFh for data.
(4) By default, bit 0 of MCON (RAMMAP, SFR 95h) is 0 and 1K bytes of on-chip SRAM appears only as external data memory

between addresses 0000h and 03FFh. If RAMMAP is 1, this SRAM is replicated as code and data at addresses 8400h to
87FFh in user mode.

SBAU101A–July 2005–Revised March 2007 MSC121x Addressable Resources 25
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

Program Memory and Data Memory

In typical 8051 architecture, program memory is read-only. However, in the MSC121x, Flash memory that
is allocated to code space can be modified when an instruction such as MOVX @DPTR,A is executed with
bit 0 of MWS (SFR 8Fh) set to '1'. For more details, see the Program Memory Lock and Reset Sector
Lock bits in HCR0. Although modifying code in this way can provide flexibility of design, it is not intended
to support repetitive use of self-modifying coding techniques. For this purpose, the user may choose to
map the 1024 bytes of on-chip SRAM to data and code spaces.

The Boot ROM provides functions to manipulate the Flash memory, but other routines can be copied to
code-mapped SRAM.

The on-chip Flash memory may be partitioned so that it is shared between code and data spaces. This
partitioning is done via the three least-significant bits (DFSEL) in HCR0 when the MSC121x is
programmed.

2KB of on-chip Boot ROM is used during serial and parallel programming modes when it is temporarily
mapped to 0000h to 07FFh. During normal program execution, it may be mapped into addresses F800h to
FFFFh to provide access to useful routines (for example, serial I/O). This mapping occurs by default via bit
4 of HCR0.

Program memory is accessed in an implicit manner as a program is executed, or by explicit use of the
assembly-level MOVC instruction.

Data memory is always accessed via the assembly-level MOVX instruction. Even though this mnemonic
stands for MOVe eXternal, the memory may be on-chip.

Table 2-2. MSC121x Flash Memory Partitioning and Addresses (1) (2)

HCR0
(Binary) MSC121xY2 MSC121xY3 MSC121xY4 MSC121xY5

DFSEL PM DM PM DM PM DM PM DM

000 reserved reserved reserved reserved reserved reserved reserved reserved

0KB 4KB 0KB 8KB 0KB 16KB 0KB 32KB
001

— 0400-13FF — 0400-23FF — 0400-43FF — 0400-83FF

0KB 4KB 0KB 8KB 0KB 16KB 16KB 16KB
010

— 0400-13FF — 0400-23FF — 0400-43FF 0000-3FFF 0400-43FF

0KB 4KB 0KB 8KB 8KB 8KB 24KB 8KB
011

— 0400-13FF — 0400-23FF 0000-1FFF 0400-23FF 0000-5FFF 0400-23FF

0KB 4KB 4KB 4KB 12KB 4KB 28KB 4KB
100

— 0400-13FF 0000-0FFF 0400-13FF 0000-2FFF 0400-13FF 0000-6FFF 0400-13FF

2KB 2KB 6KB 2KB 14KB 2KB 30KB 2KB
101

0000-07FF 0400-0BFF 0000-17FF 0400-0BFF 0000-37FF 0400-0BFF 0000-77FF 0400-0BFF

3KB 1KB 7KB 1KB 15KB 1KB 31KB 1KB
110

0000-0BFF 0400-07FF 0000-1BFF 0400-07FF 0000-3BFF 0400-07FF 0000-7BFF 0400-07FF

4KB 0KB 8KB 0KB 16KB 0KB 32KB 0KB111
(default) 0000-0FFF — 0000-1FFF — 0000-3FFF — 0000-7FFF —

(1) PM = Program Memory = Code Space; DM = Data Memory = Data Space.
(2) Execution from off-chip memory may be forced when pin EA is low at reset.

MSC121x Addressable Resources26 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

2.3 Scratchpad RAM and Special Function Registers

Scratchpad RAM and Special Function Registers

The MSC121x has 256 bytes of on-chip SRAM that are closely associated with the core processor, as well
as over 100 SFRs, as shown in Table 2-3.

As instructions are executed, the address of the SRAM or SFRs is either explicit or implicit, as shown in
Example 2-1.

Table 2-3. On-Chip 8051 Memory
SFR Base (Hex) C0 C8 D0 D8 E0 E8 F0 F8

Bit-Addressable Bit # (1) C0-C7 C8-CF D0-D7 D8-DF E0-E7 E8-EF F0-F7 F8-FF

SFR Base (Hex) 80 88 90 98 A0 A8 B0 B8

Bit-Addressable Bit # (1) 80-87 88-8F 90-97 98-9F A0-A7 A8-AF B0-B7 B8-BF

Start End
Address Contect Address

Designation (Hex) (Hex) (Hex)

SFRs 80 128 byte space for SFRs; only directly addressable FF

SRAM 80 128 bytes of SRAM; only indirectly addressable FF

SRAM 30 80 bytes of SRAM; directly and indirectly addressable 7F

Bit # (1) 28 40-47 48-4F 50-57 58-5F 60-67 68-6F 70-77 78-7F 2F

Bit # (1) 20 00-07 08-0F 10-17 18-1F 20-27 28-2F 30-37 38-3F 27

Register Bank 3 (2) 18 R0 R1 R2 R3 R4 R5 R6 R7 1F

Register Bank 2 (2) 10 R0 R1 R2 R3 R4 R5 R6 R7 10

Register Bank 1 (2) 08 R0 R1 R2 R3 R4 R5 R6 R7 0F

Register Bank 0 (2) 00 R0 R1 R2 R3 R4 R5 R6 R7 07

(1) Bit variables numbered 00h to 7Fh are mapped to SRAM bytes 20h to 2Fh. Bit variables numbered 80h to FFh are mapped to
SFRs with an address of the form 1xxxx000b. This means that bits within 16 of the 128 possible SFRs may be manipulated by
the bit-addressing instructions.

(2) Only R0 or R1 may be used as 8-bit indirect pointers to on-chip SRAM between 00h and FFh.

Example 2-1. Instructions (1) (2) (3)

Instructions Condition or Comment Net Effect on SRAM or SFR Location

Register bank 1 is active Contents of RAM at 4Ah are copied to RAM at 09hMOV R1,4AH

Register bank 2 is active and RAM at address 11h Immediate code data of F4h are copied to RAM at 8AhMOV @R1,#F4H
contains 8Ah

sync = 5Eh Bit 6 of RAM at 2Bh is setSETB sync

Stack Pointer (SP) is 9Bh, but is pre-incremented to 9Ch Contents of RAM at 34h are copied to RAM at 9ChPUSH 34H

P0 = 80h, which is the SFR for physical Port 0; Stack Contents of RAM at 80h are copied to the SFR at 80hPOP P0
Pointer (SP) is 80h and is post-decremented to 7Fh

P1 = 90h, which is the SFR for physical Port 1 SFR at 90h is incrementedINC P1

Register bank 0 is active Contents of RAM at 06h are decrementedDEC R6

C = carry = bit 7 of the Program Status Word at D0h Bit 7 of SFR at D0h is clearedCLC C

Accumulator = 12h, Register B = 3Bh The accumulator = SFR at E0h becomes the low part ofMUL AB
the product (= 26h), and reg B = SFR at F0h becomes the
high part (= 04h)

TF1 = 8Fh; the bit address of timer 1 overflow flag Complement bit 7 of SFR TCON at 88hCPL TF1

The accumulator at SFR E0h is clearedCLC A

(1) The Stack Pointer (SP), itself an SFR at 81h, has a default value of 07h. Therefore, register bank 1 or above must not be used
unless SP is given a higher value.

(2) Direct addresses between 80h and FFh always address the SFR space, even when no SFR is defined at a particular location.
SRAM between 80h and FFh can only be accessed indirectly or implicitly.

(3) The Serial Peripheral Interface (SPI) may be configured to use a circular memory buffer within SRAM and this must be placed
so that it does not conflict with other operations.

SBAU101A–July 2005–Revised March 2007 MSC121x Addressable Resources 27
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

2.4 Beyond 64K Bytes

Beyond 64K Bytes

If more than 64K bytes of either program or data storage are required, various bank switching techniques
can be used. These techniques may be supported automatically with some C compilers and development
environments; refer to the particular software vendor for further information.

28 MSC121x Addressable Resources SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

Chapter 3
SBAU101A–July 2005–Revised March 2007

Special Function Registers

This chapter describes the special function registers of the MSC121x.

Topic .. Page

3.1 Introduction.. 30
3.2 Referencing SFRs in Assembly and C Languages......................... 31
3.3 SFR Types.. 31
3.4 SFR Overview ... 32

SBAU101A–July 2005–Revised March 2007 Special Function Registers 29
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

3.1 Introduction

Introduction

Special Function Registers (SFRs) are addressable resources within the MSC121x architecture. They can
be accessed by a program in several ways:

1. Via instructions with an 8-bit direct address between 80h and FFh. For example, CLR 80H clears all
bits in Port 0 to '0'.

2. Bit-addressing instructions with bits in the range 80h and FFh. For example, SETB 0A9H enables
interrupts from Timer 0.

3. By instructions with implicit access. For example, PUSH 13H increments the Stack Pointer at SFR
address 81h before using it as a pointer to save the contents of Register 3 in bank 2.

The 8-bit addresses of all SFRs are shown in Table 3-1 with respect to a base group at addresses of the
form 1xxxx000b. The SFRs in this group are byte- and bit-addressable, and shaded.

Reading an unassigned SFR will give 00h, while any values written will be ignored. All SFRs are read and
written by the processor one byte at a time, even when they are part of a multi-byte value.

Table 3-1. Special Function Register Map (1) (2)

0 1 2 3 4 5 6 7
Base (8) (9) (A) (B) (C) (D) (E) (F)

(F8) EIP SECINT MSINT USEC MSECL MSECH HMSEC WDTCON

F0 B PDCON PASEL ACLK SRST

(E8) EIE HWPC0 HWPC1 HDWVER Reserved Reserved FMCON FTCON

E0 ACC SSCON SUMR0 SUMR1 SUMR2 SUMR3 ODAC LVDCON

(D8) EICON ADRESL ADRESM ADRESH ADCON0 ADCON1 ADCON2 ADCON3

D0 PSW OCL OCM OCH GCL GCM GCH ADMUX

(C8) T2CON RCAP2L RCAP2H TL2 TH2

C0 SCON1 SBUF1 EWU SYSCLK (3)

(B8) IP

B0 P3 P2DDRL P2DDRH P3DDRL P3DDRH DACL (3) DACH (3) DACSEL (3)

(A8) IE BPCON BPL BPH P0DDRL P0DDRH P1DDRL P1DDRH

PWMLOW PWMHIA0 P2 PWMCON AIPOL (3) PAI AIE AISTATTONELOW TONEHI

SPICON SPIDATA SPIRCON SPITCON SPISTART(98) SCON0 SBUF0 SPIENDI2CCON (3) I2CDATA (3) I2CGM (3) I2CSTAT (3) I2CSTART (3)

90 P1 EXIF MPAGE CADDR CDATA MCON

(88) TCON TMOD TL0 TL1 TH0 TH1 CKCON MWS

80 P0 SP DPL0 DPH0 DPL1 DPH1 DPS PCON

(1) In general, the low part of multi-byte SFRs (such as the 16-bit pointer comprised of DPL0 and DPH0) reside at adjacent
addresses, but this is not always the case; see TL0 (at 8Ah) and TH0 (at 8Ch).

(2) The least significant part of a 16-bit variable is usually at an even address, but this is not always the case; see P2DDRL (at
B1h) and P2DDRH (at B2h); P3DDRL (at B3h) and P2DDRH (at B4h); DACL (at B5h) and DACH (at B6h).

(3) Refer to the individual product data sheets for information regarding implementation of this function.

Special Function Registers30 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

3.2 Referencing SFRs in Assembly and C Languages

3.3 SFR Types

Referencing SFRs in Assembly and C Languages

When writing programs in assembly language, an SFR can be referenced by its absolute address or by a
symbol associated with its address. In C language, a variable must first be declared, as shown in Example
3-1. For assembly language programs, declarations that associate common symbols with values are
usually grouped in an included file with the name *.inc (or *.h) that is referenced in the source code.
Similarly, for C language, declarations appear in a file with the name *.h.

Example 3-1. Assembly Code and C Code Comparison
Purpose Assembly Code (1) C Code (Compiler-Dependent Directives) (2) (3)

Output the character 'A' to SBUF0 DATA 99H at 0x99 sfr SBUF0;
serial port 0

—MOV 99H,#41H

MOV SBUF0, #41H SBUF0=0x41;

Enable interrupt for Timer 1 IE DATA 0A8H at 0xA8 sfr IE;

ET1 BIT 0ABH at 0xAB sbit ET1;

or or

ET1 BIT IE.3 sbit ET1=IE^3;

SETB ET1 ET1=1;

Set the decimation ratio for decimation DATA 0DEH at 0xDE sfr16 decimation
the ADC to 3E8h

MOV decimation,#0E8H decimation=1000;

MOV decimation+1,#3

(1) Indicating a hexadecimal number in assembly language requires a trailing 'H' and leading '0' if the first character would
otherwise be a letter; for example, 99H or 099H but 0A8H instead of A8H.

(2) In C, a hexadecimal number always starts with 0x; for example, 0x99 and 0xA8.
(3) The keyword sfr16 cannot be used with TH0:TL0 as Timer0 because the addresses are not adjacent. This condition is also true

for TH1:TL1. However, sfr16 is allowed with TH2:TL2 as Timer2 because TH2 and TL2 are adjacent.

The SFRs belong to functional groups that relate to different aspects of the operation of the MSC121x:

• Port input/output with bit manipulation
• Interrupts
• Integrated peripherals (for example, ADC, SPI, USARTs, or Counter/Timers)
• System functions (for example, power-down, clock generators, and breakpoint registers)
• The core processor architecture (for example, Stack Pointer, Accumulator, and Program Status Word)
• Extensions to the architecture (for example, auxiliary data pointer)

SBAU101A–July 2005–Revised March 2007 Special Function Registers 31
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

3.4 SFR Overview
SFR Overview

Table 3-2 lists the SFRs, with addresses and descriptions. Bold SFR names may not be available in all
MSC121x devices. Shaded SFR addresses in the table are bit-addressable.

Table 3-2. SFR Overview
Name Address (Hex) Description

P0 80h Port 0
Controls the byte-wide, bit-programmable input/output called Port 0. Each bit in the SFR
corresponds to a pin on the actual part. Individual bits may be configured as bidirectional, CMOS
output, open drain output, or input via the Data Direction SFRs for Port 0. See P0DDRL at ACh,
and P0DDRH at ADh.
The same device pins may also be used to provide a multiplexed address and data bus for access
to off-chip memory. In this case, bit 1 (EGP0) of HCR1 must be 0 and the program does not
reference P0.

SP 81h Stack Pointer
SP acts as an 8-bit pointer to core RAM. It creates a last-in/first-out data structure that is used by
the instructions PUSH, POP, ACALL, LCALL, RET, RETI, and interrupt calls.
The stack is placed in low memory and grows upwards. SP is pre-incremented and
post-decremented, and therefore points to the most recent entry on the stack.
The default value is 07h, but this value is often increased so that additional register banks may be
accessed.

DPL0 82h Data Pointer 0 Low (least significant byte)
DPH0 83h Data Pointer 0 High (most significant byte)

DPL0 and DPH0 are read and written independently (except for the instruction MOV DPTR,
#data16), but are used together by instructions that reference the 16-bit data pointer called DPTR.
DPTR is used to address code and external data by the MOVC and MOVX instructions,
respectively.
See Data Pointer Select (DPS) at 86h.

DPL1 84h Data Pointer 1 Low (least significant byte)
DPH1 85h Data Pointer 1 High (most significant byte)

DPL1 and DPH1 are read and written independently (except for the instruction MOV
DPTR,#data16) but are used together by instructions that reference the16-bit data pointer called
DPTR.
DPTR is used to address code and external data by the MOVC and MOVX instructions,
respectively.
Data Pointer Select (DPS) at 86h.

DPS 86h Data Pointer Select
The original 8051 architecture has one DPTR but the MSC121x has two. If bit 0 of DPS is low,
DPTR is formed from DPH0:DPL0; otherwise, it is formed by DPH1:DPL1.

PCON 87h Power Control
The core processor may be placed in low-power mode by setting the STOP and IDLE bits of this
SFR. It also contains two general-purpose flags, which are often used to help coordinate power-up
and power-down activities.
There is also a bit called SMOD, which may be used to double the baud rate for serial port 0.This
bit is not to be confused with PDCON at F1h, which is used to turn various subsystems on and off.

TCON 88h Timer Control
Bits within TCON control the response to interrupts from Timer/Counters 0 and 1, and external
inputs INT0 and INT1.
Timer/Counters 0 and 1 may also be halted or allowed to run.

TMOD 89h Timer Mode
Configures the modes of operation for Timer/Counters 0 and 1 (for example, whether clocks are
internal or external, the number of bits and the reload options).
All 8051 Timer/Counters, except for system timers, increment (count up) when they are clocked.

TL0 8Ah Timer 0 Low
TH0 8Ch Timer 0 High

Depending on the mode of operation defined by TMOD at 89h, these SFRs may be considered as
independent 8-bit entities, or together as a 13- or 16-bit register.
NOTE: These SFRs do not have adjacent addresses and cannot be referenced using the C
compiler keyword sfr16.

TL1 8Bh Timer 1 Low
TH1 8Dh Timer 1 High

Depending on the mode of operation defined by TMOD at 89h, these SFRs may be considered as
independent 8-bit entities, or together as a 13- or 16-bit register.
NOTE: These SFRs do not have adjacent addresses and cannot be referenced using the C
compiler keyword sfr16.

CKCON 8Eh Clock Control
The original 8051 required 12 system clock pulses per instruction cycle, and each timer had a
divide-by-12 prescaler. Since the MSC121x uses only four clocks, three bits within CKCON
selectively allow the prescalers of Timers 0, 1, or 2 to be divide-by-12 (default) or divide-by-4.
Three other bits determine the number of wait states introduced into the timing of read (RD = P3.7)
and write (WR = P3.6) strobes when the MOVX instruction is used to access off-chip memory.

32 Special Function Registers SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

SFR Overview

Table 3-2. SFR Overview (continued)
Name Address (Hex) Description

MWS 8Fh Memory Write Select
When bit 0 is clear (default), any writes to Flash memory via MOVX instructions are written to data
space; otherwise, writes are directed to code space.
Writing to Flash memory may be inhibited via RSL (bit 5) and PML (bit 6) in HCR0.

P1 90h Port 1
Controls the byte-wide, bit-programmable input/output called Port 1. Each bit in the SFR
corresponds to a pin on the actual part. Individual bits may be configured as bidirectional, CMOS
output, open drain output, or input via the Data Direction SFRs for Port 1. See P1DDRL at AEh,
and P1DDRH at AFh.
Each pin may also be used to provide an alternate function and this may require particular values
in P1 and the corresponding data direction bits. For example, P1.4 may be either a
general-purpose I/O bit, an input for interrupt INT2 or an active-low Slave Select (input or output)
for the SPI interface.

EXIF 91h External Interrupt Flag
Four bits represent interrupt flags for interrupts INT2, INT3, INT4 and INT5 that must be cleared
manually by software. INT2 and INT4 are triggered by a rising edge, while INT3 and INT5 respond
to a negative edge. If a bit is set in software, an interrupt will occur if it is enabled.
See Extended Interrupt Enable (EIE) at E8h, and Extended Interrupt Priority (EIP) at FBh

MPAGE 92h Memory Page
During execution of MOVX @Ri,A or MOVX A,@Ri an 8-bit, low-order address may be
presented to external off-chip data memory via pins associated with Port 0.
In the MSC121x, the upper byte of a 16-bit address is placed in MPAGE. This value appears
automatically on pins associated with Port 2 when the MOVX instruction is executed.

CADDR 93h Configuration Address Register
The MSC121x contains 128 bytes of Flash memory that may represent hardware configuration
data, such as the date of manufacture or any other identification data. This memory is distinct from
all other memory addressed by the MSC121x during normal execution of instructions. To access
this configuration data, a 7-bit address must first be written to CADDR. See CDATA at 94h.

CDATA 94h Configuration Data Register
Data in the 128 bytes of Flash hardware configuration memory are accessed via this read-only
register. The 7-bit address must first be written to CADDR at 093h.
NOTE: The instruction reading CDATA must not be in Flash memory itself; otherwise, the data
read will be invalid. Typically, instructions will be executed from the internal boot ROM, SRAM that
is mapped to code space, or off-chip program memory when reading CDATA.

MCON 95h Memory Configuration
Bit 7 is used to identify one of two 16-bit breakpoint registers, while bit 0 determines if the external
on-chip RAM is mapped to both code and data spaces or just to data space.

SCON0 98h Serial Control 0
Contains six bits that determine the format of data on serial port 0 as well as two bits for transmit
and receive interrupt flags.
It is used in conjunction with TCON at 88h, TMOD at 89h and various timer data registers.

SBUF0 99h Serial Buffer 0
When written, SFUF0 provides data for the transmitter associated with serial port 0. When read,
data are provided by the receive register. Serial data are output on pin TxD0 and received on pin
RxD0.

SPICON 9Ah SPI Control
I2CCON 9Ah If the Serial Peripheral Interface (SPI) is enabled (see bit 0 of PDCON at F1h), SPICON configures

SPI communication characteristics such as data rate, clock polarity, and whether the MSC121x is
a master or slave. Writing to SPICON resets the counters and pointers used by the SPI interface in
FIFO mode.

I2C Control
If the I2C interface is enabled (see bit 5 of PDCON at F1h), I2CCON configures I2C communication
characteristics, such as START, STOP, ACK, clock stretching, and whether the MSC121x is a
master or slave. Writing to I2CCON does not reset the I2C interface.

SPIDATA 9Bh SPI Data
I2CDATA 9Bh If the SPI is enabled (see bit 0 of PDCON at F1h), data written to SPIDATA cause it to be

transmitted via the SPI interface, while received data are obtained by reading SPIDATA.

I2C DATA
If the I2C Interface is enabled (see bit 5 of PDCON at F1h), data written to I2CDATA cause it to be
transmitted via the I2C interface, while received data are obtained by reading I2CDATA.

SPIRCON 9Ch SPI Receive Control
I2CGM 9Ch If the SPI is enabled (see bit 0 of PDCON at F1h), SPIRCON defines and monitors the behaviour

of the first-in/first-out SPI receive buffer.

I2C GM Register
If the I2C interface is enabled (see bit 5 of PDCON at F1h), I2CGM determines if a slave
MSC1211/13 should respond to a General Call address, or if a master shares a bus with other
masters.

SBAU101A–July 2005–Revised March 2007 Special Function Registers 33
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

SFR Overview

Table 3-2. SFR Overview (continued)
Name Address (Hex) Description

SPITCON 9Dh SPI Transmit Control
I2CSTAT 9Dh If the SPI is enabled (see bit 0 of PDCON at F1h), SPITCON defines and monitors the behavior of

the SPI transmit buffer and other transmitter features.

I2C Status
If the I2C Interface is enabled (see bit 5 of PDCON at F1h), I2CSTAT determines the master clock
frequency and also the status of the I2C hardware.

SPISTART 9Eh SPI Buffer Start Address
I2CSTART 9Eh If the SPI is configured to use a circular first-in/first-out buffer, SPISTART specifies the start

address in the range 80h to FFh (that is, indirect core SRAM).

I2C Start
If the I2C interface is enabled (see bit 5 PDCONat F1h), writing to I2CSTART will reset the I2C
peripheral to its intitial state.

SPIEND 9Fh SPI Buffer End Address
If the SPI is configured to use a circular first-in/first-out buffer, SPIEND specifies the end address
in the range 80h to FFh (that is, indirect core SRAM).
SPISTART must be less than SPIEND and together define a buffer from SPISTART to SPIEND,
inclusive.

P2 A0h Port 2
Controls the byte-wide, bit-programmable input/output called Port 2. Each bit in the SFR
corresponds to a pin on the actual part. Individual bits may be configured as bidirectional, CMOS
output, open drain output, or input via the Data Direction SFRs for Port 2. See P2DDRL (at B1h)
and P0DDRH (at B2h).
The same device pins may also be used to provide the high-order address for access to off-chip
memory. In this case, EGP23 (bit 1) of HCR1 must be 0, and the program should not reference
P2.

PWMCON A1h PWM Control
Configures the pulse-width-modulated signal generator. The PWM subsystem is enabled by bit 4
of PDCON at F1h.

PWMLOW A2h PWM Low (least significant)
TONELOW A2h Tone Low
PWMHI A3h PWM High (most significant)
TONEHI A3h Tone High

PWMHI:PWMLOW or TONEHI:TONELOW represents a 16-bit value for a dedicated counter that is
used by the PWM subsystem.

AIPOL A4h Auxiliary Interrupt Poll
Configures the read operation for AIE and AIPOL (AIE register content or interrupt before
masking).

PAI A5h Pending Auxiliary Interrupt
Provides a 4-bit number that corresponds with the hardware priority of the highest pending
auxiliary interrupt. All auxiliary interrupts transfer control to location 0033h.

AIE A6h Auxiliary Interrupt Enable
Bits written determine if a particular auxiliary interrupt is enabled (not masked). In this group are
interrupts from the Seconds timer, ADC Summation, ADC, Milliseconds time, SPI Transmit, SPI
Receive/I2C Status, Analog Low-Voltage Detect, and Digital Low Voltage Detect.
Bits read indicate the status of each auxiliary interrupt before masking (refer to AIPOL at A4h).
EIA, bit 5, of EICON at D8h is a common enable for all auxiliary interrupts.
See AISTAT at A7h.

AISTAT A7h Auxiliary Interrupt Status
When read, AISTAT indicates the status of each auxiliary interrupt after masking. A '1' indicates
that an interrupt is pending, while a '0' indicates there is either no interrupt or that it is masked.
See AIE at A6h.

IE A8h Interrupt Enable
Bits written determine if a particular interrupt is enabled (not masked). In this group are enables for
Serial port 1, Timer 2, Serial port 0, Timer 1, external INT1, Timer 0, and external INT0.
Bit 7 is a Global Enable for this group of interrupts.
Bits read indicate the status of each enable bit (that is, returns what was previously written).

BPCON A9h Breakpoint Control
Three bits specify the breakpoint conditions. There is a status flag, a bit to select either external
data memory or program memory, and another bit to enable an interrupt.

BPL AAh Breakpoint Address Low (least significant byte)
BPH ABh Breakpoint Address High (most significant byte)

BLH:BPL represents the address of 16-bit breakpoint. When this 16-bit address is accessed from
either data or code space, as determined by BPCON at A9h, an interrupt may occur.
These SFRs are used to assist in real-time debugging.

34 Special Function Registers SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

SFR Overview

Table 3-2. SFR Overview (continued)
Name Address (Hex) Description

P0DDRL ACh Port 0 Data Direction Low (configures bits 3, 2, 1, and 0 in Port 0)
P0DDRH ADh Port 0 Data Direction High (configures bits 7, 6, 5, and 4 in Port 0)

Adjacent bits in P0DDRL and P0DDRH control the type of bit presented to device pins by Port 0.
Standard 8051 that is bidirectional with weak pull-up is 00, CMOS output is 01, Open-drain output
is 10 and input only is 11.
If EGP0 (bit 1) of HCR1 is 0, or pin EA is 0 when the RST pin is released, P0 is either a CMOS
input or output, and P0DDRL and P0DDRH have no effect.

P1DDRL AEh Port 1 Data Direction Low (configures bits 3, 2, 1, and 0 in Port 1)
P1DDRH AFh Port 1 Data Direction High (configures bits 7, 6, 5, and 4 in Port 1)

Adjacent bits in P1DDRL and P1DDRH control the type of bit presented to device pins by Port 1.
Standard 8051 that is bidirectional with weak pull-up is 00, CMOS output is 01, Open-drain output
is 10 and input only is 11.

P3 B0h Port 3
Controls the byte-wide, bit-programmable input/output called Port 3. Each bit in the SFR
corresponds to a pin on the actual part. Individual bits may be configured as bidirectional, CMOS
output, open-drain output, or input via the Data Direction SFRs for Port 3 (see P3DDRL, at B3h
and P1DDRH, at B4h).
Each pin can also be used to provide an alternate function and this may require particular values in
P3 and the corresponding data direction bits. For example, P3.0 may be either a general-purpose
I/O bit, or an input for serial port 0.
If EGP23 (bit 0) or EGP0 (bit 1) of HCR1 are '0', or EA is '0' when the RST pin is released, P3.6 is
an active-low write strobe, and P3.7 an active-low read strobe. These bits are used in conjunction
with ALE and PSEN to coordinate access to off-chip memory.

P2DDRL B1h Port 2 Data Direction Low (configures bits 3, 2, 1, and 0 in Port 2)
P2DDRH B2h Port 2 Data Direction High (configures bits 7, 6, 5, and 4 in Port 2)

Adjacent bits in P2DDRL and P2DDRH control the type of bit presented to device pins by Port 2.
Standard 8051 that is bidirectional with weak pull-up is 00, CMOS output is 01, Open-drain output
is 10 and input only is 11.
If EGP23 (bit 0) of HCR1 is 0, or pin EA is 0 when the RST pin is released, P2 is either a CMOS
input or output, and P2DDRL and P2DDRH have no effect.

P3DDRL B3h Port 3 Data Direction Low (configures bits 3, 2, 1, and 0 in Port 3)
P3DDRH B4h Port 3 Data Direction High (configures bits 7, 6, 5, and 4 in Port 3)

Adjacent bits in P3DDRL and P3DDRH control the type of bit presented to device pins by Port 3.
Standard 8051 that is bidirectional with weak pull-up is 00, CMOS output is 01, Open-drain output
is 10 and input only is 11.
If EGP23 (bit 0) or EGP0 (bit 1) of HCR1 are 0, or EA is 0 when the RST pin is released, P3.6 is
an active-low write strobe, and P3.7 an active-low read strobe. They are CMOS outputs and
P3DDRH bits 4 to 7 have no effect.

DACL B5h Digital-to-Analog Converter Low (least significant byte)
DACH B6h Digital-to-Analog Converter High (most significant byte)

DACH:DACL represents 16-bit data values for the four DACs present in the MSC1211. These
SFRs are redirected to registers associated with each individual DAC using bits within DACSEL at
B7h. Apart from four 16-bit data registers, five different control registers are accessed via DACL,
DACH in conjunction with DACSEL.

DACSEL B7h Digital-to-Analog Converter Select
Writes to DACH and DACL are redirected to other data and control registers according to the least
significant three bits of DACSEL. This indirection increases the number of instructions needed to
set up all the DACs, but has the benefit that fewer SFR addresses are needed overall.

IP B8h Interrupt Priority
Bits within IP correspond in position with those enables in IE at A8h. Each bit determines if the
corresponding interrupt has a low or high priority, using 0 or 1 respectively.

SCON1 C0h Serial Control 1
Contains six bits that determine the format of data on serial port 1, as well as two bits for transmit
and receive interrupt flags.
It is used in conjunction with TCON at 88h, TMOD at 89h and various timer data registers.

SBUF1 C1h Serial Buffer 1
When written, SBUF1 provides data for the transmitter associated with serial port 1. When read,
data are provided by the receive register. Serial data are output on pin TxD1 and received on pin
RxD1.

EWU C6h Enable Wake-up
When the processor has been placed in the IDLE condition by writing a '1' to bit 0 of PCON at 87h,
it may be returned to normal operation by an interrupt from either the Watchdog timer, INT1 or
INT0. Bits 2, 1, and 0 correspond, in order, with these interrupt sources and act as selective
enables when set.
An auxiliary interrupt can also restore normal operation; this configuration is enabled with EAI, bit
5, of EICON at D8h.

SBAU101A–July 2005–Revised March 2007 Special Function Registers 35
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

SFR Overview

Table 3-2. SFR Overview (continued)
Name Address (Hex) Description

SYSCLK C7h System Clock Divider
By default, the crystal oscillator is used as the system clock (that is, fCLK = fOSC).
SYSCLK allows fCLK to be fOSC divided by 1, 2, 4, 8, 16, 32, 1024, 2048, or 4096 and for the
change in the divider to be immediate or synchronized with the milliseconds interrupt.
The speed of the processor and all other timers that use fCLK will be affected.
When fCLK is decreased, the power consumption is reduced.

T2CON C8h Timer Control 2
Timer/Counter 2 is not present in the 8051. It was introduced in the 8052, and therefore, the
MSC121x. It has more 16-bit modes of operation than either Timer/Counter 0 or 1. In particular, it
offers more resolution when acting as a baud rate generator.

RCAP2L CAh Timer 2 Capture Low (least significant byte)
RCAP2H CBh Timer 2 Capture High (most significant byte)

RCAP2H:RCAP2L form a 16-bit value that is either the value of Timer 2 when in capture mode or
the reload value when in auto-reload mode.
The function of these SFRs depends on the configuration given in T2CON at C8h.

TL2 CCh Timer 2 Low (least significant byte)
TH2 CDh Timer 2 High (most significant byte)

TH2:TL2 represents the 16-bit value of Timer/Counter 2.
The clock source and controls for Timer/Counter 2 are determined by T2CON at C8h.

PSW D0h Program Status Word
The processor Program Status Word is accessed via PSW. Bits 7 to 0 represent (in order) Carry,
Auxiliary Carry, User Flag 0, Register Bank Select 1 and 0, Overflow Flag, User Flag 1, and Parity
Flag.
PSW is not saved on the stack automatically at the start of an interrupt service routine (ISR) and it
is common for each ISR to begin with the instruction PUSH PSW.

OCL D1h ADC Offset Calibration Low (least significant byte)
OCM D2h ADC Offset Calibration Middle
OCH D3h ADC Offset Calibration High (most significant byte)

OCH:OCM:OCL represents a 24-bit value that compensates for the offsets within the ADC or
system. Usually, values are provided by the ADC subsystem when the ADC is instructed to
perform a calibration cycle; for some applications, the user may provide other values.

GCL D4h ADC Gain Low (least significant byte)
GCM D5h ADC Gain Middle
GCH D6h ADC Gain High (most significant byte)

GCH:GCM:GCL represents a 24-bit value that sets the gain of the ADC or system. Usually values
are provided by the ADC subsystem when the ADC is instructed to perform a calibration cycle; for
some applications, the user may provide other values.

ADMUX D7h ADC Multiplexer Register
Selects the sources for the positive and negative inputs of the differential delta-sigma ADC. This
includes nine pins on the MSC121x and an internal temperature-related source.

EICON D8h Enable Interrupt Control
EICON contains the enable for the auxiliary interrupts (EAI), the auxiliary interrupt flag (AI), the
watchdog timer interrupt flag (WDTI) and a mode bit for serial port 1 (SMOD1), which doubles the
baud rate when set.

ADRESL D9h ADC Conversion Results Low (least significant byte)
ADRESM DAh ADC Conversion Results Medium
ADRESH DBh ADC Conversion Results Low High (most significant byte)

ADRESH:ADRESM:ADRESL represents the 24-bit, read-only value of the latest ADC conversion.
These registers are not updated on an ADC conversion unless ADRESL has been read from the
previous result.

ADCON0 DCh ADC Control 0
Sets the Burnout Detect, Internal/External voltage reference, 1.25V or 2.5V internal reference,
VREF clock source, analog buffer, and programmable gain amplifier for the delta-sigma ADC.

ADCON1 DDh ADC Control 1
Sets the polarity, filter type and conversion mode for the delta-sigma ADC. It also indicates if an
overflow or underflow of the summation register has occurred.

ADCON2 DEh ADC Control 2
ADCON3 DFh ADC Control 3

ADCON3: ADCON2 represent an 11-bit value for the Decimation Ratio of the delta-sigma ADC.
The ADC conversion rate is (ACLK+1)/64/Decimation Ratio.
See ACLK at F6h.

ACC E0h Accumulator
The Accumulator is the implicit destination of many operations. Instructions that reference the
Accumulator implicitly are always shorter and faster than similar instructions that reference it as an
SFR. However, as an SFR it may be used to advantage by instructions such as: JB ACC.2,label,
or PUSH ACC.

36 Special Function Registers SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

SFR Overview

Table 3-2. SFR Overview (continued)
Name Address (Hex) Description

SSCON E1h Summation and Shift Control
The result of an ADC conversion is placed in ADRES (D9h to DBh), but may be automatically
added to a 32-bit sum represented by SUMR (E2h to E5h). The operation of the summation
register is controlled by SSCON, which includes the number of times ADC conversions are added
to the sum, and the number of bits that the sum is shifted to the right.
There is also a mode where 32-bit values provided by the CPU may be added to, or subtracted
from (MSC1211/12/13/14 only), the summation register when SUMR0 is written.
If 00h is written to SSCON, the 32-bit summation register is cleared.

SUMR0 E2h Summation Register 0 (least significant byte)
SUMR1 E3h Summation Register 1
SUMR2 E4h Summation Register 2
SUMR3 E5h Summation Register 3 (most significant byte)

SUMR3:SUMR2:SUMR1:SUMR0 represent the 32-bit sum (and optional shift) of a number of ADC
conversions.
See SSCON at E1h.

ODAC E6h (ADC) Offset DAC Register
An analog voltage of up to ± half the range of the ADC is set with an 8-bit DAC and used to offset
the input voltage to the ADC.
The ODAC register cannot be used to to extend the analog inputs beyond their specified input
range.

LVDCON E7h Low-Voltage Detection Control
The voltages present on the analog and digital supply pins may be enabled to generate interrupts
if they fall below preset limits. For either analog or digital, the limits are 2.7V, 3.0V, 3.3V, 4.0V,
4.2V, 4.5V, and 4.7V.
The analog low-voltage interrupt may be generated if AIN7 falls below 1.2V, while the digital
low-voltage interrupt may be generated if AIN6 falls below 1.2V. This function provides a means of
detecting an impending power-fail condition while the supply pins themselves are still valid. It can
also be used to measure other voltages.

EIE E8h Extended Interrupt Enable
Provides selective enables for the watchdog timer, INT5, INT4, INT3, and INT2.
See WDTI, bit 3, in EICON at D8h.
See External Interrupt Flags, EXIF at 91h.

HWPC0 E9h Hardware Product Code 0
Refer to the respective data sheet for the code that indicates the type of device.

HWPC1 EAh Hardware Product Code 1
Refer to the respective data sheet for the code that indicates the type of device.

HDWVER EBh Hardware Version Number
Refer to the respective data sheet for the code that indicates the type of device.

FMCON EEh Flash Memory Control
Three bits to provide control of the Flash memory; specifically, page mode erase, frequency control
mode, and busy.

FTCON EFh Flash Memory Timing Control
The upper four bits (FER) determine the Flash erase time while the lower four bits (FWR)
determine the Flash write time, according to the following equations:
Erase time = (1 + FER) × (MSECH:MSECL + 1) × tCLK
5 ms (11ms) for commercial (industrial) temperatures
Write time = 5 × (1 + FWR) × (USEC + 1) × tCLK
The write time should be between 30µs and 40µs.
See MSECH and MSECL at FDh and FCh, respectively, and USEC at FBh.

B F0h B Register
The B register is used only by the instructions MUL AB and DIV AB.
If these instructions are not used, B is available to store a byte-wide variable or eight single-bit
variables.
Caution is needed when programming in C because run-time libraries may use these instructions,
and thus corrupt the value in B.

PDCON F1h Power-Down Control
Active high bits within PDCON provide selective power-down of subsystems DAC, I2C, PWM,
ADC, Watchdog, System Timer, and SPI.

PASEL F2h PSEN/ALE Select
When off-chip memory is not used, control signals PSEN and ALE are not needed.
Three bits in PASEL allow the pin associated with PSEN to be either the usual PSEN signal,
system clock, ADC modulator clock, low or high.
Two other bits allow the pin associated with ALE to be either the usual ALE signal, low or high.
NOTE: When these two lines are used as output lines, they should be lightly loaded to avoid
entering serial or parallel flash programming modes on reset.

ACLK F6h Analog Clock
The frequency of the delta-sigma ADC modulator is given by:
fCLK/(ACLK + 1) × 64
where fCLK is the frequency of the system clock.

SBAU101A–July 2005–Revised March 2007 Special Function Registers 37
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

SFR Overview

Table 3-2. SFR Overview (continued)
Name Address (Hex) Description

SRST F7h System Reset Register
If bit 0 is set high then low, the MSC121x will be reset. This sequence causes exactly the same
behavior as if a system reset had been initiated by the RST pin. ALE, PSEN, and EA will be
sampled after the power-up delay.

EIP F8h Extended Interrupt Priority
Five bits determine the priority for interrupts: Watchdog, INT5, INT4, INT3, and INT2.
See Extended Interrupt Flags, EXIF, at 91h and Extended Interrupt Enable, EIE, at E8h.

SECINT F9h Seconds Timer Interrupt
The seconds interrupt, if enabled, occurs at an interval given by:
(SECINT + 1) × (HMSEC + 1) × (MSEC + 1) × tCLK
If bit 7 is set when SECINT is written, the SECINT value will be loaded into the counter
immediately; otherwise, it will be delayed until the current count expires.
When the associated down-counter reaches zero, it is reloaded with the value in SECINT.
See Bit 7, ESEC, of AIE at A6h.

MSINT FAh Milliseconds Interrupt
The milliseconds interrupt, if enabled, occurs with an interval given by:
(MSINT + 1) × (MSEC + 1) × tCLK
If bit 7 is set when MSINT is written, the MSINT value will be loaded into the counter immediately;
otherwise, it will be delayed until the current count expires.
When the associated down-counter reaches zero, it is reloaded with the value in MSINT.
See Bit 4, EMSEC, of AIE at A6h.

USEC FBh Microsecond Register
The internal microseconds clock has a period given by:
(USEC + 1) × tCLK = (USEC + 1)/fCLK
When the associated down-counter reaches zero, it is reloaded with the value in USEC.
See FTCON at EFh.

MSECL FCh Millisecond Low
MSECH FDh Millisecond High

MSECH:MSECL together represent MSEC, which determines the time between millisecond
interrupts given by:
(MSECH × 256 + MSECL + 1) × tCLK
When the associated down-counter reaches zero, it is reloaded with the value in MSECH:MSECL.

HMSEC FEh Hundred Millisecond Clock
The hundred milliseconds counter has a period given by:
(HMSEC + 1) × (MSECH × 256 + MSECL + 1) × tCLK
When the associated down-counter reaches zero, it is reloaded with the value in HMSEC.

WDTCON FFh Watchdog Control
Once enabled, the watchdog timer expires after a delay of:
(WDCNT + 1) y HMSEC to (WDCNT + 2) y HMSEC
Writing a '1', then '0' sequence to bit 7, bit 6, or bit 5 enables, disables, or restarts the watchdog
timer, respectively.
If the associated down-counter reaches zero, a watchdog timeout occurs. By default, this timeout
causes a reset, but EWDR (bit 3) in HCR0 may disable the reset and trigger an interrupt instead.
During normal operation, the counter must be repeatedly restarted before it reaches zero.

38 Special Function Registers SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

Chapter 4
SBAU101A–July 2005–Revised March 2007

Programmer's Model and Instruction Set

This chapter describes the programmer’s model and instruction set for the MSC121x.

Topic ... Page

4.1 Introduction... 40
4.2 Registers .. 41
4.3 Instruction Types and Addressing Modes ... 42
4.4 MSC121x Op-Code Table .. 46
4.5 Example of MSC121x Instructions.. 48

SBAU101A–July 2005–Revised March 2007 Programmer's Model and Instruction Set 39
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

4.1 Introduction

Introduction

The MSC121x incorporates a microcontroller with the same instruction set as the industry-standard 8051;
however, for a given external clock, it executes up to three times more quickly. This increased rate is
because the MSC121x is based on a machine cycle of four clocks rather than the original 12.

Although the most frequently-used instructions are three times faster, the aggregate speed improvement
for programs written in C language is about 2.3 times faster.

If application programs are written in C, the programmer has little control over the compiler's choice of
instructions; however, for efficient, hard real-time operations, assembly-level routines can be achieved that
approach a 3x rate increase over the 8051.

40 Programmer's Model and Instruction Set SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

4.2 Registers

Registers

The MSC121x manipulates data via a single 8-bit accumulator (A), together with eight 8-bit registers (R0
to R7). The result of all arithmetic and logical operations is placed in the accumulator, which can then be
copied to Rn, on-chip memory, or off-chip memory, by various MOV instructions.

To the programmer, the MSC121x may be modelled as shown in Table 4-1.

Table 4-1. 8051 Working Registers
Bit

Name
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSW CY AC F0 RS1 RS0 OV F1 P

B Register B

Rn Register n (where n = 0 to 7)

A Accumulator

DPL Data Pointer Low

DPH Data Pointer High

SP Stack Pointer

DPTR Data Pointer High Data Pointer Low

PC Program Counter

The Data Pointer (DPTR) is composed of two 8-bit SFRs accessed as separate bytes. However, it is used
implicitly by some instructions as a 16-bit pointer to either program or data memory.

The Stack Pointer (SP) is used to support a first-in/first-out data structure within core data memory. When
referenced implicitly as an 8-bit pointer, it is pre-incremented and post-decremented, which means that the
stack grows upwards and SP always points to the most recent entry. The stack can store either data
values or addresses.

The default value for SP is 7, so it starts to grow just above memory associated with address bank 0 at
core data memory locations 00h to 07h. Since address bank 1 occupies locations 08h to 0Fh, care must
be taken to redefine the initial value of SP whenever register bank 1 (or 2 or 3) is to be used. The
selection of the active register bank is determined by bits 4 and 3 of the Program Status Word (PSW). For
example, when RS1 = 1 and RS0 = 1, bank 3 is active and R2 corresponds with core data memory
location 1Ah.

PSW also contains the Carry flag (CY), Auxiliary Carry (AC), and General-purpose flags F1 and F0, as
well as the Overflow flag (OV) and the Parity flag (P). Some instructions change the flags, but the majority
do not.

Register B is sometimes useful to store a byte-wide variable or 8 bit-wide variables, especially for
applications written entirely in assembly language. Care is needed because this register is used by MUL
and DIV instructions that may be called by C run-time libraries.

The 16-bit program counter (PC) is incremented as sequential instructions are executed. For jumps, it is
loaded with a new value; for CALLs and interrupts, it is stored to the stack for recovery during RETurns
and RETI. It always points to a byte in program memory and has a reset value of 0000h.

SBAU101A–July 2005–Revised March 2007 Programmer's Model and Instruction Set 41
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

4.3 Instruction Types and Addressing Modes

Instruction Types and Addressing Modes

MSC121x instruction types are shown in Example 4-1.

For each type of instruction, there may be more than one mode of addressing. For instance, there are four
different modes associated with the ADD instruction, as shown in Example 4-2.

The MOV instruction has the greatest number of combinations of addressing modes, with special variants
such as MOVX and MOVC.

Table 4-3 shows all instructions with their respective mnemonic, description, flags, cycles, clocks, and
op-code. If the exact operation is unclear, the reader is referred to any of the numerous data sheets and
books for the 8051 that are generally available.

Example 4-1. Instruction Types
Type Examples

Simple data movement MOV A,R5 MOV R4,#0A3H MOV P1,A

Data movement MOV A,@R1 MOVX A,@DPTR PUSH PSW

Data processing DEC R3 ADDC A,10H ORL P2,#5

Bit operations CLR C SETB 084H ANL C,/F0

Program Flow LCALL 16-bit address SJMP relative address CJNE A,#4, address

Miscellaneous DJNZ R4, relative address MUL DA

Example 4-2. Instruction Addressing Modes
Assembly Level Hex Operation
Instruction Addressing Mode Action Code(s)

Immediate The code byte at PC + 1 (that is, C3h) is added to A. 24 C3hADD A,#0C3H

Indirect The contents of Register 1 provide the 8-bit address of the data in core 27hADD A,@R1
memory that is added to A.

Direct The code byte at PC + 1 provides the 8-bit address of the data in core 25 80hADD A,P0
memory that is added to A. In this case, SFR P0 at 80h.

Register The contents of Register 4 is added to the accumulator. The core 2ChADD A,R4
memory location corresponding to register 4 is either 04h, 0Ch, 14h, or
1Ch depending on the register bank select bits in PSW.

Table 4-2. Symbol Descriptions for Instruction List of Table 4-3
Symbol Description

A Accumulator

Rn Register R0-R7 of the current register bank

direct Internal core address. RAM (00h-7Fh) or SFR (80h-FFh).

@Ri R0 or R1 acts as an 8-bit pointer to internal core RAM (00h-FFh), except that MOVX references external data space

rel Two's complement offset byte (–128 to +127) relative to the start address of the next sequential instruction

bit Direct bit address. Bits 00h-7Fh map to RAM while 80h-FFh map to SFRs

#data 8-bit immediate constant

#data16 16-bit immediate constant

addr16 16-bit destination address anywhere within program memory address space

addr11 11-bit destination address anywhere within the current 2K page of program memory

42 Programmer's Model and Instruction Set SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

Instruction Types and Addressing Modes

Table 4-3. Instruction List
Flags (1)

MSC121x MSC121x 8051 Code
Mnemonic Description CY AC OV Bytes Cycles Clocks Clocks (Hex)

Arithmetic

ADD A,Rn Add register to A X X X 1 1 4 12 28-2F

ADD A,direct Add direct byte to A X X X 2 2 8 12 25

ADD A,@Ri Add indirect data memory to A X X X 1 1 4 12 26-27

ADD A,#data Add immediate data to A X X X 2 2 8 12 24

ADDC A,Rn Add register to A with carry X X X 1 1 4 12 38-3F

ADDC A,direct Add direct byte to A with carry X X X 2 2 8 12 35

ADDC A,@Ri Add indirect data memory to A with carry X X X 1 1 4 12 36-37

ADDC A,#data Add immediate data to A with carry X X X 2 2 8 12 34

SUBB A,Rn Subtract register from A with borrow X X X 1 1 4 12 98-9F

SUBB A,direct Subtract direct byte from A with borrow X X X 2 2 8 12 95

SUBB A,@Ri Subtract indirect data memory from A X X X 1 1 4 12 96-97
with borrow

SUBB A,#data Subtract immediate data from A with X X X 2 2 8 12 94
borrow

INC A Increment A - - - 1 1 4 12 04

INC Rn Increment register - - - 1 1 4 12 08-0F

INC direct Increment direct byte - - - 2 2 8 12 05

INC @Ri Increment indirect data memory - - - 1 1 4 12 06-07

DEC A Decrement A - - - 1 1 4 12 14

DEC Rn Decrement register - - - 1 1 4 12 18-1F

DEC direct Decrement direct byte - - - 2 2 8 12 15

DEC @Ri Decrement indirect data memory - - - 1 1 4 12 16-17

INC DPTR Increment 16-bit data pointer - - - 1 3 12 24 A3

MUL AB Multiply A by B 0 - X 1 5 20 48 A4

DIV AB Divide A by B 0 - X 1 5 20 48 84

DA A Decimal adjust A to give 2 BCD nibbles. X - - 1 1 4 12 D4
Used after ADD or ADDC.

Logical

ANL A,Rn AND register to A - - - 1 1 4 12 58-5F

ANL A,direct AND direct byte to A - - - 2 2 8 12 55

ANL A,@Ri AND indirect data memory to A - - - 1 1 4 12 56-57

ANL A,#data AND immediate data to A - - - 2 2 8 12 54

ANL direct,A AND A to direct byte - - - 2 2 8 12 52

ANL direct,#data AND immediate data to direct byte - - - 3 3 12 24 53

ORL A,Rn OR register to A - - - 1 1 4 12 48-4F

ORL A,direct OR direct byte to A - - - 2 2 8 12 45

ORL A,@Ri OR indirect data memory to A - - - 1 1 4 12 46-47

ORL A,#data OR immediate data to A - - - 2 2 8 12 44

ORL direct,A OR A to direct byte - - - 2 2 8 12 42

ORL direct,#data OR immediate data to direct byte - - - 3 3 12 24 43

XRL A,Rn Exclusive OR register to A - - - 1 1 4 12 68-6F

XRL A,direct Exclusive OR direct byte to A - - - 2 2 8 12 65

XRL A,@Ri Exclusive OR indirect data memory to A - - - 1 1 4 12 66-67

XRL A,#data Exclusive OR immediate data to A - - - 2 2 8 12 64

XRL direct,A Exclusive OR A to direct byte - - - 2 2 8 12 62

XRL direct,#data Exclusive OR immediate data to direct - - - 3 3 12 24 63
byte

CLR A Clear A - - - 1 1 4 12 E4

CPL A Complement A - - - 1 1 4 12 F4

(1) Flags CY, AC, and OV may also be changed by explicit writes to corresponding bits in the PSW.

SBAU101A–July 2005–Revised March 2007 Programmer's Model and Instruction Set 43
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

Instruction Types and Addressing Modes

Table 4-3. Instruction List (continued)
Flags (1)

MSC121x MSC121x 8051 Code
Mnemonic Description CY AC OV Bytes Cycles Clocks Clocks (Hex)

RL A Rotate A left - - - 1 1 4 12 23

RLC A Rotate A left through carry X - - 1 1 4 12 33

RR A Rotate A right - - - 1 1 4 12 03

RRC A Rotate A right through carry X - - 1 1 4 12 13

SWAP A Swap nibbles of A - - - 1 1 4 12 C4

Data Movement

MOV A,Rn Move register to A - - - 1 1 4 12 E8-EF

MOV A,direct Move direct byte to A - - - 2 2 8 12 E5

MOV A,@Ri Move indirect data memory to A - - - 1 1 4 12 E6-E7

MOV A,#data Move immediate data to A - - - 2 2 8 12 74

MOV Rn,A Move A to register - - - 1 1 4 12 F8-FF

MOV Rn,direct Move direct byte to register - - - 2 2 8 24 A8-AF

MOV Rn,#data Move immediate data to register - - - 2 2 8 12 78-7F

MOV direct,A Move A to direct byte - - - 2 2 8 12 F5

MOV direct,Rn Move register to direct byte - - - 2 2 8 24 88-8F

MOV direct,direct Move direct byte to direct byte - - - 3 3 12 24 85

MOV direct,@Ri Move indirect data memory to direct byte - - - 2 2 12 24 86-87

MOV direct,#data Move immediate data to direct byte - - - 3 3 12 24 75

MOV @Ri,A MOV A to indirect data memory - - - 1 1 4 12 F6-F7

MOV @Ri,direct Move direct byte to indirect data memory - - - 2 2 8 24 A6-A7

MOV @Ri,#data Move immediate data to indirect data - - - 2 2 8 12 76-77
memory

MOV DPTR,#data Move 2 bytes of immediate data to data - - - 3 3 12 24 90
pointer

MOVC A,@A+DPTR Move a byte in code space A (unsigned) - - - 1 3 12 24 93
after DPTR to A

MOVC A,@A+PC Move a byte in code space A (unsigned) - - - 1 3 12 24 83
after from the address of the next
instruction to A

MOVX A,@Ri Move external data (A8) to A - - - 1 2-9 (2) 8 12 E2-E3

MOVX A,@DPTR Move external data (A16) to A - - - 1 2-9 (2) 8 24 E0

MOVX @Ri,A Move A to external data. Upper 8-bit - - - 1 2-9 (2) 8 24 F2-F3
address comes from MPAGE SFR.

MOVX @DPTR,A Move A to external data memory - - - 1 2-9 (2) 8 24 F0

PUSH direct Push direct byte onto stack - - - 2 2 8 24 C0

POP direct Pop direct byte from stack - - - 2 2 8 24 D0

XCH A,Rn Exchange A and register - - - 1 1 4 12 C8-CF

XCH A,direct Exchange A and direct byte - - - 2 2 8 12 C5

XCH A,@Ri Exchange A and indirect data memory - - - 1 1 4 12 C6-C7

XCHD A,@Ri Exchange A and indirect data memory - - - 1 1 4 12 D6-D7
nibble in bits 3-0

Boolean

CLR C Clear carry 0 - - 1 1 4 12 C3

CLR bit Clear direct bit - - - 2 2 8 12 C2

SETB C Set carry 1 - - 1 1 4 12 D3

SETB bit Set direct bit - - - 2 2 8 12 D2

CPL C Complement carry X - - 1 1 4 12 B3

CPL bit Complement direct bit - - - 2 2 8 12 B2

ANL C,bit AND direct bit to carry X - - 2 2 8 24 82

ANL C,/bit AND inverse of direct bit to carry X - - 2 2 8 24 B0

ORL C,bit OR direct bit to carry X - - 2 2 8 24 72

(2) Number of cycles is user-selectable; see SFR CKCON at 8Eh.

44 Programmer's Model and Instruction Set SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

Instruction Types and Addressing Modes

Table 4-3. Instruction List (continued)
Flags (1)

MSC121x MSC121x 8051 Code
Mnemonic Description CY AC OV Bytes Cycles Clocks Clocks (Hex)

ORL C,/bit OR inverse of direct bit to carry X - - 2 2 8 24 A0

MOV C,bit Move direct bit to carry X - - 2 2 8 12 A2

MOV bit,C Move carry to direct bit - - - 2 2 8 24 92

Branching

ACALL addr11 Absolute call to subroutine within current - - - 2 3 12 24 11-F1
page

LCALL addr16 Long call to subroutine; PC becomes - - - 3 4 16 24 12
addr16.

RET Return from subroutine - - - 1 4 16 24 22

RETI Return from interrupt - - - 1 4 16 24 32

AJMP addr11 Absolute unconditional jump within - - - 2 3 12 24 01-E1
current page

LJMP addr16 Long jump; PC becomes addr16. - - - 3 4 16 24 02

SJMP rel Unconditional relative jump - - - 2 3 12 24 80

JC rel Jump relative if carry is 1 - - - 2 3 12 24 40

JNC rel Jump relative if carry is 0 - - - 2 3 12 24 50

JB bit,rel Jump relative if direct bit is 1 - - - 3 4 16 24 20

JNB bit,rel Jump relative if direct bit is 0 - - - 3 4 16 24 30

JBC bit,rel Jump relative if direct bit is 1 and clear - - - 3 4 16 24 10
the bit

JMP @A+DPTR Jump indirect. PC becomes DPTR plus A - - - 1 3 12 24 73

JZ rel Jump relative if accumulator is 00h - - - 2 3 12 24 60

JNZ rel Jump relative if accumulator is not 00h - - - 2 3 12 24 70

CJNE A,direct,rel Compare A with direct data and jump X - - 3 4 16 24 B5
relative if not equal

CJNE A,#data,rel Compare A with immediate data and X - - 3 4 16 24 B4
jump relative if not equal

CJNE Rn,#data,rel Compare register with immediate data x - - 3 4 16 24 B8-BF
and jump relative if not equal

CJNE @Ri,#data,rel Compare indirect with immediate data x - - 3 4 16 24 B6-B7
and jump relative if not equal

DJNZ Rn,rel Decrement register and jump relative if - - - 2 3 12 24 D8-DF
not 0

DJNZ direct,rel Decrement direct byte and jump relative if - - - 3 4 16 24 D5
not 0

Miscellaneous

NOP No operation - - - 1 1 4 12 00

Reserved No operation - - - 1 1 4 12 A5

SBAU101A–July 2005–Revised March 2007 Programmer's Model and Instruction Set 45
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

4.4 MSC121x Op-Code Table
MSC121x Op-Code Table

Table 4-4. MSC121x Op-Codes

Table Cell Contents: op code bytes/cycles Operand Definitions: dir: direct address
addr11: 11-bit address #d8: 8-bit immediate data

instruction addr16: 16-bit address #d16: 16-bit immediate data
bit: addressable bit rel8: 8-bit relative addressoperand(s)

00 1/1 01 2/3 02 3/4 03 1/1 04 1/1 05 2/2 06 1/1 07 1/1

NOP AJMP LJMP RR INC INCdir INC INC
addr11 addr16 A A @R0 @R1

10 3/4 11 2/3 12 3/4 13 1/1 14 1/1 15 2/2 16 1/1 17 1/1

JBC ACALL LCALL RRC DEC DEC DEC DEC
bit,rel8 addr11 addr16 A A dir @R0 @R1

20 3/4 21 2/3 22 1/4 23 1/1 24 2/2 25 2/2 26 1/1 27 1/1

JB AJMP RET RL ADD ADD ADD ADD
bit,rel8 addr11 A A,#d8 A,dir A.@R0 A,@R1

30 3/4 31 2/3 32 1/4 33 1/1 34 2/2 35 2/2 36 1/1 37 1/1

JNB ACALL RETI RLC ADDC ADDC ADDC ADDC
bit,rel8 addr11 A A,#d8 A,dir A.@R0 A,@R1

40 2/3 41 2/3 42 2/2 43 3/3 44 2/2 45 2/2 46 1/1 47 1/1

JC AJMP ORL ORL ORL ORL ORL ORL
rel8 addr11 dir,A dir,#d8 A,#d8 A,dir A.@R0 A,@R1

50 2/3 51 2/3 52 2/2 53 3/3 54 2/2 55 2/2 56 1/1 57 1/1

JNC ACALL ANL ANL ANL ANL ANL ANL
rel8 addr11 dir,A dir,#d8 A,#d8 A,dir A.@R0 A,@R1

60 2/3 61 2/3 62 2/2 63 3/3 64 2/2 65 2/2 66 1/1 67 1/1

JZ AJMP XRL XRL XRL XRL XRL XRL

rel8 addr11 dir,A dir,#d8 A,#d8 A,dir A,@R0 A,@R1

70 2/3 71 2/3 72 2/2 73 1/3 74 2/2 75 3/3 76 2/2 77 2/2

JNZ ACALL ORL JMP MOV MOV MOV MOV

rel8 addr11 C,bit @A+DPTR A,#d8 dir,#d8 @R0,#d8 @R1,#d8

80 2/3 81 2/3 82 2/2 83 1/3 84 1/5 85 3/3 86 2/2 87 2/2

SJMP AJMP ANL MOVC DIV MOV MOV MOV

rel8 addr11 C,bit A,@A+PC AB dir,dir dir,@R0 dir,@R1

90 3/3 91 2/3 92 2/2 93 1/3 94 2/2 95 2/2 96 1/1 97 1/1

MOV ACALL MOV MOVC SUBB SUBB SUBB SUBB

DPTR,#d16 addr11 bit,C A,@A+DPTR A,#d8 A,dir A,@R0 A,@R1

A0 2/2 A1 2/3 A2 2/2 A3 1/3 A4 1/5 A5 1/1 A6 2/2 A7 2/2

ORL AJMP MOV INC NUL NOP MOV MOV

C,/bit addr11 C,bit DPTR AB @R0,dir @R1,dir

B0 2/2 B1 2/3 B2 2/2 B3 1/1 B4 3/4 B5 3/4 B6 3/4 B7 3/4

ANL ACALL CPL CPL CJNE CJNE CJNE CJNE

C,/bit addr11 bit C A,#d8,rel8 A,dir,rel8 @R0,#d8,rel8 @R1,#d8,rel8

C0 2/2 C1 2/3 C2 2/2 C3 1/1 C4 1/1 C5 2/2 C6 1/1 C7 1/1

PUSH AJMP CLR CLR SWAP XCH XCH XCH

dir addr11 bit C A A,dir A,@R0 A,@R1

D0 2/2 D1 2/3 D2 2/2 D3 1/1 D4 1/1 D5 3/4 D6 1/1 D7 1/1

POP ACALL SETB SETB DA DJNZ XCHD XCHD

dir addr11 bit C A dir,rel8 A,@R0 A,@R1

E0 1/2-9 (1) E1 2/3 E2 1/2-9 (1) E3 1/2-9 (1) E4 1/1 E5 2/2 E6 1/1 E7 1/1

MOVX AJMP MOVX MOVX CLR MOV MOV MOV

A,@DPTR addr11 A,@R0 A,@R1 A A,diR A,@R0 A,@R1

F0 1/2-9 (1) F1 2/3 F2 1/2-9 (1) F3 1/2-9 (1) F4 1/1 F5 2/2 F6 1/1 F7 1/1

MOVX ACALL MOVX MOVX CPL MOV MOV MOV

@DPTR,A addr11 @R0,A @R1,A A dir,A @R0,A @R1,A

(1) Number of cycles is user-selectable; see SFR CKCON at 8Eh.

46 Programmer's Model and Instruction Set SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

MSC121x Op-Code Table

Table 4-4. MSC121x Op-Codes (continued)

Table Cell Contents: op code bytes/cycles Operand Definitions: dir: direct address
addr11: 11-bit address #d8: 8-bit immediate data

instruction addr16: 16-bit address #d16: 16-bit immediate data
bit: addressable bit rel8: 8-bit relative addressoperand(s)

08 1/1 09 1/1 0A 1/1 0B 1/1 0C 1/1 0D 1/1 0E 1/1 0F 1/1

INC INC INC INC INC INC INC INC

R0 R1 R2 R3 R4 R5 R6 R7

18 1/1 19 1/1 1A 1/1 1B 1/1 1C 1/1 1D 1/1 1E 1/1 1F 1/1

DEC DEC DEC DEC DEC DEC DEC DEC

R0 R1 R2 R3 R4 R5 R6 R7

28 1/1 29 1/1 2A 1/1 2B 1/1 2C 1/1 2D 1/1 2E 1/1 2F 1/1

ADD ADD ADD ADD ADD ADD ADD ADD

A,R0 A,R1 A,R2 A,R3 A,R4 A,R5 A,R6 A,R7

38 1/1 39 1/1 3A 1/1 3B 1/1 3C 1/1 3D 1/1 3E 1/1 3F 1/1

ADDC ADDC ADDC ADDC ADDC ADDC ADDC ADDC

A,R0 A,R1 A,R2 A,R3 A,R4 A,R5 A,R6 A,R7

48 1/1 49 1/1 4A 1/1 4B 1/1 4C 1/1 4D 1/1 4E 1/1 4F 1/1

ORL ORL ORL ORL ORL ORL ORL ORL

A,R0 A,R1 A,R2 A,R3 A,R4 A,R5 A,R6 A,R7

58 1/1 59 1/1 5A 1/1 5B 1/1 5C 1/1 5D 1/1 5E 1/1 5F 1/1

ANL ANL ANL ANL ANL ANL ANL ANL

A,R0 A,R1 A,R2 A,R3 A,R4 A,R5 A,R6 A,R7

68 1/1 69 1/1 6A 1/1 6B 1/1 6C 1/1 6D 1/1 6E 1/1 6F 1/1

XRL XRL XRL XRL XRL XRL XRL XRL

A,R0 A,R1 A,R2 A,R3 A,R4 A,R5 A,R6 A,R7

78 2/2 79 2/2 7A 2/2 7B 2/2 7C 2/2 7D 2/2 7E 2/2 7F 2/2

MOV MOV MOV MOV MOV MOV MOV MOV

R0,#d8 R1,#d8 R2,#d8 R3,#d8 R4,#d8 R5,#d8 R6,#d8 R7,#d8

88 2/2 89 2/2 8A 2/2 8B 2/2 8C 2/2 8D 2/2 8E 2/2 8F 2/2

MOV MOV MOV MOV MOV MOV MOV MOV

dir,R0 dir,R1 dir,R2 dir,R3 dir,R4 dir,R5 dir,R6 dir,R7

98 1/1 99 1/1 9A 1/1 9B 1/1 9C 1/1 9D 1/1 9E 1/1 9F 1/1

SUBB SUBB SUBB SUBB SUBB SUBB SUBB SUBB

A,R0 A,R1 A,R2 A,R3 A,R4 A,R5 A,R6 A,R7

A8 2/2 A9 2/2 AA 2/2 AB 2/2 AC 2/2 AD 2/2 AE 2/2 AF 2/2

MOV MOV MOV MOV MOV MOV MOV MOV

R0,dir R1,dir R2,dir R3,dir R4,dir R5,dir R6,dir R7,dir

B8 3/4 B9 3/4 BA 3/4 BB 3/4 BC 3/4 BD 3/4 BE 3/4 BF 3/4

CJNE CJNE CJNE CJNE CJNE CJNE CJNE CJNE

R0,#d8,rel8 R1,#d8,rel8 R2,#d8,rel8 R3,#d8,rel8 R4,#d8,rel8 R5,#d8,rel8 R6,#d8,rel8 R7,#d8,rel8

C8 1/1 C9 1/1 CA 1/1 CB 1/1 CC 1/1 CD 1/1 CE 1/1 CF 1/1

XCH XCH XCH XCH XCH XCH XCH XCH

A,R0 A,R1 A,R2 A,R3 A,R4 A,R5 A,R6 A,R7

D8 2/3 D9 2/3 DA 2/3 DB 2/3 DC 2/3 DD 2/3 DE 2/3 DF 2/3

DJNZ DJNZ DJNZ DJNZ DJNZ DJNZ DJNZ DJNZ

R0,rel8 R1,rel8 R2,rel8 R3,rel8 R4,rel8 R5,rel8 R6,rel8 R7,rel8

E8 1/1 E9 1/1 EA 1/1 EB 1/1 EC 1/1 ED 1/1 EE 1/1 EF 1/1

MOV MOV MOV MOV MOV MOV MOV MOV

A,R0 A,R1 A,R2 A,R3 A,R4 A,R5 A,R6 A,R7

F8 1/1 F9 1/1 FA 1/1 FB 1/1 FC 1/1 FD 1/1 FE 1/1 FF 1/1

MOV MOV MOV MOV MOV MOV MOV MOV

R0,A R1,A R2,A R3,A R4,A R5,A R6,A R7,A

SBAU101A–July 2005–Revised March 2007 Programmer's Model and Instruction Set 47
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

4.5 Example of MSC121x Instructions

Example of MSC121x Instructions

For a particular application, suppose it is required to compute the logical function:
Q = (W and X) or Y or not (Z)

given a byte where:
Q is bit 7 of port 2,
W is bit 0, X is bit 1,
Y is bit 2,
and Z is bit 3.

The assembly code listed below shows how this computation can be achieved in a number of different
ways, and allows the reader to see the application of many different types of instructions.

Example 4-3. Assembly Code

; Assembly Language Example
$include (reg1210.inc)
W bit ACC.0
X bit ACC.1
Y bit ACC.2
Z bit ACC.3
Q bit P2.7
CSEG AT 0100H
main: mov R7,#0 ;initial value
main_1: lcall fun1 ; decision tree

lcall fun2 ; 'better' tree ?
lcall fun3 ; boolean operations
lcall fun4 ; look-up table
lcall fun5 ; faster
lcall fun6 ; fastest
inc R7
cjne R7,#10H,main_1 ; try values 00 to 0F
sjmp main

;Max Clocks:(MSC121x 120) (8051 204) Ratio=1.7
fun1: mov A,R7 ; get input values W, X, Y, Z

anl A,#8h ; select' Z
cjne A,#0,fun1_1 ; test for Z = 0
sjmp fun1_setQ ; set Q=1 because Z=0

fun1_1: mov A,R7 ; recover input values
anl A,#4 ; select Y
cjne A,#4,fun1_2 ; test for Y = 1
sjmp fun1_setQ ; set Q=1 because Y = 1

fun1_2: mov A,R7 ; recover input values
anl A,#3h ; select W, X
cjne A,#3,fun1_clrQ ; test for W = X = 1
sjmp fun1_setQ

fun1_clrQ: clr Q ; clear Q
sjmp fun1_z

fun1_setQ: setb Q ; set Q
fun1_z: ret

48 Programmer's Model and Instruction Set SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

Example of MSC121x Instructions

Example 4-3. Assembly Code (continued)

;Max Clocks:(MSC121x 114) (8051 252) Ratio=2.2
fun2: mov A,R7 ; get input values Z,Y,X,W

anl A,#8 ; select Z
jz fun2_setQ ; set Q because Z = 0
mov A,R7 ; recover inputs
anl A,#4 ; select Y
jnz fun2_setQ ; set Q because Y = 1
mov A,R7 ; recover inputs
rrc A ; W into carry
mov R0,A ; X in bit #0
rlc A ; recover W
anl A,R0 ; AND with X
anl A,#1 ; get just W&X
jnz fun1_setQ ; set Q because W&X = 1
clr Q ; Q=0
sjmp fun2_z

fun2_setQ: setb Q ; Q=1
fun2_z: ret

;Clocks:(MSC121x 60) (8051 144) Ratio=2.4
fun3: mov A,R7 ; get input values Z,Y,X,W

mov C,W ; Carry = W
anl C,X ; Carry = W&X
orl C,Y ; Carry = W&X + Y
orl C,/Z ; Carry = W&X + Y + /Z
mov Q,C ; Output new Q value
ret

;Clocks:(MSC121x 64) (8051 120) Ratio=1.9
fun4: mov A,R7 ; get input values Z,Y,X,W

anl A,#0FH ; ensure just 4 bits
add A,#(fun4_t-fun4_1) ; offset for instructions
movc A,@A+PC ; get table entry

fun4_1: mov C,ACC.0 ; lsb into carry
mov Q,C ; and hence Q
ret

fun4_t: db 1,1,1,1,1,1,1,1 ; table represents easy way
db 0,0,0,1,1,1,1,1 ; to implement any function

;Clocks:(MSC121x 52) (8051 108) Ratio=2.1
fun5: mov A,R7 ; get input values Z,Y,X,W

xrl a,#08H ; complement Z
clr C ; clear carry
subb A,#3 ; test for boundary
cpl C ; correct polarity
mov Q,C ; and output to Q
ret

;Clocks:(MSC121x 44) (8051 84) Ratio=1.9
fun6: mov A,R7 ; get input values Z,Y,X,W

xrl A,#08H ; complement Z
add A,#0FDH ; identify boundary
mov Q,C ; and output to Q
ret

end

SBAU101A–July 2005–Revised March 2007 Programmer's Model and Instruction Set 49
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

Programmer's Model and Instruction Set50 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

Chapter 5
SBAU101A–July 2005–Revised March 2007

System Clocks, Timers, and Functions

This chapter describes the system clocks, timers, and functions of the MSC121x.

Topic ... Page

5.1 Timing Chain and Clock Controls .. 52
5.2 System Clock Divider (MSC1211/12/13/14)... 54
5.3 Watchdog Timer... 55
5.4 Low-Voltage Detection.. 57
5.5 Hardware Configuration .. 58
5.6 Breakpoints... 60

SBAU101A–July 2005–Revised March 2007 System Clocks, Timers, and Functions 51
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

5.1 Timing Chain and Clock Controls

O cils lator
divide by
4 or 12

divide by
4 or 12

divide by
4 or 12

SYSCLK

C7h

Timer /

Counter 0

Timer /
Counter 1

Timer /
Counter 2

USART 1

USART 0

MSC121x

Core CPU

SPICON

9Ah

I2CCON
9Ah

FTCON

[3:0] EFh

MSINT

FAh

SECINT

F9h

WDTCON
FFh

ADCON2

DEh

FTCON

[7:4] EFh

MSECL

FCh

MSECH

FDh

HMSEC
FE

USEC

FBh

PWMHI
A3

ACLK

F6h

divide
by 64

ADCON3

DFh

ADCON0

DCh

Flash write imingt
30ms to 40 sm

Flash era timinse g
5ms to 11ms

Milliseconds interrupt
(see AIE.4)

Seconds inte ruptr
(see AIE.7)

Watchdog interrupt or
reset (see EWU.2)

A C Ouput Data RateD
(see AIE.5)

SPI clock - SCK

I C cl2 ock - SCL (MSC1211/13
Only)

P MLOWW
A2h

PWM clock

ADC modulator clock

PDCON.1

PDCON.2

IDLE
P ON.0C

PDCON.5

PDCON.0

PDCON.3

ADC
Power-Down

MSC1211/12/13/14
OnlySTOP

P ON.1C

PDCON.4

PWMCON.3

CKC NO

fCLK

NOTE: PCON and PDCON are
separate SFRs.

1ms

1ms

fSAMP

divide
by 4

REF
CLOCK

REFCLK
SEL

MSC1211/12/13/14 Only

Timing Chain and Clock Controls

Along with Timer/Counters 0, 1, and 2 found in the 8051/8052 architecture, the MSC121x has numerous
additional system timers and clock generators. Figure 5-1 shows the MSC121x timing chain and clock
controls. The main (crystal) oscillator provides the system clock at frequency fCLK either directly or via a
programmable system clock divider (tCLK = 1/fCLK).

Figure 5-1. MSC121x Timing Chain and Clock Control

52 System Clocks, Timers, and Functions SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

fMOD �
fCLK

(ACLK � 1) � 64 (5-1)

ADC Update Rate�
fMOD

Decimation Ratio (5-2)

Timing Chain and Clock Controls

At power-on, or after reset, the signal from the oscillator is not allowed to propagate until after (217 - 1)
periods. This period of time allows the power rails and crystal oscillator to stabilize. Thereafter, if neither
PSEN nor ALE is low, the CPU will begin to execute code starting at location 0000h. While operating, the
CPU may set bit 1 of PCON at 87h to assert a STOP condition that can only be exited by a hardware
reset. In this condition, all dynamic activity ceases, but the port I/O pins retain their levels. To pause the
CPU and core peripherals temporarily, bit 0 may be set. This setting invokes an IDLE state that is
terminated by an auxiliary interrupt associated with AIE at A6h, a wake-up via EWU at C6h, or a reset.
See Chapter 13 for further detail on interrupts and their sources. PSEN and ALE are used with RESET to
enter serial or parallel flash programming modes.

Subsystems are enabled/disabled by bits in PDCON at F1h in any combination, except that SPI and I2C
subsystems must not be simultaneously active. When a bit is high, the associated subsystems are inactive
and power is reduced to a minimum static level.

SPICON [7:5] at 9Ah provides a 3-bit code, N, which selects a tap into a binary divider chain to provide
the clock for the SPI interface at a frequency of fCLK/2(N+1).

When the I2C subsystem is active and bit 2 of I2CCON at 9Ah is set, the MSC1211 is in Master mode.
The frequency for the I2C clock is then fCLK/2/(I2CSTAT[7:0] + 1).

The external clock input or crystal oscillator provides the system clock either directly, or via a
programmable divider (MSC1211/12/13/14 only). With a system clock of f MHz, the program must write (f
– 1) to the USEC register at FBh in order to provide a clock period as close to 1µs as possible. This clock
provides the start and stop timing for the I2C interface, and is used in conjunction with FTCON [3:0] at EFh
to define the Flash memory write cycle timing. The least significant four bits of FTCON are referred to as
FWR, and should be set so that (1 + FWR) × (USEC + 1) × 5 × tCLK is between 30µs and 40µs. The
designer should consider the relative trade-offs between crystal frequency and accuracy of baud rate
generation versus accuracy of other real-time counters.

By default, the output of the USEC divider is used to clock the PWM generator, but fCLK may be selected
by setting bit 3 of PWMCON at A1h.The operation of the PWM generator is described later.

Just as USEC is programmed to provide a 1µs reference, MSECH at FDh and MSECL at FCh are used
together to provide a signal with a period of 1ms to clock other counters. The period is:

(256 × MSECH + MSECL + 1) × tCLK

which may not be an integer number of milliseconds. For example, with a 11.0592MHz crystal and
MSECH:MSECL set to 11058, the period will be 1.000018ms. The default value for MSECH:MSECL is
3999 and assumes a 4MHz oscillator. Note that if the system divider, defined by SYSCLK at C7h, is
present and active, an extra division factor may be present as well.

The output of MSECH:MSECL clocks three different counters with reload limits set by FTCON [7:4] at
EFh, MSINT [6:0] at FAh, and HMSEC [7:0] at FEh. They define the Flash memory erase timing between
5ms and 11ms, the number of counts for the milliseconds interrupt and the hundreds of millisecond
interrupt, respectively. Each counter repeats in N + 1 clocks, where N is the value written to the bits in
each SFR. If bit 7 of MSINT is set, the associated counter will be reloaded as the SFR is written;
otherwise, the new value will be loaded next time the count expires.

The interrupt associated with SECINT [6:0] at F9h can be set between 1 and 128 counts of the hundred
millisecond counter. If bit 7 of SECINT is set, the associated counter will be reloaded as the SFR is
written; otherwise, the new value will be loaded next time the count expires.

The frequency of the ADC modulator is given by:

where ACLK is the SFR at F6h.

The conversion data rate is given by:

The decimation ratio is ADCON3[2:0] at DFh concatenated with ADCON2[7:0] at DEh plus 1, and the ADC
output data rate is fMOD/(decimation ratio).

SBAU101A–July 2005–Revised March 2007 System Clocks, Timers, and Functions 53
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

5.2 System Clock Divider (MSC1211/12/13/14)

5.2.1 Behavior in Delay Mode (DIVMOD = '10')

System Clock Divider (MSC1211/12/13/14)

In order to reduce the average operating power of the microcontroller, a programmable system divider
may lower the frequency of the internal clocks.

Table 5-1. SYSCLK—System Clock Divider Register
SYSCLK SFR C7h Reset Value = 00h

Bit # Name Action or interpretation

7-6 0 Always 0

Clock Divide Mode

Write:

00: Normal mode (default, no divide)

01: Immediate mode: start divide immediately; return to Normal mode on an IDLE wakeup
condition or direct write to SFR.

10: same as Immediate mode, except that the mode changes with the millisecond interrupt
(MSINT). If MSINT is enable, the divide will start on the next MSINT and return to normal
mode on the following MSINT. If MSINT is not enabled, the divide will start on the next
MSINT condition (even if masked) but will not leave the divide mode until the MSINT

5-4 DIVMOD counter overflows, which follows a wakeup condition.

11: Medium mode: same as Immediate mode but cannot return to Normal mode on IDLE
wakeup condition. Must write directly to SFR.

Read: Status

00: No divide

01: Divider is in Immediate mode

10: Divider is in Delay mode

11: Medium mode

3 0 Always 0

Divide Mode (fCLK = fOSC/Divisor)000:

000: divide-by-2 (default)

001: divide-by-4

010: divide-by-8

2-0 DIV 011: divide-by-16

100: divide-by-32

101: divide-by-1024

110: divide-by-2048

111: divide-by-4096

Changes in the divisor are synchronized with the timeout of the milliseconds system timer, MSINT at FAh,
which must be powered up (that is, bit 1 of PDCON at F1h must be 0). Once a new divisor is written to
SYSCLK with this mode, it will take effect at the next MSINT timeout. During this time, bit 0 of PCON at
87h can be set to place the CPU in the IDLE state and reduce the power still further.

When the divisor is active and the milliseconds interrupt is enabled via EMSEC (bit 4 of AIE at A6h), the
timeout causes immediate removal of the divisor. This condition is likely to occur when a real-time
(elapsed) clock is supported in software by maintaining a record of the accumulated number of millisecond
interrupts. The program must compensate for the increase in time caused by the divisor.

In effect, if the milliseconds interrupt is enabled via EMSEC when the divider mode is changed to 10b, the
divisor will become active on the next MSINT interrupt, and return to divide-by-1 on the following MSINT
interrupt. However, if the milliseconds interrupt is masked, the divisor will still become active on the next
MSINT interrupt, but will not return to divide-by-1 until the milliseconds interrupt after a wake-up condition.
If the wake-up condition is caused by an enabled seconds interrupt that is synchronous with a millisecond
interrupt, the divider immediately returns to divide-by-1.

54 System Clocks, Timers, and Functions SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

5.3 Watchdog Timer

Watchdog Timer

WDTCON [4:0] at FFh plus 1 defines the number of 100ms intervals before the watchdog timer expires,
assuming that the watchdog restart sequence is not performed. The watchdog is enabled (or disabled) by
writing a 1,0 sequence to bit 7 (or bit 6) of WDTCON. Writing 1,0 to bit 5 restarts the timeout.

When the watchdog is enabled and expires, it generates either an interrupt or a reset (default), as
determined by bit 3 of HCR0.

WDTI must be cleared within the interrupt service routine (ISR). Setting WDTI in software generates a
watchdog timer interrupt, if enabled.

Table 5-2. Watchdog Control Bits
Watchdog Interrupt has priority 12 (Low) and jumps to address 63h

Bit Name Abbreviation Name of Related SFR Abbreviation Address (Hex)

Global Interrupt Enable EA Interrupt Enable IE.7 A8

Enable Watchdog Interrupt EWDI Extended Interrupt Enable EIE.4 E8

Watchdog Timer Interrupt flag WDTI Enable Interrupt Control EICON.3 D8

Watchdog Interrupt Priority PWDI Extended Interrupt Priority EIP.4 F8

SBAU101A–July 2005–Revised March 2007 System Clocks, Timers, and Functions 55
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

5.3.1 Watchdog Timer Example Program

Watchdog Timer

When the program is run, it first requires a carriage return (CR) character to be received so that the baud
rate can be determined. Thereafter, a CR code must be repeatedly received within three seconds;
otherwise, the MSC121x is reset and the autobaud routine is restarted.

In Example 5-1, EWDR, bit 3 of HCR0, must be 1 (default) for a reset to occur. In another application, the
programmer may clear EWDR so that when the timer expires, an interrupt is requested via WDTI, bit 3 of
EICON at D8h.

Example 5-1. Watchdog Timer Program

// File WDT.c - Watch Dog Timer
// MSC1210 EVM Switches 1:On SW3-12345678 SW6-12345678
// 0:Off 11110111 11110000
#include <Reg1210.h>
#include <stdio.h>
#define xtal 11059200
sbit RedLed = P3^4; // RED LED on EVM
sbit YellowLed = P3^5; // Yellow LED on EVM
code at 0xFFF3 void autobaud(void);

data unsigned char i='A';

void main(void)
{ PDCON&=~0x04; // power up WatchDog
MSEC=xtal/1000-1; // 1ms tick
HMSEC=100-1; // 100ms tick
RedLed=0; // Turn Red LED on
autobaud(); // Requires CR
printf("\nMSC1210 Watchdog Test");
printf("\nRepeatedly press CR/Enter within 3 seconds\n");
RI_0 = 0; // clear received flag in USART
WDTCON=0x80; // start watchdog and define
WDTCON=30; // 30 * 100ms timeout
RedLed=1; // Turn Red LED off
while(1){
while(!RI_0); // wait for key press
YellowLed=!YellowLed; // Toggle Yellow Led
putchar(i);
i=(i+1) & 0x5F; // 32 character sequence
if((SBUF0 & 0x7F)==0x0D) { // Test for CR

WDTCON|=0x20; // restart Watchdog timer
WDTCON&=~0x20; // with 1-0 sequence in bit #5
}

RI_0 = 0; // clear received flag in USART
}

}

56 System Clocks, Timers, and Functions SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

5.4 Low-Voltage Detection

Low-Voltage Detection

Bits 3 and 2 of HCR1 are used to enable a low voltage on either the analog or digital supplies,
respectively, to cause a reset. The user may also configure additional low voltages to generate interrupts
via LVDCON at E7h.

When high, ALVD or DLVD indicate an active interrupt, while a low level indicates an inactive or masked
interrupt.

Table 5-3. LVDCON—Low-Voltage Detect Control
LVDCON SFR E7h Reset Value = 00h

ALVDIS ALVD2 ALVD1 ALVD0 Analog Threshold of AVDDBit 7 Bit 6 Bit 5 Bit 4

DLVDIS DLVD2 DLVD1 DLVD0 Digital Threshold of DVDDBit 3 Bit 2 Bit 1 Bit 0

1 x x x Detection Disabled

0 0 0 0 2.7 V (default)

0 0 0 1 3.0V

0 0 1 0 3.3V

0 0 1 1 4.0V

0 1 0 0 4.2V

0 1 0 1 4.5V

0 1 1 0 4.7V

0 1 1 1 Analog (pin AIN7) or digital (AIN6) compared with 1.2 V

Table 5-4. Low-Voltage Detect (1)

Address
Bit Name Abbreviation Name of related SFR Abbreviation (Hex)

Enable Auxiliary Interrupt EAI Enable Interrupt Control EICON.5 D8

Enable Analog Low-Voltage interrupt EALV Auxiliary Interrupt Enable AIE.1 A6

Enable Digital Low-Voltage Interrupt or EDLVB Auxiliary Interrupt Enable AIE.0 A6Breakpoint interrupt

Auxiliary Interrupt flag AI Enable Interrupt Control EICON.4 D8

Analog Low-Voltage Detect interrupt ALVD Auxiliary Interrupt Status Register AISTAT.1 A7status flag

Digital Low-Voltage Detect or Breakpoint DLVD Auxiliary Interrupt Status Register AISTAT.0 A7interrupt status flag

= 0010b for analog low voltage PAI3-0 Pending Auxiliary Interrupt PAI.3 to PAI.0 A5= 0001b for digital low voltage

(1) Low-Voltage interrupts have priority 0 (high) and jump to address 33h (shared with other interrupts).

SBAU101A–July 2005–Revised March 2007 System Clocks, Timers, and Functions 57
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

5.5 Hardware Configuration
Hardware Configuration

There are two hardware configuration registers (HCR0 at 7Fh and HCR1 at 7Eh), which form part of 128
bytes of configuration Flash memory. They cannot be accessed directly because they are not special
function registers. Instead, either configuration register may be read by first writing its address to CADDR
at 93h and then reading CDATA at 94h. Writing to HCR0 or HCR1 can only occur during serial or parallel
device programming, when they are mapped to code space addresses 807Fh and 807Eh, respectively.

Table 5-5. HCR0—Hardware Configuration Register 0
HCR0 Non-SFR address 7Fh accessed indirectly via SFR CADDR at 93h; Erased Value = FFh

Bit # Name Action or Interpretation

Enable Programming Memory Access (security bit).

0: After a reset following programming mode, Flash memory can only be accessed in User Application7 EPMA Mode (UAM) or mass erased.

1: Fully Accessible (default)

Program Memory Lock (PML has priority over RSL, if RSL = 0).

6 PML 0: Enable writing to program memory in UAM.

1: Disable writing to program memory in UAM. (default).

Reset Sector Lock. 4 KB of Flash memory from 0000h to 0FFFh.

5 RSL 0: Enable reset sector writing

1: Disable reset sector writing (default)

Enable Boot ROM. 2 KB of read-only memory from F800h to FFFFh.

4 EBR 0: Disable Internal Boot ROM

1: Enable Internal Boot ROM (default)

Enable Watchdog Reset

3 EWDR 0: Disable Watchdog from causing a reset and allow an interrupt if unmasked.

1: Enable Watchdog Reset (default)

DFSEL Data Flash Memory Size.
On-chip Flash memory can be partitioned between data memory and program memory. The total memory2 DFSEL2 available depends on the Y version of the device. See Section 2.2 for a complete description of memory
partitioning.

000: Reserved

001: 4kB, 8kB, 16kB, or 32kB
1 DFSEL1

010: 4kB, 8kB, or 16kB

011: 4kB or 8kB

100: 4kB

101: 2kB
0 DFSEL0

110 1kB

111 0kB

58 System Clocks, Timers, and Functions SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

Hardware Configuration

Table 5-6. HCR1—Hardware Configuration Register 1
HCR1 Non-SFR address 7Fh accessed indirectly via SFR CADDR at 93h; Erased Value = FFh

Bit # Name Action or Interpretation

Digital Brownout Level Select
7 DBLSEL1 The digital brownout level is loaded after POR; therefore, a proper POR must occur for digital brownout

levels to be properly loaded.

00: 4.5V

01: 4.2V
6 DBLSEL0

10: 2.7V

11: 2.5V (default)

Analog Brownout Level Select
5 ABLSEL1 The analog brownout level is loaded after POR; therefore, a proper POR must occur for analog brownout

levels to be properly loaded.

00: 4.5V

01: 4.2V
4 ABSEL0

10: 2.7V

11: 2.5V (default)

Disable Analog Power-Supply Brownout Detection

3 DAB 0: Analog Brownout causes reset

1: Analog Brownout reset is disabled (default)

Disable Digital Power-Supply Brownout Detection

2 DDB 0: Digital Brownout causes reset

1: Digital Brownout reset is disabled (default)

Enable General-Purpose I/O for Port 0

1 EGP0 0: Port 0 is used for external memory, P3.6 and P3.7 used for WR and RD

1: Port 0 is used as general-purpose I/O (default)

Enable General-Purpose I/O for Ports 2 and 3

0 EGP23 0: Port 2 is used for external memory, P3.6 and P3.7 used for WR and RD.

1: Port 2 and Port 3 are used as general-purpose I/O (default)

SBAU101A–July 2005–Revised March 2007 System Clocks, Timers, and Functions 59
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

5.6 Breakpoints
Breakpoints

The MSC121x supports hardware breakpoints at addresses in either external data space or code space.
When a memory access occurs with an address that matches the value in either of two 16-bit breakpoint
registers, an interrupt is generated.

The breakpoint registers can aid system debugging, but caution is needed because of interrupt latency
and instruction prefetch. Latency may cause two or three instruction cycles to occur after an address
match, while prefetch may trigger a false interrupt; for example, when the breakpoint is placed after a
conditional branch is made.

Table 5-7. MCON—Memory Control
MCON SFR 95h Reset Value = 00h

Bit # Name Action or Interpretation

Write:

0: select breakpoint register 0
7 BPSEL

1: select breakpoint register 1

Read: the breakpoint register that created the last interrupt, 0 or 1

6-5 0 Always 0

4-1 — Undefined

Write:

0 RAMMAP 0: addresses 0000h to 03FFh in external data memory are on-chip RAM (default)

1: addresses 8400h to 87FFh in external data memory and program memory share the same on-chip RAM

Table 5-8. BPCON—Breakpoint Control
BPCON SFR A9h Reset Value = 00h

Bit # Name Action or Interpretation

Write:

0: no effect

1: clear breakpoint interrupt flag for breakpoint register selected by MCON.7
7 BP

Read:

0: no breakpoint interrupt

1: breakpoint match from either breakpoint register

6-2 0 Always 0

Write:

1 PMSEL 0: break on address in external data memory

1: break on address in program memory. Applies to breakpoint register selected by MCON.7

Write:

0 EBP 0: disable interrupt on address match

1: enable interrupt on address match. Applies to breakpoint register selected by MCON.7

60 System Clocks, Timers, and Functions SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

Breakpoints

Table 5-9. BPL—Breakpoint Low Address for BP Register Selected in MCON at 95h
BPL SFR AAh Reset Value = 00h

Bit # Name Action or Interpretation

7-0 BPL Write/Read: Low eight bits of 16-bit breakpoint register. Applies to register selected by MCON.7.

Table 5-10. BPH—Breakpoint High Address for BP Register Selected in MCON at 95h
BPH SFR ABh Reset Value = 00h

Bit # Name Action or Interpretation

7-0 BPH Write/Read: High eight bits of 16-bit breakpoint register. Applies to register selected by MCON.7

Table 5-11. Breakpoints
Breakpoint interrupt has priority 0 (high) and jumps to address 33h (shared with DVDD low-voltage interrupt)

Address
Bit Name Abbreviation Name of related SFR Abbreviation (Hex)

Enable Auxiliary Interrupt EAI Enable Interrupt Control EICON.5 D8

Auxiliary Interrupt flag AI Enable Interrupt Control EICON.4 D8

Enable Digital Low Voltage interrupt or EDLVB Auxiliary Interrupt Enable AIE.0 A6Breakpoint interrupt

Digital Low-Voltage Detect or Breakpoint DLVD Auxiliary Interrupt Status Register AISTAT.0 A7interrupt status flag

The BP bit in BPCON must be set within the ISR to clear the interrupt, and the BPSEL bit in MCON may
be read to determine which breakpoint register caused the interrupt.

SBAU101A–July 2005–Revised March 2007 System Clocks, Timers, and Functions 61
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

System Clocks, Timers, and Functions62 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

Chapter 6
SBAU101A–July 2005–Revised March 2007

Analog-To-Digital Converters

This chapter describes the analog-to-digital converters (ADCs) of the MSC121x.

Topic ... Page

6.1 ADC Functional Blocks... 64
6.2 ADC Signal Flow and General Description .. 65
6.3 Analog Input Stage... 65
6.4 Input Impedance, PGA, and Voltage References 67
6.5 Offset DAC .. 69
6.6 ADC Data Rate, Filters, and Calibration .. 70
6.7 32-Bit Summation Register.. 72
6.8 Accessing the ADC Multi-Byte Conversion in C 74
6.9 ADC Example Program ... 75

SBAU101A–July 2005–Revised March 2007 Analog-To-Digital Converters 63
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

6.1 ADC Functional Blocks

Σ

Σ X

Input
Multiplexer

Temperature
Sensor

Buffer PGA
Sample

and Hold

ADMUXD7h

REFOUT/
REF IN+

REF IN−

REFOUT/
REF IN+ fMOD

REF IN−

AIN5
AIN6
AIN7

AINCOM

ADCON1DDh

ADCON2DEh

ADCON3DFh

OCR GCR ADRES

SUMR

D3h D2h D1h D6h D5h D4h DBh DAh D9h

E5h E4h E3h E2h

Offset
Calibration
Register

ADC0N0DCh ACLKF6h

SSCONE1h

ODACE6h

Offset
DAC

∆Σ ADC
Modulator

FAST

SINC2
SINC3

AUTO

ADC
Result Register

Σ

Summation
Block

VIN

AIN2
AIN3
AIN4

AIN0
AIN1

fSAMP

fDATA

Gain
Calibration
Register

Burnout
Detect

AVDD

In+

AGND

In−

Burnout
Detect

ADC Functional Blocks

A key feature of the MSC121x that differentiates it from other mixed-signal microcontrollers is a
high-precision analog-to-digital subsystem, with a performance that is usually found only in embedded
systems with a separate ADC and microprocessor. The major elements of the ADC subsystem are shown
in Figure 6-1.

Figure 6-1. ADC Subsystem Elements

64 Analog-To-Digital Converters SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

6.2 ADC Signal Flow and General Description

6.3 Analog Input Stage

V�
nk ln(80)

q (TC� 273.16)� �TC� �

ADC Signal Flow and General Description

Analog signals from pins AIN0 to AIN7, AINCOM, or internal temperature-sensitive diodes are selected
independently by two analog multiplexers to provide a differential signal to the programmable gain
amplifier (PGA), which may optionally be preceded by a high-impedance buffer. An analog offset of up to
±50% of the full range may be injected into the PGA by the Offset DAC.

The delta-sigma (∆Σ) ADC can be configured for sampling rate and decimation ratio as well as filter type
before its output is passed to digital offset and gain calibration stages to give a 24-bit unipolar or bipolar
result.

ADC conversions can be automatically added to a 32-bit summation register (SUMR3 to SUMR0), which
is considerably more efficient than using machine-code instructions. A defined number of conversions may
also trigger an automatic right shift to produce an averaged value. The CPU can control the 32-bit
hardware accumulator directly, as long as the ADC subsystem is powered up. All MSC121x family parts
except for the MSC1210 also support 32-bit subtraction.

Special function register ADMUX at D7h provides two groups of four bits each that specify the analog
source channels for the noninverting (positive) and inverting (negative) inputs to the buffer and/or the
PGA.

The upper four bits control the noninverting input while the lower four bits control the inverting input.
Codes 0000b to 0111b represent channels AIN0 to AIN7, respectively. Code 1000b selects AINCOM, and
if both codes are 1111b, two temperature-sensitive diodes are selected.

When Burnout Detection is enabled, current sources cause the inputs to be pulled to either AVDD or
AGND if the selected channel is open circuit, as may happen when a resistive sensor is broken.

The internal diodes are used to provide a temperature-sensitive differential voltage of approximately:

For typical values of α (temperature sensor coefficient) and β (temperature sensor voltage) , refer to the
Electrical Characteristics section of the respective datasheet.

For further information about accuracy and calibration, see Texas Instruments application report
SBAA100, Using the MSC121x as a High-Precision Intelligent Temperature Sensor, available for
download at www.ti.com.

SBAU101A–July 2005–Revised March 2007 Analog-To-Digital Converters 65
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SBAA100
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

AIN3

AIN4

AIN5

AIN6

AIN0

AIN1

AIN2

AIN7

AINCOM

Burnout Detect (2µA)

Burnout Detect (2µA)

AGND

Buffer

Temperature Sensor

I
80 • I

AVDD

AVDD AVDD

In+

In−

Analog Input Stage

Figure 6-2. Input Multiplexer Configuration

Table 6-1. ADMUX—ADC Multiplexer
ADMUX SFR D7h Reset Value = 01h

INP3 INP2 INP1 INP0 Positive input selectionBit 7 Bit 6 Bit 5 Bit 4

INN3 INN2 INN1 INN0 Negative input selectionBit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 AIN0 (default positive input)

0 0 0 1 AIN1 (default negative input)

0 0 1 0 AIN2

0 0 1 1 AIN3

0 1 0 0 AIN4

0 1 0 1 AIN5

0 1 1 0 AIN6

0 1 1 1 AIN7

1 0 0 0 AINCOM

1 1 1 1 Temperature sensor. Requires ADMUX = FFh.

66 Analog-To-Digital Converters SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

6.4 Input Impedance, PGA, and Voltage References

A IN Impedance (�) � � 1MHz
ACLK Frequency

� � �7M�
G
�

ACLK frequency (fACLK)�
fCLK

ACLK� 1

fMOD�
fACLK

64
.

RSWITCH

(3k typical)W

Sampling

Frequency = fSAMP

High

Impedance

> 1GW

AGND

AIN

CS

(9pF typical)

PGA

1

2

4 to 128

C

9pF

18pF

36pF

S

PGA

1

2

4

8

16

32

64

128

f

f

f

f

f 2

f 4

f 8

f 16

f 16

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

·

·

·

·

·

SAMP

BIPOLAR MODE

FULL-SCALE RANGE

±V

V /2

V /4

V /8

V /16

V /32

V /64

V /128

REF

REF

REF

REF

REF

REF

REF

REF

±

±

±

±

±

±

±

UNIPOLAR MODE

FULL-SCALE RANGE

+V

+V /2

+V /4

+V /8

+V /16

+V /32

+V /64

+V /128

REF

REF

REF

REF

REF

REF

REF

REF

NOTE: f = ACLK frequency/64.MOD

Input Impedance, PGA, and Voltage References

When the buffer is enabled, the input current is typically 0.5nA (impedance is over 1GΩ) and the
common-mode range is from (AGND + 50mV) to (AVDD – 1.5V). The buffer should be enabled whenever
burnout detection is used.

However, when the buffer is not enabled, each analog input is presented with a dynamic load such that
the mean differential impedance is (7MΩ/G); where G is defined in Table 6-2. The input impedance is
lowered and varies with gain; however, the input range is from (AGND – 0.1V) to (AVDD + 0.1V).

Table 6-2. Impedance Divisor (G) for a Given PGA
PGA 1 2 4 8 16 32 64 128

G 1 2 4 8 16 32 64 64

When the buffer is not selected, the input impedance of the analog input changes with ACLK clock
frequency (ACLK, SFR F6h) and gain (PGA). The relationship is:

where:

Figure 6-3 shows the basic input structure of the MSC121x.

Figure 6-3. Analog Input Structure without Buffer

SBAU101A–July 2005–Revised March 2007 Analog-To-Digital Converters 67
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

tCLK
(ACLK� 1) � 4

USEC
4

Input Impedance, PGA, and Voltage References

Table 6-3. ADCON0—ADC Control Register 0
ADCON0 SFR DCh Reset Value = 30h

Bit # Name Action or Interpretation

Reference Clock (MSC1211/12/13/14 only)

The reference is specified with a 250kHz clock. REFCLK should be selected by choosing the appropriate source so
that it does not exceed 250kHz.

0:7 REFCLK

1:

Burnout Detect

When enabled, a 2µA current source is connected from AVDD to the positive input, while a 2µA current sink is
connected from the negative input to ground.

6 BOD Write:

0: Burnout Current Sources Off (default)

1: Burnout Current Sources On

Enable Internal Voltage Reference

Write:
5 EVREF 0: Internal Voltage Reference Off

1: Internal Voltage Reference On (default). If the internal voltage reference is not used, it should be turned off to
save power and reduce noise

Voltage Reference High Select

Write:
4 VREFH

0: REFOUT is 1.25V

1: REFOUT is 2.5V (default)

Enable Buffer

Write:
3 EBUF

Buffer disabled (default)

Buffer enabled, results in increased power and impedance but reduced range

Programmable Gain Amplifier

Write:
2-0 PGA

000 to 111: Gives a gain

G = 2PGA or 1 (default) to 128

PGA Bits of ADCON0 determine various parameters according to Table 6-4.

Table 6-4. ADCON0 PGA Bit Parameters
PGA Effective Number RMS Resolution
Bits Full-Scale Sampling of Bits for VREF = 2.5V
[2:0] Gain Range Frequency at 10Hz Rate (nV)

000 1 ±VREF fMOD 21.7 1468

001 2 ±VREF/2 fMOD 21.5 843

010 4 ±VREF/4 fMOD 21.4 452

011 8 ±VREF/8 2 fMOD 21.2 259

100 16 ±VREF/16 4 fMOD 20.8 171

101 32 ±VREF/32 8 fMOD 20.4 113

110 64 ±VREF/64 16 fMOD 20 74.5

111 128 ±VREF/128 16 fMOD 19 74.5

Analog-To-Digital Converters68 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

6.5 Offset DAC

Offset �
VREF

2PGA
�ODAC[6 : 0]

127
�(� 1) [ODAC7]

Offset DAC

By default, the internal voltage reference is turned on at 2.5V, when the ADC subsystem is powered up.
Therefore, if an external reference is provided, the internal reference should be disabled via EVREF
before bit 3 of PDCON at F1h is cleared.

If the internal voltage reference is to be used, the default level of 2.5V is allowed only if AVDD is between
3.3V and 5.25V. The internal 1.25V VREF can be used over the entire analog supply range (AVDD = 2.7V to
5.25V).

When the internal voltage reference is disabled, an external differential reference is represented by the
voltage between REF IN+ and REF IN–. This permits ratiometric measurements, but the absolute voltage
on either input must be from AGND to AVDD.

In both cases, the REF IN+ pin should have a 0.1µF capacitor to AGND.

The PGA input range may be offset by up to ±50% via the offset DAC. This 8-bit DAC is controlled by
ODAC at E6h with a coding scheme such that the most significant bit represents the sign of the offset,
while the least significant seven bits represent the magnitude. When the magnitude is zero, the ODAC is
disabled and the voltage into the PGA is not offset.

where PGA is the gain of the programmable gain amplifier.

Here, VREF is the voltage on the REF IN+ pin with respect to REF IN– and should not be confused with the
internal voltage reference that is with respect to AGND.

The gain error of the 8-bit ODAC is typically about ±1.5% of its range, which means its absolute accuracy
can be significant in some applications. However, it is monotonic with an integral nonlinearity of less than
0.25 bits, and has a temperature coefficient of typically 1ppm/°C. It may be used in a predictive manner
with due regard to its range, resolution, stability, and accuracy, or it may be calibrated using the ADC.

SBAU101A–July 2005–Revised March 2007 Analog-To-Digital Converters 69
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

6.6 ADC Data Rate, Filters, and Calibration

ADC Output Data Rate� fDATA�
fMOD

Decimation Ratio
�

1
tDATA

where fMOD �
fCLK

(ACLK � 1) � 64

ADC Data Rate, Filters, and Calibration

The data rate for ADC conversions is determined by the frequency of the modulator clock, fMOD, and the
decimation ratio, which is a right-justified, 11-bit field in ADCON3 at DFh (high) concatenated with
ADCON2 at DEh (low). The default data rate is 1563.

When the decimation ratio, PGA, AVDD, or temperature are changed, the ADC must be recalibrated.

The mode of operation of the ADC is controlled by ADCON1 at DDh, which determines whether the inputs
are interpreted as unipolar or bipolar, the type of digital filter, and the type of calibration.

Table 6-5. ADCON1—ADC Control Register 1
ADCON1 SFR DDh Reset Value = 30h

Bit # Name Action or Interpretation

Summation Invalid
7 OF_UF If this bit is set, the data in the summation register is invalid; either an overflow or underflow occurred. The bit is cleared

by writing a '0' to it.

Polarity

Write:
6 POL

0: Bipolar such that –FSR = 0x800000, zero = 0x000000 and +FSR = 0x7FFFFF

1: Unipolar such that –FSR = 0x000000, zero = 0x000000 and +FSR = 0xFFFFFF

Settling Mode

5 SM1 Write:

00: Auto

01: Fast

10:4 SM0 Sinc2

11: Sinc3

3 — Not used

Calibration Control (number of tDATA periods to complete)

Write:
2 CAL2

000: No Calibration (default)

001: Self Calibration for Offset and Gain (14)

010: Self Calibration for Offset only (7)

011: Self Calibration for Gain only (7)
1 CAL1

100: System Calibration for Offset only (7)

101: System Calibration for Gain only (7)

110: Reserved

111: Reserved
0 CAL0

Read:

000

When the voltage presented to the ADC changes, the time it takes to receive valid data depends upon the
type of filter that is selected, as well as the conversion time, tDATA. Higher-order filters provide better noise
immunity but take longer to settle, and the user must make considered judgments as to system
performance based on resolution, settling time, and notch frequency.

In Auto mode, the type of filter that is used changes whenever the input multiplexer, ADMUX, or PGA are
altered. The ADC first makes two conversions using the Fast filter, then one with Sinc2, and then one with
Sinc3.

70 Analog-To-Digital Converters SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

fDATA � � fCLK

64 � (ACLK � 1) � Decimation Ratio
�

SINC FILTER RESPONSE3

(3dB = 0.262 f- ·)DATA

fDATA

0

-20

-40

-60

-80

-100

-120

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5

G
a

in
 (

d
B

)

SINC FILTER RESPONSE2

(3dB = 0.318 f- ·)DATA

fDATA

0

-20

-40

-60

-80

-100

-120

G
a
in

 (
d
B

)

FAST SETTLING FILTER RESPONSE

(3dB = 0.469 f- ·)DATA

fDATA

0

-20

-40

-60

-80

-100

-120

NOTE: f = Normalized Data Output Rate = 1/tDATA DATA

G
a
in

 (
d
B

)

ADC Data Rate, Filters, and Calibration

In the graphs shown in Figure 6-4, fDATA = Data Output Rate = 1/ tDATA.

The ADC performs conversions at a regular rate of fDATA, as shown in the following equation:

Figure 6-4. Filter Frequency Responses

In applications where more than one analog input is measured, the program should write different values
to ADMUX in a way that is synchronized with conversions to get the best throughput rate. Ideally, ADMUX
should be updated as soon as the ADC interrupt flag is set, but there will always be a software delay.
Assuming the delay is less than 20 × tMOD and the decimation ratio is large (over 1000), any error
introduced is less than intrinsic noise.

The 24-bit result is held in the logically concatenated registers ADRESH (high), ADRESM, and ADRESL
(low), at SFR addresses DBh, DAh, and D9h, respectively. These registers are loaded when a conversion
is completed, as long as ADRESL has been read since the last value was written.

SBAU101A–July 2005–Revised March 2007 Analog-To-Digital Converters 71
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

6.7 32-Bit Summation Register

32-Bit Summation Register

In devices that have the AIPOL register (MSC1211/12/13/14), reading AIE may return the mask bits that
were previously written. Therefore, these devices support read/modify/write instructions such as ORL
AIE,#020H to enable the ADC interrupt and ANL AIE,#0BFH to disable the summation interrupt. However,
this code must not be used with other devices where reading AIE returns the value of the interrupt flags
before masking. To allow dynamic modification of interrupt enable bits on these parts, the programmer
should first manipulate a byte in memory with read/modify/write instructions, and then copy it to AIE. If the
memory byte is updated by a sequence of instructions, in general the codee should be protected from
interrupts.

Table 6-6. ADC Interrupt Controls
Bit 5 of AIE at A6h Bit 5 of AISTAT at A7h Bit 5 of AIPOL at A4h

Family Part Enable ADC Interrupt ADC Interrupt Status Flag ADC Interrupt Poll

Write: Read: Read:

0: Masked 0: Inactive or masked ADC interrupt flag before
masking (RDSEL = 1) or value ofMSC1211 1: Enabled 1: Active EADC (RDSEL = 0).MSC1212

MSC1213 Read: While active, no new data will be written to
MSC1214 ADRES. Cleared by reading ADRESL at

ADC interrupt flag before D9h.
masking (RDSEL = 0) or value of
EADC (RDSEL = 1).

Write: Read:

0: Masked 0: Inactive or masked

1: Enabled 1: ActiveMSC1210 Not Present

Read: While active, no new data will be written to
ADRES. Cleared by reading ADRESL at

Mask Value D9h.

When the MSC121x is reset, default values are loaded into the digital offset and digital gain calibration
registers associated with the ADC; specifically, for offset OCH:OCM:OCL = 00000000h and for gain
GCH:GCM:GCL = 5FEC5Ah. (See Application Note SBAA099, Calibration Routines and Register Value
Generation for the ADS121x Series, for additional information.) Although the ADC will then produce an
output that varies linearly with the differential input voltage, it will not have the correct scale. A program is
able to write any desired value to these calibration SFRs, but is most likely to set the CAL bits in ADCON0
to force an internal calibration for offset and gain (CAL = 001). A differential input of VREF = (REF IN+) –
(REF IN–) will then map to a full-scale digital output. Alternatively, the overall system can be placed into a
defined zero state and then calibrated for offset (CAL = 100) followed by a full-scale condition and
calibrated for gain (CAL = 101). Each type of calibration takes seven tDATA periods, as summarized in
Table 6-5 . For instance, CAL = 001 takes 14 tDATA periods. For best results, calibration should be
performed with the Sinc3 or Auto filter selected.

To use the 32-bit summation register, either under the control of the CPU and/or the ADC, bit 3 of PDCON
at F1h must be '0'. Operations are controlled by SSCON at E1h, with data accessed via SUMR3:SUMR0.

Table 6-7. Summation Register
Register Address Read Write

Name (Hex) Summation Register Temporary Regiter

SUMR3 E5 Bits 31 to 24 (most significant) Bits 31 to 24 (most significant)

SUMR2 E4 Bits 23 to 16 Bits 23 to 16

SUMR1 E3 Bits 15 to 8 Bits 15 to 8

SUMR0 E2 Bits 7 to 0 (least significant) Bits 7 to 0 (least significant)

72 Analog-To-Digital Converters SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SBAA099
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

32-Bit Summation Register

Table 6-8. SSCON—Summation/Shift Control
SSCON SFR E1h Reset Value = 00h

Bit Name and Number

S S S S S
S S S S S S S S Action or Interpretation
C C C C C S S S where:
O O N N N H H H Read of Summation Register = A
N N T T T F F F Write to Temporary Register = B
1 0 2 1 0 2 1 0

7 6 5 4 3 2 1 0

0 0 x x x x x x Select CPU summation mode for MSC12x

0 0 0 0 0 0 0 0 Clear Summation register, A = zero (1)

0 0 0 1 0 0 0 0 Change to summation mode (2) (3)

Next CPU summation on write to SUMR0, A = A + B

0 0 1 0 0 0 0 0 Change to subtraction mode (2) (3)

Next CPU subtraction on write to SUMR0, A = A - B

1 0 0 0 0 S S S Shift right by (SSSb + 1) bits

0 1 C C C 0 0 0 Add ADC conversions to Summation register 2(CCC+1) times (that is, 2 to 256 times).

1 1 C C C S S S Add ADC conversions to Summation register 2(CCC+1) times (that is, 2 to 256 times). Then
shift right by (SSSb + 1) bits and set the summation complete interrupt flag.

(1) For the MSC1210, writing 00h to SSCON clears the 32-bit hardware accumulator and selects CPU controlled summation. For
other devices, the 32-bit hardware accumulator is cleared, but the mode is not changed.

(2) These operations are not available in the MSC1210.
(3) If the polarity bit in ADCON1 at DDh is 0, the 24-bit ADC conversion is sign-extended to 32 bits. That is, bit 7 of ADRESH is

propagated to all higher bits.

Immediately after a CPU instruction writes data to SUMR0, it may trigger an addition, subtraction, or shift
operation, depending on the value of SSCON. Addition and subtraction take a single cycle, tCLK. Shifting is
performed either 1 or 2 bits per cycle, and takes up to four tCLK periods to complete.

Table 6-9. Summation Interrupt Controls
Bit 6 of AIE at A6h Bit 6 of AISTAT at A7h Bit 6 of AIPOL at A4h

Family Part Enable Summation Interrupt Summation Interrupt Status Flag Summation Interrupt Poll

Write: Read: Read:

0: Masked 0: Inactive or masked Summation interrupt flag before
masking (RDSEL = 1) or value ofMSC1211 1: Enabled 1: Active ESUM (RDSEL = 0).MSC1212

MSC1213 Read: While active, no new data will be written to
MSC1214 SUMR. Cleared by reading SUMR0 at

Summation interrupt flag before E2h.
masking (RDSEL = 0) or value of
ESUM (RDSEL = 1).

Write: Read:

0: Masked 0: Inactive or masked

1: Enabled 1: ActiveMSC1210 Not Present

Read: While active, no new data will be written to
SUMR. Cleared by reading SUMR0 at

Mask Value E2h.

SBAU101A–July 2005–Revised March 2007 Analog-To-Digital Converters 73
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

6.8 Accessing the ADC Multi-Byte Conversion in C

Accessing the ADC Multi-Byte Conversion in C

ADRESH:ADRESM:ADRESL represent a 24-bit register, while SUMR3:SUMR2:SUMR1:SUMR0 represent
a 32-bit register. It is often useful to map both of these to long integers in C, but care should be taken. For
example, assuming that the variable sum has been declared to be of type "signed long int," it is tempting
to write:
sum = SUMR3 << 24 + SUMR2 << 16 + SUMR1 << 8 + SUMR0;

However, this produces a pattern-dependent incorrect value because of the (ANSI-defined) 16-bit integer
promotion rules within most compilers for the 8051 family.

Changing to:
sum = ((unsigned long)SUMR3 << 24) + ((unsigned long)SUMR2 << 16)

+ ((unsigned long)SUMR1 << 8) + (unsigned long)SUMR0;

will produce the expected value, but may take between approximately 800 and 1200 machine cycles, as
compilers call run-time libraries to achieve multi-bit shifts. Since the order of additions is not defined in C,
it is possible that SUMR0 is accessed first and the ADC interrupt flag is cleared. If other interrupts are
present and their service routines take more time to complete than the next conversion, SUMR3, 2, 1 may
be overwritten before being used to complete the evaluation of the expression.

Another approach is to define a union to overlay byte-wide variables with a 4-byte long integer.
typedef union {

unsigned long v;
char va[4];
struct {char v3,v2,v1,v0;} vs;
} type_sumv;

type_sumv data s; //variable s is placed in `core' on-chip data space

Then use:
s.vs.v3=SUMR3;
s.vs.v2=SUMR2;
s.vs.v1=SUMR1;
s.vs.v0=SUMR0; // SUMR0 is accessed last
reading = f(s.v); // some function of the 4-byte variable v.s

Alternatively, array elements may be used, but the order of subscripts is reversed.
s.va[0]=SUMR3;
s.va[1]=SUMR2;
s.va[2]=SUMR1;
s.va[3]=SUMR0;

Although the code needed to access the union may appear clumsy, it maps to simple inline
assembly-level MOV instructions that take 3 × 4 = 12 machine cycles to execute. In other words, it is
approximately 100 times faster than using multiple shifts.

In the next example, the ADC results register is read using an assembly-level program, which makes
expressions in C more intuitive. This technique may also be used to read the summation register.

74 Analog-To-Digital Converters SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

6.9 ADC Example Program

ADC Example Program

Example 6-1 shows how the ADC may be used in a polled environment with a foreground activity that
produces a pseudo-random binary data stream. The number of characters output per line equals the
temperature of the MSC121x in degrees Celsius (°C). The main program is written in C and calls the boot
ROM to determine the baud rate and an assembly language function to read the ADC conversion. It is
intended for use directly with Texas Instruments' MSC1210-DAQ-EVM or full EVMs with an appropriate
value for ACLK.

Example 6-1. ADC Program

// Polledadc.c - Pseudo Random Binary Sequence generator with Polled ADC
// MSC1210 EVM Switches 1:On SW3-12345678 SW6-12345678
// 0:Off 11110111 11110000
#include <Reg1210.h>
#include <stdio.h>
sbit RedLed = P3^4; // RED LED on EVM
sbit YellowLed = P3^5; // Yellow LED on EVMcode at 0xFFF3 void autobaud(void);
extern signed long bipolar(void); // reads ADC value
void main(void)
{ data char mask=0x8E, r=1,n,j,x, temp=50, count=255;
data signed long reading; data int iy; data float y;

//PDCON = 0x0f7; // would turn adc on, but turn other subsystems off
//PDCON &=~0b00001000; // turns on adc and leaves other subsystems unchanged
PDCON &=~0x08; // turns on adc and leaves other subsystems unchanged
//ACLK = 2; // ACLK frequency = 1.8432MHz/(2+1) = 0.6144MHz for MSC1210-DAQEVM
ACLK = 17; // = 11.0592MHz/(17+1) = 0.6144MHz for MSC1210EVM

//ACLK = 35; // = 22.1184MHz/(35+1) = 0.6144MHz for MSC1211EVM
DECIMATION = 1920 ; // => 200ms per conversion

//ODAC=0; // offset DAC is zero after RESET
//ADCON0 = 0b00100000; // BOD off, Vref on, 1.25V, Buff off, PGA 1
ADCON0 = 0x20; // BOD off, Vref on, 1.25V, Buff off, PGA 1
autobaud();
printf("MSC121x Random bit generator with polled ADC\n");
printf("Readings begin in (14+3)*200ms = 3.4 seconds \n");
ADMUX = 0xff; // Select Temperature diodes
ADCON1 = 0x01; // bipolar, auto mode, self calibration - offset and gain
for (j=0;j<3;j++) {
while (!(AIE & 0x020)) {}
reading=bipolar(); // discard 3 conversions after calibration

}
RI_0 = 0; // Clear received flag in USART
while (!(AIE & 0x20)); // wait for conversion
while(1){
while(!RI_0) {

if (AIE & 0x20) { // test ADC interrupt flag
reading=bipolar(); // get reading and clear flag

// y=(reading-692199)/2534.1; // simple theoretical
// y=(reading-700875)/2567.1; // convert to Degrees C (empirical 1)

y=(reading-704509)/2595.1; // convert to Degrees C (empirical 2)
iy=y+0.5; // nearest integer
if ((iy>0) && (iy<50)) temp=iy; // clamp range
}

if (count>=temp) { // if line length >= temperature
printf("\n%3d ",temp); // output new line and temperature
YellowLed=RedLed;

count=0;
}

SBAU101A–July 2005–Revised March 2007 Analog-To-Digital Converters 75
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

ADC Example Program

Example 6-1. ADC Program (continued)

n=r & mask; // PRBS generator with 4-bit feedback
j=0; // j will become the sum of 1's in n
while (n)

{n&=(n-1); j++;}
r=(r+r)+(j&1); // shift r left with LSB of sum
if (r&1) putchar('*'); // Note: putchar takes 28 machine cycles
else printf("."); // but printf takes 354 machine cycles
count++; // increment character count

}
RI_0 = 0;
while(!RI_0); // wait for character
RI_0 = 0;
} // continue

}

From TI fileUtilities.A51:
File name: utilities.a51
;
; Copyright 2003 Texas Instruments Inc as an unpublished work.
; All Rights Reserved.
;
; Revision History
; Version 1.1
;
; Assembler Version (Keil V2.38), (Raisonance V6.10.13)
;
; Module Description:
; ADC routines to read 24-bit ADC and return the value as a long integer.

;***
$include (legal.a51) ; Texas Instruments, Inc. copyright and liability
$include (reg1210.inc)
;***
PUBLIC unipolar, bipolar, read_sum_regs
adc_sub SEGMENT CODE

RSEG adc_sub

;;;;;;;;;;;;;;;;;;;;;
; unsigned long unipolar(void)
; return the 3 byte adres to R4567 (MSB~LSB)
; unsigned long int with R4=0
unipolar:

mov r4,#0
mov r5,adresh
mov r6,adresm
mov r7,adresl
ret

;;;;;;;;;;;;;;;;;;;;;
; signed long bipolar(void)
; return the 3 byte adres to R4567 (MSB~LSB)
; return signed long int with sign extendsion on R4
bipolar:

mov r4,#0
mov a,adresh
mov r5,a
mov r6,adresm
mov r7,adresl
jnb acc.7,positive
mov r4,#0ffh

positive:
ret

76 Analog-To-Digital Converters SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

ADC Example Program

Example 6-1. ADC Program (continued)

;;;;;;;;;;;;;;;;;;;;;
; signed long read_sum_regs(void)
; return the 4 byte sumr to R4567 (MSB~LSB)
; return signed long int, sign extension done by hardware
read_sum_regs:

mov r4, SUMR3;
mov r5, SUMR2;
mov r6, SUMR1;
mov r7, SUMR0;
ret

end

Produces:
MSC121x Random bit generator with polled ADC
Readings begin in (14+3)*200ms = 3.4 seconds
25 .**...****.*....********.
25 .*....*.*..*****.*.*.*.**
25 *.....**...*.*.**..**..*.
25 ******.****..**.***.***..*
26 .*.*..*.*...*..*.**.*...**
26 ..***..****...**.**....*...
27 *.***.*.****.**.*****....**
27 .*..**.*.**.**.*.*.....*..*
27 **.**..*..*..**......***.*..
28 *...***...*.......*.**...***
28 *.*....********..*....*.*..*
28 ****.*.*.*.***.....**...*.*.
28 **..**..*.******.****..**.**
28 *.***..*.*.*..*.*...*..*.**.
28 *...**..***..****...**.**....
29 *...*.***.*.****.**.*****....
29 **.*..**.*.**.**.*.*.....*..*

Note: The temperature is shown in degrees Celsius (°C) followed by the same number of
pseudo-random characters. The temperature was increased from 25°C to 29°C by
touching the MSC121x with a finger.

The .**...****. pattern repeates every 255 characters.

SBAU101A–July 2005–Revised March 2007 Analog-To-Digital Converters 77
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

Analog-To-Digital Converters78 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

Chapter 7
SBAU101A–July 2005–Revised March 2007

Digital-To-Analog Converters

This chapter describes the digital-to-analog converters (DACs) of the MSC121x.

Topic ... Page

7.1 Introduction... 80
7.2 DAC Selection ... 81
7.3 DAC Configuration and Control ... 83
7.4 DAC Technology and Limitations... 84
7.5 DAC Example Program ... 84

SBAU101A–July 2005–Revised March 2007 Digital-To-Analog Converters 79
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

7.1 Introduction

VDAC� DAC REF� DAC
65, 536

DAC3

DAC2

DAC1

DAC0

21 AIN3/VDAC3

AIN2/VDAC2

VDAC1

VDAC0

DAC

Sink

Connection

AIN0/IDAC0

RDAC0

AIN1/IDAC1

RDAC1

20

31

19

32

17

Current
Mirror

Current
Mirror

18

16

Sink

Source

Sink

Source

REFOUT/
REF IN+

AVDD

30

REF
2.5V/1.25V

28

0.1µF

Introduction

The MSC1211/12 contain four mutually independent 16-bit DACs, referred to as DAC0 to DAC3. The
MSC1213/14 contain two mutually independent 16-bit DACs, referred to as DAC0 and DAC1. Each DAC
produces a voltage as shown in the following equation:

where:
DAC REF is the selected DAC reference
DAC is the value written to the DAC register.

PDDAC, bit 6 of PDCON at F1h, must be '0' for the DACs to be altered via DACL, DACH, and DACSEL at
B5h, B6h and B7h, respectively. When PDDAC is '1', a DAC may remain active. To power-down and
isolate a DAC output, the output mode bits, DOMx_1 and DOMx_0, in the appropriate control register,
must both be '1' (default).

When VREF is selected, the voltage on the REFOUT/REF IN+ pin is used as the reference for the DAC.
Consequently, if either the 2.5V or 1.25V on-chip reference is used, the ADC subsystem must be powered
up using bit 3 of PDCON.

In addition, voltage-to-current converters may be selectively enabled for DAC0 (or DAC1) and result in a
scaled current, as well as a voltage on separate pins. If bit 5 of DAC0CON (or DAC1CON) is '0', a current
equal to DAC0/RDAC0 (or DAC1/RDAC1) is generated via a current mirror and flows out of the MSC1211
from the AVDD supply.

The analog pathways are depicted in Figure 7-1, along with pin allocations, some of which are multiplexed
with inputs to the ADC.

Figure 7-1. DAC Architecture

80 Digital-To-Analog Converters SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

7.2 DAC Selection

DAC Selection

Each DAC has an 8-bit control register, a buffered 16-bit data register, and two additional bits, which
determine the way that the output data register is loaded.

Three SFRs are used to access and control the DACs using an indirect addressing scheme. This
configuration makes accessing each DAC more involved than simply writing to independent SFRs, but has
the advantage of using the SFR memory space efficiently.

The DAC select register (SFR B7h), determines the individual DAC buffer or control register to be
accessed, as well as the shared Load Control Register. The interpretation of SFRs B6h and B5h depends
upon the value in DACSEL, as shown in Table 7-1.

Table 7-1. DACSEL Values
DACSEL (B7h) DACH (B6h) DACL (B5h) Reset Value

00h DAC0 (high) DAC0 (low) 0000h

01h DAC1 (high) DAC1 (low) 0000h

02h DAC2 (high) DAC2 (low) 0000h

03h DAC3 (high) DAC3 (low) 0000h

04h DAC1CON DAC0CON 6363h

05h DAC3CON DAC2CON 0303h

06h — LOADCON xx00h

07h to FFh Reserved Reserved Reserved

The way a DAC output register is loaded is determined by two bits in the Load Control Register
(LOADCON) as shown in Table 7-2 and Table 7-3. The LOADCON register is accessed indirectly via the
SFR at B5h when DACSEL = 06h.

Table 7-2. LOADCON SFR
DACSEL = 7 6 5 4 3 2 1 0 Reset Value06h

DAC3 DAC2 DAC1 DAC0
SFR B5h 00h

D3LOAD1 D3LOAD0 D2LOAD1 D2LOAD0 D1LOAD1 D1LOAD0 D0LOAD1 D0LOAD0

Table 7-3. DxLOAD Output Modes for DACx
DxLOAD[1:0] DxLOAD Output Mode for DACx

A write to the DAC high byte (DACxH) is directed to the upper byte of the 16-bit data buffer and does not alter
Direct Load the output register.

00 A write to the DAC low byte (DACxL) is directed to the lower byte of the 16-bit data buffer, which is immediately
copied to the output register.

Delayed load Values are written to the DACxH/DACxL16-bit data buffer, which will be transferred to the DAC output register
01 on the next tick of the MSEC system timer register (see SFRs FDh and FCh).

Delayed load Values are written to the DACxH/DACxL16-bit data buffer, which will be transferred to the DAC output register
10 on the next tick of the HMSEC system timer register (see SFR FEh)

Synchronized load Values are written to the DACxH/DACxL16-bit data buffer, which will be transferred to the DAC output register
11 when 11b is (re)written to these bits.

SBAU101A–July 2005–Revised March 2007 Digital-To-Analog Converters 81
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

DAC Selection

Direct load mode 00b provides a simple means of updating DACs in an arbitrary order and at various
times according to the flow of the user's program. For a particular DAC, it is essential that DACH is written
before DACL. The code sequence to write C147h to DAC2 in mode 00b is shown in Example 7-1.

Example 7-1. DAC Loading

C Language Assembly Language

DACSEL = 0x06; MOV DACSEL,#6

DACL = 0x00; MOV DACL,#0

DACSEL = 0x02; MOV DACSEL,#2

DACH = 0xC1; MOV DACH,#0C1H

DACL = 0x47; MOV DACL,#47H

or DAC = 0xC147; not MOV DACL,#47H

MOV DACH,#0C1H

In cases where synchronization is essential, three methods are provided. Delayed modes 01b and 10b
assume that all DACs will be updated at regular intervals, as determined by the milliseconds timer (MSEC)
or the hundreds of milliseconds timer (HMSEC), respectively. In either of these modes, the program
should ensure that all DAC buffers are reloaded as required before the corresponding timer tick. Note that
an interrupt service routine may be associated with MSEC but not directly with HMSEC.

For applications where multiple DACs must be updated synchronously under direct program control, mode
11b is provided. Once this mode is established, values written to the data registers are transferred to the
output registers when mode 11b is rewritten to the control bits.

Given that the settling time of the DACs is approximately 8µs, it is possible for all four DACs to be updated
by software within this time scale (using mode 0), apparently causing them to change together. However,
in general, this condition would only be true in environments without interrupts. Care should be taken
when using load mode 00b with what appear to be sequential updates of different DACs. In terms of
program flow, they may appear adjacent, but interrupt activity will cause them to be separated in time.

Digital-To-Analog Converters82 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

7.3 DAC Configuration and Control

DAC Configuration and Control

Each DAC has a corresponding control register DACxCON (x = 0 to 3), which is used to configure its
mode of operation, as summarized in Table 7-4.

Table 7-4. DAC Control Registers
DACSEL

SFR x DAC 7 6 5 4 3 2 1 0 Reset Value

sel = 04h
0 COR0 EOD0 IDAC0DIS 0 0 SELREF0 DOM0_1 DOM0_0 63h

SFR B5h

sel = 04h
1 COR1 EOD1 IDAC1DIS 0 0 SELREF1 DOM1_1 DOM1_0 63h

SFR B6h

sel = 05h
2 0 0 0 0 0 SELREF2 DOM3_1 DOM2_0 03h

SFR B5h

sel = 05h
3 0 0 0 0 0 SELREF3 DOM3_1 DOM3_0 03h

SFR B6h

where:

Bit Name Meaning(s)

Write:

0: Release from high-impedance state back to normal mode unless an
over-range (still) exists.

1: NOP

Read:COR0 Current Over RangeCOR1 0: IDACx is not over-current

1: IDACx is over 125mA

If EODx = 0, the indication is immediate.

If EODx = 1, the over-current condition must occur for three consecutive ticks
of MSEC.

0: Disable over-current detectionEOD0 Enable Over-Current DetectionEOD1 1: Enable over-current detection (default)

0: DACx reference is AVDD (default)
SELREFx Select Reference

1: DACx reference is REFOUT/REF IN+ pin (see SFR DCh)

and:

DOMx[1:0] Voltage VDACx, x = 1, 2, 3 Current IDACx, x = 0,1

00 Normal output IDAC controlled by IDACxDIS

01 Output off 1k to AGND IDAC off

10 Output off 100k to AGND IDAC off

11 Output off high impedance (default) IDAC off (default)

Under normal operating conditions the maximum current output of either IDAC0 or IDAC1 should be no
more than 25mA, as set by VREF/RREF, with the additional constraints that VREF is no more than 2.5V and
AVDD is at least 1.5V above VREF. CORx will be set when the current reaches approximately 125mA, with
a range of 50mA to 225mA due to process variations. If a fault condition is to be triggered by CORx,
ensure that the current capability of AVDD supply is sufficiently large.

When EODx is '1' and an over-current condition is detected, CORx will change to '1' and the DAC outputs
(current and voltage) will be disabled until released by writing a '0' to CORx.

IDACxDIS and DOMx bits are not altered by the over-current protection mechanism.

If EODx is '0' (depending upon the specific application), the program should poll the CORx bit to confirm
that an over-current condition does not exist.

SBAU101A–July 2005–Revised March 2007 Digital-To-Analog Converters 83
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

7.4 DAC Technology and Limitations

7.5 DAC Example Program

DAC Technology and Limitations

The DACs in the MSC1211 are based upon the 16-bit DAC type DAC8531, also manufactured by Texas
Instruments. Consequently, all DACs use a string of tapped resistors to establish a scale of voltages that
are ensured to be monotonic, which is essential for many closed-loop control systems. This design is
effectively equivalent to 65,536 resistors that can be tapped for voltages from AGND to the DAC reference
voltage.

The output amplifiers for the DACs cannot reach 0V and must have at least 1.5V of operating headroom;
that is to say, AVDD should be 1.5V above the maximum voltage output by a DAC. Due to this former
constraint, DAC codes below about 0200h are not recommended and are precluded from linearity
calculations used in the preparation of electrical characteristics, as found in product datasheets. Increased
nonlinearity may also be seen for near full-scale codes when the headroom constraint is not satisfied (for
example, when a DAC uses the on-chip 2.5V reference and AVDD is less than 4.0V).

The linearity of the DAC can be improved with the techniques discussed in Application Note SBAA112,
MSC1211/12 DAC INL Improvement, available for download at www.ti.com.

For DACs operating in voltage mode, the reference voltage may extend to AVDD but the output voltage
should remain 1.5V lower.

The nominal reference current is 25µA per DAC. Therefore, when the internal voltage reference is
disabled and VREF is derived from an external source connected to the REFOUT/REF IN+ pin, the origin
and impedance of the source voltage should be considered.

Example 7-2 shows a C program in which a variable, i, ranges from 0 to 250 in steps of 10. For each
value, 250 × i, i × i, and (40 × i / 252)3 are calculated using only integer arithmetic. The three functions are
computed at different times, but synchronous load mode 11b ensures that DACs 1, 2, and 3 are updated
simultaneously; this timing may be verified with an oscilloscope. Note that the ADC has to be powered to
make the internal voltage reference available.

Example 7-2. DAC Program

// File DAC04 - Testing DAC on MSC1211 with direct and synchronous loading
// MSC1211 EVM Switches 1:On SW3-12345678 SW5-12345678
// 0:Off 11110111 11110000

#include <Reg1211.h>

data unsigned int i,j;

void main(void) {
PDCON &= ~0x48; // Turn on dacs and adc
ADCON0 = 0x30; // REFOUT/REFIN+ = Internal 2.5V ref
DACSEL=6; DACL=0xFC; // load DACs 3,2,1 simultaneously
DACSEL=4; DACL=0x24; // DAC0 IDAC=off, Ref=REFOUT/REFIN+

DACH=0x24; // DAC1 IDAC=off, Ref=REFOUT/REFIN+
DACSEL=5; DACL=0x24; // DAC2 Ref=REFOUT/REFIN+

DACH=0x24; // DAC3 Ref=REFOUT/REFIN+
while(1) {
DACSEL=0; DAC=0x8000; // 1.25 V pulse on DAC0
for(j=0; j<100; j++); // delay
DAC=0; // Synchronize 'scope to negative edge
for(i=0; i<251; i+=10){

DACSEL=1; DAC=250*i; // Linear (DAC1)
DACSEL=2; DAC=i*i; // Square (DAC2)
DACSEL=3; j=40*i; j=j/252; DAC=j*j*j; // Cube (DAC3)
DACSEL=6; DACL=0xFC; // load DACs 3,2,1 simultaneously

}
}

}

84 Digital-To-Analog Converters SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://focus.ti.com/docs/prod/folders/print/dac8531.html
http://www-s.ti.com/sc/techlit/SBAA112
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

Chapter 8
SBAU101A–July 2005–Revised March 2007

Pulse-Width Modulator and Tone Generator

This chapter describes the pulse-width modulator (PWM) and tone generator of the MSC121x.

Topic ... Page

8.1 Description.. 86
8.2 PWM Generator Example .. 87

SBAU101A–July 2005–Revised March 2007 Pulse-Width Modulator and Tone Generator 85
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

8.1 Description

Description

The PWM subsystem consists of the following components:

• 6-bit control register PWMCON
• 16-bit Period register (P) and 16-bit Duty register (D), which share the same SFR addresses
• 16-bit down-counter, 16-bit comparator, and a finite state machine
• A single output pin shared with bit 3 of Port 3

The PWM subsystem is enabled by:

1. Making bit 4 of PDCON at F1h equal to 0
2. Making bit 3 of P3 equal to 1
3. Configuring bit 3 of Port 3 to be a standard 8051 port, or open drain. This configuration is achieved by

writing '002' or '102' to bits 7 and 6, respectively, of P3DDRL.

The mode of operation is determined by bits within PWMCON, as summarized in Table 8-1.

Table 8-1. PWMCON—PWM Control (1)

PWMCON SFR A1h Reset Value = 00h

Bit # Name Action or Interpretation

7 — Not used

6 — Not used

Period Polarity

5 PPOL 0: Duty register determines the time the PWM output is high

1: Duty register determines the time the PWM output is low

PWM Register Select

4 PWMSEL 0: Data written to PWLHI:PWMLO, at A3h and A2h, respectively, will be directed to the Period register

1: Data written to PWLHI:PWMLO, at A3h and A2h, respectively, will be directed to the Duty register

Speed Select

3 SPDSEL If 1, the down counter is clocked every tCLK seconds.

Otherwise, the down counter is clocked every tCLK× (USEC+1), where USEC is the 5-bit SFR at FBh.

000: Disable High Impedance = HiZ

001: PWM If PPOL is 0, then output is high for D every P and Duty cycle = D/P
If PPOL is 1, then output is low for D every P and Duty cycle = (P–D)/P2-0 TPCNTL (1)

011: Square Low for P; High for P

111: Staircase High for (P–Z); HiZ for Z; Low for (P–Z); HiZ for Z
(1) P = Period[15:0] + 1; D = Duty[15:0]; Z = Period[15:2] (that is, the integer part of Period divided by 4). For large P, Z is

approximately P/4.

The PWM output may be filtered to give a dc level, or used directly in switching systems with inherent
filtering to produce a variable effect. Typical examples of the latter are the brilliance control of a lamp, the
power of a heating element, or the speed control of a dc motor.

When the staircase mode is used, the output repeats as a (strong 1, High-Z, strong 0, and High-Z).

If a PWM signal is used in a closed-loop, real-time control system, the Duty register will be regularly
updated as part of normal operation. Since this 16-bit register is modified by writing to two 8-bit SFRs,
there is a possibility that either an interrupt will occur between the writes, or the PWM generator will use
the Duty register between writes. In either case, one or more cycles may occur with the wrong 16-bit value
and cause undesired perturbation of the controlled system. To avoid this possibility, writes to the Duty (or
Period, or Tone) register should be protected from interrupts and/or synchronized with changes on pin
P3.3. Since this pin is shared, INT1 may be monitored to assist in synchronization in PWM and
square-wave modes.

In PWM mode, if the value in the Duty register is larger than that in the Period register, the output is held
either low or high depending on the state of PPOL (bit 5) in PWMCON.

Pulse-Width Modulator and Tone Generator86 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

8.2 PWM Generator Example

PWM Generator Example

Table 8-2. PWM Output

PPOL Condition Duty Cycle % High

0 Period = X, Duty = 0 0

0 0 < Duty ≤ Period Intermediate value

0 Duty > Period 100

1 Period = X, Duty = 0 100

1 0 < Duty ≤ Period Intermediate value

1 Duty > Period 0

Example 8-1 shows how the generator can be configured in PWM, Square, or Staircase modes. It also
indicates how to use the system timers to produce an interrupt every second. Once a particular mode is
selected after reset, it should not be changed until after another reset. However, any mode may be
disabled and then restored.

Example 8-1. PWM Generator

// File TONE4.c - Testing Tone generator
// 0:Off 11110111 11110000
#include <Reg1211.h>
#include <stdio.h>
#define xtal 22118400
#define divA xtal/440 // Concert pitch 'A'
sbit RedLed = P3^4; // RED LED on EVM
sbit YellowLed = P3^5; // Yellow LED on EVM
data unsigned char i,tout;
typedef enum {null, pwm, square, staircase} pwmtype;
code at 0xFFF3 void autobaud(void);

/* Auxiliary Interrupt */
void AuxInt(void) interrupt 6 using 1
{ char temp;
YellowLed=!YellowLed;
if (tout) tout--;
temp=SECINT; // remove seconds interrupt flag
EICON&=~0x10; // remove AI flag

}

void beep(unsigned int divisor, unsigned char time, pwmtype type)
{ PWMCON&=~0x37; // POL=0, PWMSEL=0, disable
TONE=divisor; // Period register
switch(type) {
case null: break;
case pwm:
{ PWMCON|=0x10; // Duty register
TONE=9*(unsigned long)divisor/10;
PWMCON|=1; // pwm
break; }

case square:
{ PWMCON|=3; // square
break; }

case staircase:
{ PWMCON|=7; // staircase
break; }

}
tout=time;
while(tout);

}

SBAU101A–July 2005–Revised March 2007 Pulse-Width Modulator and Tone Generator 87
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

PWM Generator Example

Example 8-1. PWM Generator (continued)

void main(void)
{ PDCON&=~0x12; // power up PWM generator and seconds
tout=0; // time-out is over
MSEC=xtal/1000-1; // 1ms tick
HMSEC=100-1; // 100ms tick
SECINT=0x89; // write 9 immediately for 10 x 100 ms
RedLed=0; // indicate start of autobaud
autobaud(); // set up serial rate
AIE=0x80; // enable Seconds interrupt
EICON|=0x20; // enable auxiliary interrupt
PWMCON=0x08; // PWMSEL=Period Register, fclk
INT1=1; // Pin P3.3 is high
P3DDRL&=~0xC0; // 8051 output
RedLed=1; // indicate waiting for carriage return
while(1){
printf("\nPress 1 (PWM), 2 (SQUARE) or 3 (STAIRCASE)\n"); // prompt
RI_0 = 0; // wait for character
while(!RI_0);
i=SBUF0&3; // limit range
RI_0=0;
printf("Tone in Progress...");
switch(i) {

case 0 : break;
case 1 : {
beep(divA-1,3,pwm); // parameters computed at compile-time
break; }

case 2 : {
beep(divA/2-1,4,square); // divA/2-1 is 25133.54, truncated to 0x622d
break; }

case 3 : {
beep(divA/2-1,5,staircase);
}

}
printf("Tone Complete\n");
beep(0,1,null);
printf("Press Enter or <cr> \n\n");
SRST=1; SRST=0; //RESET
}

}

88 Pulse-Width Modulator and Tone Generator SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

Chapter 9
SBAU101A–July 2005–Revised March 2007

Inter-IC (I2C) Subsystem

This chapter describes the Inter-IC (I2C) subsystem of the MSC1211 and MSC1213.

Topic ... Page

9.1 Introduction to the I2C Bus.. 90
9.2 I2C Terminology ... 90
9.3 I2C Bus Lines and Basic Timing... 91
9.4 I2C Data Transfers and the Acknowledge Bit ... 92
9.5 I2C Principal Registers.. 93
9.6 I2C Related Registers.. 96
9.7 I2C Example—MSC1211/13 as a Master... 97
9.8 I2C Example—MSC1211/13 as a Slave... 99
9.9 I2C Example—MSC1211/13 as an Interrupt-Driven Slave........................ 100
9.10 I2C Synchronization and Arbitration.. 101
9.11 I2C Fast Mode .. 101
9.12 I2C General Call.. 101
9.13 I2C 10-Bit Addressing.. 102

SBAU101A–July 2005–Revised March 2007 89Inter-IC (I2C™) Subsystem
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

9.1 Introduction to the I2C Bus

9.2 I2C Terminology

Introduction to the I2C Bus

The MSC1211/13 provide hardware support for serial transfers according to the I2C protocol. This protocol
was defined to permit multiple 8-bit transfers between multiple integrated circuits on the same 2-wire bus.
At any one time, a bus master coordinates transfers from one slave or to multiple slaves.

For a detailed description of the I2C bus, refer to the I2C-bus specification by Philips.

For many systems where the MSC1211/13 is the only microcontroller, it will be the master, and coordinate
the transfer of data between itself and slave ICs. If active, it can transmit data onto the I2C bus or receive
data from the bus. In either case, it generates the synchronizing clock.

Similarly, where the MSC1211/13 is considered a slave to another microcontroller, it is able to transmit
and receive data synchronized by this master.

Many MSC1211/13s can share a single I2C bus where each acts as a master at different times. The active
master can be determined by software or result from bus arbitration in the event of asynchronous
contention.

Table 9-1 describes selected I2C terms.

Table 9-1. I2C Terminology

Name Description

Transmitter The IC that sends data to the bus

Receiver The IC that receives data from the bus

Master The IC that initiates a transfer, generates clock signals, and terminates a transfer

Slave The IC addressed by a master

Multi-master More than one master can attempt to control the bus at the same time without corrupting the message

Procedure to ensure that if more than one master simultaneously tries to control the bus, only oneArbitration master is allowed to do so and the message is not corrupted

Synchronization Procedure to synchronize the clock signals of two or more ICs

90 SBAU101A–July 2005–Revised March 2007Inter-IC (I2C™) Subsystem
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

9.3 I2C Bus Lines and Basic Timing

SCL
IN

SCLN1
OUT

DATAN1
OUT

DATA
IN

SCLK

Device 1 Device 2

SDA (Serial Data Line)

Pull−Up
Resistors

SCL (Serial Clock Line)

+VDD

RP RP

SCL
IN

SCLN2
OUT

DATAN2
OUT

DATA
IN

SCLK

SDA

SCL PS

START Condition STOP Condition

SDA

SCL

Data Line Stable,
Data Valid

Change
of Data
Allowed

I2C Bus Lines and Basic Timing

The I2C bus uses two bidirectional data lines. One is the data line (SDA), and the other is the clock line
(SCL). Each is connected to a positive supply voltage via a pull-up resistor; when the bus is free, both
lines are high.

The output stages of I2C interfaces connected to the bus must have an open drain or open collector to
perform the wired-AND function. The original specification for the I2C bus allowed the data transfer rate to
be up to 100kbits/s; however, this has been extended to 400kbits/s in fast mode, which is supported by
the MSC1211/13. In either mode, the maximum rate is determined by the value of the pull-up resistors and
the capacitance to ground.

Figure 9-1. I2C Bus Connection of Standard and Fast Mode Devices

Unique START and STOP conditions are identified when SCL is high and SDA changes. If SDA changes
from 1 to 0, a START condition is created; if SDA changes from 0 to 1, a STOP condition is created. All
ICs connected to the bus, including the MSC1211/13, recognize and respond to START and STOP
conditions. For a data-bit transfer, SCL is pulsed high while SDA is stable.

Figure 9-2. START and STOP Conditions

Figure 9-3. I2C-Bus Bit Transfer

SBAU101A–July 2005–Revised March 2007 91Inter-IC (I2C™) Subsystem
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

9.4 I2C Data Transfers and the Acknowledge Bit

P

SDA

SCL

STOP
Condition

S

START
Condition

1 2 3− 8 9

ACK

9

ACK

7 81 2

MSB

Slave Address Data to Slave

A6 A0 R/W

Acknowledgement
from Receiver

Byte Complete Clock Line Held Low By Receiver

Acknowledgement
from Receiver

S

START
Condition

97 821

Acknowledgement
Clock Pulse

Transmitter
Data Output

Receiver
Data Output

Master
SCL

I2C Data Transfers and the Acknowledge Bit

Once a master asserts a START condition, the bus is no longer free. The master then transmits eight bits
comprised of the 7-bit address of the slave followed by a read/write (R/W) bit. In a system with multiple
asynchronous masters, there may be a period of bus contention and arbitration before the address of the
slave is transmitted.

If the slave is to receive data, the R/W bit must be 0; otherwise, it will prepare to transmit data (since the
R/W bit is 1). For some I2C devices, such as memories, it is necessary to first write an internal address to
the slave and then read or write data bytes. In this case, a START condition can be re-asserted.

When a master has generated eight SCL pulses, it places its own SDA output high and generates a ninth
clock pulse. If the addressed slave has responded, it will have pulled the SDA line low; this represents an
acknowledgement (ACK). However, if the addressed slave leaves the SDA line high, the master
recognizes that the slave has not acknowledged (NACK) the transfer.

Figure 9-4. I2C-Bus Data Transfer

Once addressed, a multi-byte data transfer can be terminated when a slave generates a NACK rather
than the usual ACK. In addition, after the acknowledge bit, a slave may pull the SCL line low while it
performs local processing; this action often occurs when the slave is a microcontroller that executes a
time-consuming interrupt service routine (ISR). While the SCL line is held low, the master will wait.

Figure 9-5. I2C Acknowledge

If a master issues a slave address with a R/W bit that is 1, it will become a master receiver when the slave
responds with an ACK. Thereafter, the slave provides data bytes to the master, but releases the SDA line
every ninth clock pulse and samples the acknowledgement that is provided by the master. Typically, the
master will generate ACKs for as long as it expects more data, and then generate a NACK to inform the
slave on the last byte.

92 SBAU101A–July 2005–Revised March 2007Inter-IC (I2C™) Subsystem
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

9.5 I2C Principal Registers

I2C Principal Registers

There are four principal special function registers (SFRs) associated with the MSC1211/13 I2C interface.
These SFRs are:

• I2CCON at 9Ah—provides primary control
• I2CDATA at 9Bh—provides data
• I2CGCM at 9Ch—provides additional control
• I2CSTAT at 9Dh—provides status

The I2C Control register (I2CCON) is described in Table 9-2.

Table 9-2. I2CCON—I2C Control Register
I2CCON SFR A9h Reset Value = 00h

Bit # Name Action or Interpretation

Read: Current status of START condition or repeated START condition

Write:

0: No action
START7 1: Transmit a START conditionvalid only if MSTR = 1

If the bus is not free, a START condition will be transmitted after a STOP condition has been received. If the
START bit is set after at least one byte has been transmitted, a repeated START condition is transmitted after
the current data transfer is completed. If both START and STOP are set while the bus is free, a START
condition will be followed by a STOP condition.

Read: Current status of STOP condition

Write:

0: No action6 STOP
1: Transmit a STOP condition

If both START and STOP are set during a data transfer, a STOP condition is transmitted followed by a
START condition.

Defines the type of acknowledgement generated during the acknowledge cycle.

Master or slave receiver write:

0: Not acknowledge (NACK, high level on SDA) is generated

5 ACK 1: Acknowledge (ACK, low level on SDA) is generated

Slave transmitter write:

0: The current byte will be the last byte transmitted because NACK occurs

1: One or more bytes to follow the current transaction because ACK occurs.

4 Reserved. Always write '0'.

Write:

3 FAST 0: Standard Mode (100 kHz)

1: Fast Mode (400 kHz)

Write:

2 MSTR 0: Slave mode

1: Master mode

Write:

0: No effect
1 SCLS

1: Remove stretch of SCL low, when in slave mode

Allowed only after I2C master has put SCL low.

50ns glitch filter

Write:
0 FILEN

0: Filter disabled

1: Filter of approximately 50ns is enabled

SBAU101A–July 2005–Revised March 2007 93Inter-IC (I2C™) Subsystem
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

I2C Principal Registers

All I2C bytes are written to, or read from, I2CDATA. When the byte written represents an I2C slave
address between 00010002 and 11110112, bit 0 is the R/W flag, such that R/W = 1 for read and R/W = 0
for write (see Table 9-3).

Table 9-3. I2CDATA SFR
I2CDATA Reset
SFR 9Bh 7 6 5 4 3 2 1 0 Value

Data MSB LSB 00h

Address MSB LSB R/W 00h

Bit 7 of I2CGM at 9Ch is used to control the behavior of a slave to the General Call address, or to allow
multiple masters (see Table 9-4).

Table 9-4. I2CGM—I2C General Call / Multiple Master Control

I2CGM SFR 9Ch Reset Value = 00h

Bit # Name Action or Interpretation

Write only.

Slave mode write:

0: General Call address will be ignored

7 GCMEM 1: General Call address will be detected

Master mode write:

0: Single master

1: Multiple Master mode

In master mode, a write to I2CSTAT sets the frequency of the SCL line to SYSCLK/[2 × (SCKD + 1)],
where the minimum value allowed for SCKD is 3. In slave mode, a write to I2CSTAT sets the slave
address in bits 6 to 0, which is only recognized if Slave Address Enable (SAE) is 1. Table 9-5 shows the
I2CSTAT SFR.

Table 9-5. I2CSTAT SFR
I2CSTAT Reset
SFR 9Dh 7 6 5 4 3 2 1 0 Value

Read STAT7 STAT6 STAT5 STAT4 STAT3 0 0 0 x

Write SAE SA6 SA5 SA4 SA3 SA2 SA1 SA0 00h

Write SCKD7 SCKD6 SCKD5 SCKD4 SCKD3 SCKD2 SCKD1 SCKD0 x

94 SBAU101A–July 2005–Revised March 2007Inter-IC (I2C™) Subsystem
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

I2C Principal Registers

In either mode, reading I2CSTAT returns a 5-bit status code that is left-justified and clears the I2C Status
Interrupt flag in bit 2 of AIE. Left-justified status codes can be used to implement jump tables easily. The
I2C status codes are listed in Table 9-6.

Table 9-6. I2C Status Codes
Status Code

State (Hex) Mode Action Taken by the I2C

00 00 Waiting No action

01 08 Master Transmitter/Receiver START condition transmitted

02 10 Master Transmitter/Receiver Repeated START condition transmitted

03 18 Master Transmitter Slave address + W (1) transmitted
ACK received

04 20 Master Transmitter Slave address + W transmitted
NACK received

05 28 Master Transmitter Data byte transmitted
ACK received

06 30 Master Transmitter Data byte transmitted
ACK received

07 38 Master Transmitter Arbitration lost

08 40 Master Receiver Slave address + R (1) transmitted
ACK received.

09 48 Master Receiver Slave address + R transmitted
NACK received

0A 50 Master Receiver Data byte received
ACK transmitted

0B 58 Master Receiver Data byte received
NACK transmitted

0C 60 Slave Receiver Own slave address + W already received
ACK transmitted

0D 68 Invalid Reserved

0E 70 Slave Receiver General call address (00h) received
ACK returned

0F 78 Invalid Reserved

10 80 Slave Receiver Own slave address + W already received
Data byte received
ACK transmitted.

11 88 Slave Receiver Own slave address + W already received
Data byte received
NACK transmitted

12 90 Slave Receiver General call address (00h) received
Data byte received
ACK transmitted

13 98 Slave Receiver General call address (00h) received
Data byte received
NACK transmitted

14 A0 Slave Receiver A STOP or repeated START received while addressed as a
slave or General Call

15 A8 Slave Transmitter Own slave address + R already received
ACK transmitted

16 B0 Invalid Reserved

17 B8 Slave Transmitter Data byte transmitted
ACK received

18 C0 Slave Transmitter Data byte transmitted
NACK received.

19 C8 Slave Transmitter Last data byte transmitted; will switch to non-addressed slave

1A to 1E D0 to F0 Invalid Reserved

1F F8 Invalid Reserved

(1) +W means R/W bit is 0; +R means that R/W bit is 1.

SBAU101A–July 2005–Revised March 2007 95Inter-IC (I2C™) Subsystem
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

9.6 I2C Related Registers

I2C Related Registers

The I2C interface shares pins and registers with the Serial Peripheral Interface (SPI); both interfaces must
not be enabled at the same time via bit 5 (PDI2C) and bit 0 (PDSPI) of Power-Down Control (PDCON)
SFR at F1h.

Table 9-7. PDCON of I2C and SPI
PDCON at F1h

Bit 5 = PDI2C Bit 0 = PDSPI I2C SPI

0 0 Undefined Undefined

0 1 Enabled Disabled

1 0 Disabled Enabled

1 1 Disabled Disabled

The I2C interface uses bit 2 (EI2C) of the Auxiliary Interrupt Enable (AIE) SFR at A6h to enable interrupts,
as well as bit 2 (I2CSI) of the Auxiliary Interrupt Status Register (AISTAT) SFR at A7h and bit 4 (AI) of the
Enable Interrupt Control (EICON) SFR at D8h.

The setup and hold times for data transfers are determined by the frequency, f, of the MSC1211/13
oscillator and the value written to the USEC SFR at FBh. It is expected that USEC is set to (f – 1), where f
is in MHz, so that an internal reference of approximately 1µs is obtained.

Table 9-8. Interrupt Control for I2C
SFR SFR Bit Bit

Name Address Number Name Action or Interpretation

I2C Status Interrupt (before masking)

Read:
AIPOL A4h 2 I2C

0: I2C interrupt inactive

1: I2C interrupt active

Pending Auxiliary Interrupt Register

Read:PAI A5h 3, 2, 1, 0

0011b: indicates I2C interrupt pending

Enable I2C Status Interrupt

Write:

AIE A6h 2 EI2C 0: Masked

1: Enabled (shared vector to address 0033h)

Read:Current value of I2C status interrupt before masking

I2C Status Interrupt

Read:
AISTAT A7h 2 I2CSI

0: I2CSI interrupt inactive or masked

1: I2CSI interrupt active

Enable Auxiliary Interrupt

The Auxiliary Interrupt accesses nine different interrupts that are masked by
AIE (SFR A6h) and identified by AISTAT (SFR A7h) and PAI (SFR A5h).

EICON D8h 5 EAI Write:

0: Auxiliary Interrupt disabled (default)

1: Auxiliary Interrupt enabled

Auxiliary Interrupt Flag

When PAI indicates that there are no pending auxiliary interrupts (that is, all
auxiliary interrupts have been serviced), AI must be cleared by software
before exiting the ISR; otherwise, the interrupt will occur again. Setting AI inEICON D8h 4 AI
software generates an auxiliary interrupt, if enabled.

0: No Auxiliary Interrupt detected (default)

1: Auxiliary Interrupt detected

96 SBAU101A–July 2005–Revised March 2007Inter-IC (I2C™) Subsystem
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

9.7 I2C Example—MSC1211/13 as a Master

I2C Example—MSC1211/13 as a Master

In order to transmit or receive data via the I2C bus, the programmer must write code that generates the
sequence of transfers required by each particular I2C device. The transition between states is reflected in
the I2C status codes returned via I2CSTAT. Depending upon the frequencies of the system clock and
SCL, as well as overall complexity, the programmer may choose to use inline code or make use of
interrupt structures. Care should be taken to account for all possible state transitions in case the program
becomes stuck waiting for a condition that does not occur; for example, when an unexpected NACK is
received.

The program uses the MSC1211/13 to coordinate data transfers between a real-time clock (PCF8593) and
an I/O port (PCF8574A) to cause its bit 7 to pulse once per second. The control byte at address zero
within the PCF8593 is repeatedly redefined and while this is not strictly necessary, it is convenient in
Example 9-1. After writing this byte, the internal address is automatically incremented so that it points to
the fractions-of-a-second register.

Example 9-1. MSC1211 as a Master

// Program RTCIO_02.c
// MSC1211 to/from Philips PCF8593 Real Time Clock at address A2 and
// PCF8574A 8 bit I/O port at address 7E
// Including synchronisation with SCL
#include "stdio.h"
#include "REG1211.h"
#PRAGMA NOIP

code at 0xFFF3 void autobaud(void);
char i,i1,i2,i3; // global Variables

void main() {

PDCON = 0x5F; // enable I2C alone
autobaud(); printf("I2C RTC to IO \n\n");
RI_0 = 0;
USEC = 21; // divide by 22
I2CCON = 0x04; // NACK, 0, Normal,

// Master, No stretch, Not Filtered
I2CGM = 0x00; // single master
I2CSTAT = 0x6D; // for 22MHz osc, 100 kHz clock

while (1){
while (!RI_0) { // continue until serial character
I2CCON|= 0x80; // START
while (!(AIE&0x04)); // wait for I2C interrupt flag
i=I2CSTAT; if(i!=0x08) break; // handle unexpected condition
while (SCL); // wait

I2CDATA = 0xA2; // Slave address with write bit
while (!(AIE&0x04)); // wait for I2C interrupt flag
i=I2CSTAT; if(i!=0x18)break; // handle unexpected condition

I2CDATA=0x00; // Address within PCF8593
while (!(AIE&0x04)); // wait for I2C interrupt flag
i=I2CSTAT; if(i!=0x28) break; // handle unexpected condition

I2CDATA=0x00; // Control byte => 32768 osc
while (!(AIE&0x04)); // wait for I2C interrupt flag
i=I2CSTAT; if(i!=0x28) break; // handle unexpected condition

I2CCON|= 0x40; // STOP request
while(i=I2CCON,(i&0x40)); // wait for stop to occur

SBAU101A–July 2005–Revised March 2007 97Inter-IC (I2C™) Subsystem
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

I2C Example—MSC1211/13 as a Master

Example 9-1. MSC1211 as a Master (continued)

I2CCON|= 0x80; // START request
while (!(AIE&0x04)); // wait for I2C interrupt flag
i=I2CSTAT; if(i!=0x08) break; // handle unexpected condition
while (SCL); // wait

I2CDATA = 0xA3; // slave address with read bit
while (!(AIE&0x04)); // wait for I2C interrupt flag
i=I2CSTAT; if(i!=0x40) break; // handle unexpected condition

I2CCON|=0x20; // with ACK
i=I2CDATA; // read byte to trigger data transfer
while (!(AIE&0x04)); // wait for I2C interrupt flag
i=I2CSTAT; if(i!=0x50) break; // handle unexpected condition
i1=I2CDATA; // read 'fractions of seconds'

while (!(AIE&0x04)); // wait for I2C interrupt flag
i=I2CSTAT; if(i!=0x50) break; // handle unexpected condition

I2CCON&=~0x20; // with NACK
i2=I2CDATA; // read 'seconds'
while (!(AIE&0x04)); // wait for I2C interrupt flag
i=I2CSTAT; if(i!=0x58) break; // handle unexpected condition

i3=I2CDATA; // read 'minutes'

I2CCON|=0x40; // STOP request
while(i=I2CCON,(i&0x40)); // wait for stop to occur

I2CCON|= 0x80; // START
while (!(AIE&0x04)); // wait for I2C interrupt flag
i=I2CSTAT; if(i!=0x08) break; // handle unexpected condition
while(SCL); // wait

I2CDATA = 0x7E; // slave address with write bit
while (!(AIE&0x04)); // wait for I2C interrupt flag
i=I2CSTAT; if(i!=0x18) break; // handle unexpected condition

I2CDATA=~(i1&0x80); // value for P8547
while (!(AIE&0x04)); // wait for I2C interrupt flag
i=I2CSTAT; if(i!=0x28) break; // handle unexpected condition

I2CCON|= 0x40; // STOP request
while(i=I2CCON,(i&0x40)); // wait for stop to occur
i=0xFF; // flag valid termination;

}
if(i!=0xFF)
{ printf("unexpected condition %4d to be handled \n",i); break;}
RI_0 = 0;
while (!RI_0); RI_0 = 0; // wait for character

}
while(1); // endless loop

}

98 SBAU101A–July 2005–Revised March 2007Inter-IC (I2C™) Subsystem
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

9.8 I2C Example—MSC1211/13 as a Slave

I2C Example—MSC1211/13 as a Slave

When operating as a slave, data may be received, transmitted, or both. In Example 9-2, two bytes are
received from a master, and the AND and OR are sent back. To simulate the time taken for additional
computations encountered in most real applications, a delay is introduced to emphasize the effect of a
stretched clock, when the slave holds SCL low. The I2C Status Interrupt flag in AIE is set as a result of the
positive edge of SCL during the Acknowledge bit, but SCL is not stretched until the negative edge. The
SCLS bit in I2CCON must be set in order to release the SCL line, but this must not occur until the clock is
being stretched.

The C code uses a switch statement to create a multi-way branch for each of the expected status codes.
More efficient code may be created using assembler language.

Example 9-2. MSC1211/13 as a Slave

// Slave04.c
// I2C master to/from slave MSC1211 at address 1110100
// Returned data are functions of received data.
#include "stdio.h"
#include "REG1211.h"
#PRAGMA NOIP
code at 0xFFF3 void autobaud(void);
char i,r1=0,r2=0,t1=1,t2=2; //global Variables
int j;
void delay(void) {for(j=0;j<1000;j++);}
void release(void) {
while(SCL); // ensure clock is low
I2CCON|=0x02; } // set clock stretch release bit

void process_data(void) {
t1=r1 & r2; // AND
t2=r1 | r2; // OR
delay(); } // simulate additional processing time

void main() {
PDCON = 0x5F; // enable I2C alone
autobaud(); printf("MSC1211 as an I2C slave \n\n");
RI_0 = 0;
USEC = 21; // divide by 22
I2CCON = 0x20; // ACK, 0, Normal, Slave, No stretch, Not Filtered
I2CGM = 0x00; // General Call Ignored
I2CSTAT = 0xF4; // Master 'sees' slave at E8
while (1){
while (!RI_0) { // continue until serial character
I2CCON|= 0x20; // ACK
while (!(AIE&0x04)); // wait for I2C interrupt flag
i=I2CSTAT; // get status and clear I2C interrupt flag
switch(i) {
/* slave address+W */ case 0x60 : release(); break;
/* received data */ case 0x80 : r1=r2; r2=I2CDATA; release(); break;
/* STOP */ case 0xA0 : break;
/* slave address+R */
case 0xA8 : process_data(); I2CDATA=t1; release(); break;

/* transmit data + ACK */
case 0xB8 : I2CCON&=~0x20; I2CDATA=t2; release(); break;

/* transmit data + NACK */
case 0xC0 : release(); break;

default :
printf("Unexpected condition %4d to be handled \n",i); while(1);

}
}

RI_0 = 0;
while (!RI_0); RI_0 = 0; // wait for character

}
}

SBAU101A–July 2005–Revised March 2007 99Inter-IC (I2C™) Subsystem
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

9.9 I2C Example—MSC1211/13 as an Interrupt-Driven Slave

I2C Example—MSC1211/13 as an Interrupt-Driven Slave

In many applications, I2C communications occur via interrupts, as shown in Example 9-3. It provides the
same functional behavior as Example 9-2, except the MSC1211/13 is free to run a foreground task.

Example 9-3. MSC1211/13 as an Interrupt-Driven Slave

// Slave04i01.c - Using interrupts
// I2C master to/from slave MSC1211 at address 1110100
// returned data are functions of received data. Common 'release' mechanism
#include "stdio.h"
#include "REG1211.h"
#PRAGMA NOIP

code at 0xFFF3 void autobaud(void);

char r1=0,r2=0,t1=1,t2=2; // global Variables
int j;

void delay(void) {for(j=0;j<1000;j++);}

void release(void) {
while(SCL); // ensure clock is low
I2CCON|=0x02; } // set clock stretch release bit

void process_data(void) {
t1=r1 & r2; // AND
t2=r1 | r2; // OR
delay(); } // simulate additional processing time

void Aux_Int(void) interrupt 6 using 1 {
char i;
i=PAI; // Auxiliary Interrupt status code
if(i==3){
I2CCON|= 0x20; // ACK
i=I2CSTAT; // get status and clear I2C interrupt flag
switch(i) {

/* slave address+W */ case 0x60 : release(); break;
/* received data */ case 0x80 : r1=r2; r2=I2CDATA; release(); break;
/* stop */ case 0xA0 : break;
/* slave address+R */

case 0xA8 : process_data(); I2CDATA=t1; release(); break;
/* transmit data + ACK */

case 0xB8 : I2CCON&=~0x20; I2CDATA=t2; release(); break;
/* transmit data + NACK */

case 0xC0 : release(); break;
default :
printf("Unexpected condition %4d to be handled \n",i); while(1);

}
AI=0; // clear Auxiliary Interrupt flag }

} else
{printf("Unexpected interrupt %4d to be handled \n",i); while(1);}

}

100 SBAU101A–July 2005–Revised March 2007Inter-IC (I2C™) Subsystem
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

9.10 I2C Synchronization and Arbitration

9.11 I2C Fast Mode

9.12 I2C General Call

I2C Synchronization and Arbitration

Example 9-3. MSC1211/13 as an Interrupt-Driven Slave (continued)

void main() {
PDCON = 0x5F; // enable I2C alone
autobaud(); printf("MSC1211 as an I2C slave using interrupts \n\n");
RI_0 = 0;
USEC = 21; // 22MHz xtal, Divide by 22 to give 1 us
I2CCON = 0x20; // ACK, 0, Normal, Slave, No stretch, Not Filtered
I2CGM = 0x00; // General Call Ignored
I2CSTAT = 0xF4; // Master 'sees' slave at E8

AIE = 0x04; // I2C Status Interrupt Enable
AI = 0; // ensure auxiliary interrupt flag is clear
EAI = 1; // enable auxiliary interrupts

while (1){
while (!RI_0) { // continue until serial character

putchar('a'); // a foreground task !
}

putchar(SBUF);
RI_0 = 0;
while(!RI_0); RI_0 = 0; // wait for character
}

}

Byte-level synchronization is achieved when an MSC1211/13, acting as a slave, holds SCL low after the
ninth bit of any byte transferred. However, bit-level synchronization is also supported when an
MSC1211/13 is configured as a master, and a slave pulls SCL low after each bit. In effect, it will pause if it
senses a low level on SCL when it should be high. More generally, the SCL clock has a low period
determined by the device with the longest clock low period, and a high period determined by the device
with the shortest high period.

In a system with multiple masters, there is a chance that two or more masters will attempt to place data on
SDA at the same time. When one master attempts to transmit a high level while another is already
transmitting a low level, it will disable its output stage and relinquish control of SDA. The I2C Status Code
of the losing master shows loss of arbitration, while the winning master is left to control the bus and pass
error-free data.

Assuming USEC is defined to give an internal reference of 1µs, and bit 3 of I2CCON is clear, the I2C
subsystem will generate standard setup and hold times. However, if bit 3 of I2CCON is set, this timing will
be altered to permit transfers at up to 400kHz, as determined by the value written to I2CSTAT. In fast
mode, the SCL and SDA inputs incorporate Schmitt triggers and spike suppression, as well as active
slew-rate control of falling edges. Compared with standard mode, it may be necessary to reduce the value
of pull-up resistors and/or load capacitance. In exceptional cases, the pull-up may be a high-speed active
current source of up to 3mA. For bus loads up to 400pF, the pull-up resistor can be a current source of up
to 3mA or a switched resistor circuit.

When bit 2 of I2CCON is 0, the MSC1211/13 is configured as a slave device. In this state, if bit 7 of
I2CGM at 9Ch is 1 or 0, a general call address of 00h will be recognized or ignored, respectively. When
recognized, the status code is set to 70h, and the slave should respond to the following data byte
according to the I2C standard.

SBAU101A–July 2005–Revised March 2007 101Inter-IC (I2C™) Subsystem
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

9.13 I2C 10-Bit Addressing

I2C 10-Bit Addressing

The original 7-bit addressing scheme of the I2C standard allocates addresses according to Table 9-9.

Table 9-9. Address Allocation

Most Significant Seven bits R/W Standard Meaning Extended Meaning, Where Different

0000 000 0 General call

0000 000 1 Start byte for slow devices

0000 001 x (1) Address for CBUS protocol

0000 010 x Address reserved for different protocol

0000 011 to 0000 111 x To be defined

0001 000 to 1110 111 R/W I2C device addresses

1111 0aa R/W Reserved Most significant two bits of 10-bit address

1111 1xx x Reserved

(1) x = don't care.

To increase the number of addressable devices, the I2C standard was extended to accommodate an
additional 10-bit address space. The most significant two bits are contained within addresses that were
originally reserved, while the remaining eight bits are provided in the following byte. The MSC1211/13
neither generates nor accepts 10-bit addresses automatically. However, the 10-bit addressing protocol
may be replicated under software control to implement either a master transmitter or a slave receiver. A
master receiver or slave transmitter cannot be implemented because the interpretation of the R/W flag
precludes transmission or reception (respectively) of the low part of the address as a data byte.

102 SBAU101A–July 2005–Revised March 2007Inter-IC (I2C™) Subsystem
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

Chapter 10
SBAU101A–July 2005–Revised March 2007

Serial Peripheral Interface (SPI)

This chapter describes the serial peripheral interface (SPI) of the MSC121x.

Topic ... Page

10.1 Description .. 104
10.2 SPI Configuration ... 104
10.3 SPI Interrupts... 107
10.4 SPI FIFO Buffer .. 108
10.5 SPI Examples... 111

SBAU101A–July 2005–Revised March 2007 Serial Peripheral Interface (SPI™) 103
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

10.1 Description

10.2 SPI Configuration

MSC121x
Master SPI

MSC121x
Slave SPI

7 6 5 4 3 2 1 0

SPIDATA at 9Bh
(Read)

SPIDATA at 9Bh
(Write)

SPIDATA at 9Bh
(Read)

SPIDATA at 9Bh
(Write)

7 6 5 4 3 2 1 0

MOSI

SCK

MISO

MOSI

SCK

MISO

port bit SS

Description

The Serial Peripheral Interface, or SPI, is a synchronous bit, serial, full-duplex communications standard
that simultaneously transfers eight bits of data from a master to a slave, and another eight bits of data
from the slave to the master. The MSC121x can be programmed to behave as a master or a slave and
uses four signals to coordinate transfers. These signals are:

1. SS—Slave Select (shared with P1.4/INT2)
2. MOSI—Master Out/Slave In (shared with P1.5/INT3)
3. MISO—Master In/Slave Out(shared with P1.6/INT4/SDA)
4. SCK—SPI Clock (shared with P1.7/INT5/SCL)

The typical interconnection between a master and slave is shown in Figure 10-1. To multiplex data from
more than one slave, the MISO output may be selectively enabled via the active-low slave-select pin.
Although less common, the MSC121x permits multiple masters by enabling the MOSI and SCK outputs
under software control.

Figure 10-1. SPI Master/Slave Interconnect

The transmit and receive data pathways are double-buffered, but may also include a first-in/first-out (FIFO)
buffer that uses part of the core SRAM. This configuration permits higher-speed transfers and reduces
CPU overhead.

To provide compatibility with other slave devices, such as hardware shift registers, the default order of bits
transferred can be changed from 7...0 to 0...7. Also, the phase and polarity of the clock (SCK) can be
configured.

The SPI subsystem is only active if PDSPI (bit 0) of PDCON at F1h is 0. However, the SPI and I2C
interface (if present) cannot both be enabled simultaneously because the same SFR addresses are used
to support them, with different interpretations depending on which interface is powered up.

The SPI is configured by SPICON at 9Ah, according to Table 10-1.

Serial Peripheral Interface (SPI™)104 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

SPI Configuration

Table 10-1. SPICON—SPI Control
SPICON SFR 9Ah Reset Value = 00h

Bit # Name Action or Interpretation

7 SCK2 SCK Selection. SCK = SCK2:SCK1:SCK0 = 000b to 111b

6 SCK1 SPI clock frequency = fCLK/2(SCK+1). That is, fCLK/2 to fCLK/256 in powers of 2.

5 SCK0 SPI clock period = tCLK × 2(SCK+1). That is, tCLK × 2 to tCLK × 256 in powers of 2.

Enable FIFO buffer in core SRAM

4 FIFO 0: Transmit and receive pathways are double buffered

1: Circular FIFO buffer is used for to transmit and receive bytes

Sets bit order for transmit and receive

3 ORDER 0: Most significant bit first

1: Least significant bit first

SPI Master Mode

2 MSTR 0: Slave mode

1: Master mode

Serial clock phase control

1 CPHA 0: Valid data starting from half SCK period before the first edge of SCK

1: Valid data starting from the first edge of SCK

CPOL serial clock polarity

0 CPOL 0: SCK idle at logic low

1: SCK idle at logic high

Bits in Port 1 at 90h that are shared with SPI signals should be left in their default states or possibly
configured as inputs or CMOS outputs, depending on the signal and mode of operation.

Table 10-2. P1—Port 1 (1)

P1 SFR 90h Reset Value = FFh

Master Slave

Bit # Signal Bit Type Port Value Bit Type Port Value

4 SS 8051 or CMOS 0 or 1 8051 or input 1

8051 or CMOS or5 MOSI 1 8051 or input 1Open Drain

8051 or CMOS or6 MISO 8051 or Input 1 1Open Drain

8051 or CMOS or7 SCK 1 8051 or input 1Open Drain
(1) Bits configured as open drain may require a pull-up resistor.

Table 10-3. P1DDRH—Port 1 Data Direction Register
P1DDRH SFR AFh Reset Value = 00h

Bit # Name Action or Interpretation

7-6 P17H:P17L Port bit type:
00: Standard 8051

5-4 P16H:P16L 01: CMOS output
10: Open drain output3-2 P15H:P15L
11: Input

1-0 P14H:P15L

SBAU101A–July 2005–Revised March 2007 Serial Peripheral Interface (SPI™) 105
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

1) SS Asserted
2) First SCK Edge
3) CNTIF Set (dependent on CPHA bit)
4) SS Negated

SCK Cycle #

MSB 6 5 4 3 2 1 LSB

MSB 6 5 4 3 2 1 LSB

Slave CPHA = 0 Transfer in Progress

2

431

1 2 3 4 5 6 7 8

Slave CPHA = 1 Transfer in Progress

Sample Input

(CPHA = 0) Data Out

(CPHA = 1) Data Out

Sample Input

SS to Slave

SCK (CPOL = 0)

SCK (CPOL = 1)

SPI Configuration

Figure 10-2. SPI Clock/Data Timing

CPHA and CPOL alter the phase of the data and the polarity of the clock to suit various applications.

Data to be transmitted are written to the SPI Data Register (SPIDATA at 9Bh), which is then passed to the
double-buffered SPI transmit interface. Similarly, data that have been received are read via this SFR from
the double-buffered SPI receive interface. Data are routed through a FIF0 buffer of up to 128 bytes if bit 4
of SPICON at 9Ah is set.

Table 10-4. SPIDATA—SPI Data Register
SPIDATA SFR 9Bh Reset Value = 00h

Bit # Name Action or Interpretation

7-0 SPIDATA Write/Read: Data to be transmitted by, or received from, the Serial Peripheral Interface.

106 Serial Peripheral Interface (SPI™) SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

10.3 SPI Interrupts

SPI Interrupts

When an SPI interrupt is active and enabled, the MSC121x CPU jumps to location 0033h. The interrupt
service routine (ISR) may read the Pending Auxiliary Interrupt Register (PAI at A5h) to establish the
source of the interrupt. The number returned is 3 for the SPI receiver, and 4 for the SPI transmitter,
assuming that higher priority auxiliary interrupts have not occurred.

AI (bit 4 of EICON), must be cleared within the ISR when no further auxiliary interrupts are pending.
Setting AI in software generates an Auxiliary Interrupt, if enabled, but if there are no pending interrupts the
Pending Auxiliary Interrupt vector in PIA at A5h will read as 0.

When the FIFO buffer is disabled, the transmit interrupt flag will be set whenever the SPI transmitter is
empty and the receiver interrupt flag will be set whenever there is a received byte to read. Writing to
SPIDATA clears the transmit interrupt flag, if previously set. Similarly, reading SPIDATA clears the receive
interrupt flag, if previously set. Because of the bit-synchronous nature of the SPI, a byte is only received
when one is transmitted. Consequently, if a master expects a reply that is dependent upon the byte it sent
to a slave, it must ignore the first byte returned and transmit dummy bytes to receive subsequent reply
bytes.

Table 10-5. SPI Interrupts Have Highest Priority and Jump to Address 0033h
Bit Name Abbreviation Name of Related SFR Abbreviation Address

Enable Auxiliary Interrupt EAI Enable Interrupt Control EICON.5 D8h

Auxiliary Interrupt Flag AI Enable Interrupt Control EICON.4 D8h

Enable SPI Transmit interrupt ESPIT Auxiliary Interrupt Enable AIE.3 A6h

SPIT AISTAT.3 A7hSPI Transmit Interrupt Status Flag Auxiliary Interrupt Status RegisterESPIT AIPOL.3 A4h

Enable SPI Receive Interrupt ESPIR Auxiliary Interrupt Enable AIE.2 A6h

SPIR AISTAT.2 A7hSPI Receiver Interrupt Status Flag Auxiliary Interrupt Status RegisterESPIR AIPOL.2 A4h

Table 10-6. PAI—Pending Auxiliary Interrupt Register
PAI SFR A5h Reset Value = 00h

Bit # Name Interpretation When Read

7-4 — Return 0

Auxiliary Interrupt Status
0000: No Pending Auxiliary IRQ
0001: Digital Low-Voltage or Hardware Breakpoint IRQ Pending
0010: Analog Low-Voltage IRQ Pending
0011: SPI Receive IRQ Pending or I2C Status Interrupt Pending3-0 PAI3-PAI0
0100: SPI Transmit IRQ Pending
0101: One Millisecond System Timer IRQ Pending
0110: Analog-to-Digital Conversion IRQ Pending
0111: Accumulator IRQ Pending
1000: One Second System Timer IRQ Pending

SBAU101A–July 2005–Revised March 2007 Serial Peripheral Interface (SPI™) 107
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

10.4 SPI FIFO Buffer

8 Bytes Written
4 Bytes Queued

2 Bytes Sent and Received

12−Byte FIFO Memory

SPIDATA

SPIDATA

FIFO In

FIFO Out

SPI Transmit
Pointer

SPI Receive
PointerTransmit Receive

Transmit/Receive Shift Register

SPI FIFO Buffer

If the FIFO buffer is to be used, its start and end addresses in core SRAM must be defined by writing to
SPISTART at 9Eh and SPIEND at 9Fh, respectively. The SRAM between SPISTART and SPIEND
(inclusive) should not be used by the application software.

The activity of the FIFO buffer is controlled by four pointers and two counters. Once initialized by writing to
either SPICON or SPISTART, all pointers equal SPISTART and both counters are 0. Both SPISTART and
SPIEND must be a location within SRAM between 80h and FEh. If a pointer to be incremented is equal to
SPIEND, it will instead be set to SPISTART. The registers are changed as follows:

1. The CPU writes data to SPIDATA, which is copied to SRAM pointed to by CPUtxp. CPUtxp is then
incremented along with TXcount. The CPU may write further bytes to SPIDATA during the following
steps.

2. Txcount is no longer 0 and the byte pointed to by SPItxp is copied to TX BUF and on to the
transmission shift register, TX SR. SPItxp is incremented and TXcount is decremented.

3. The synchronous nature of the SPI means that transmission of a byte always results in reception of a
byte. This passes from the receiver shift register (RX SR), via RX BUF to the SRAM pointed to by
SPIrxp. This SRAM location was used to hold a transmitted byte and is now overwritten with the
received byte. SPIrxp is incremented along with RXcount.

4. The CPU reads data from SRAM pointed to by CPUrxp via SPIDATA. CPUrxp is incremented and
RXcount is decremented.

Figure 10-3. SPI FIFO Operation

Special conditions:
1. If the FIFO is full when the CPU writes to SPIDATA, the data are discarded and neither CPUtxp nor

TXcount are altered.
2. If the FIFO is empty and the CPU reads from SPIDATA, the value returned is undefined and neither

CPUrxp nor RXcount are altered.

Serial Peripheral Interface (SPI™)108 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

SPI FIFO Buffer

Table 10-7. SPISTART—SPI Buffer Start Address
SPISTART SFR 9Eh Reset Value = 80h

Bit # Name Action or Interpretation

7 — Always 1

Write: The start address of the circular FIFO buffer, somewhere within SRAM from 80h to FEh. The value
must be less than SPIEND. The FIFO resides between SPISTART and SPIEND, inclusive. Writing to

SPISTART SPISTART initializes all the FIFO pointers and counters.

6-0 CPUwrp = SPItxp = CPUrdp = SPIrxp = SPISTART, and TXcount = RXcount = 0.

Read: The current value of the CPU Transmit Pointer (CPUwrp). This is where the next byte for transmission
SPITP is placed when the CPU writes to SPIDATA. Writing to SPIDATA increments the transmit counter and

increments CPUwrp, unless that would make CPUtxp equal to the SPI Receive pointer (SPIrxp).

Table 10-8. SPISEND—SPI Buffer End Address
SPIEND SFR 9Fh Reset Value = 80h

Bit # Name Action or Interpretation

7 — Always 1

Write: The end address of the circular FIFO buffer, somewhere within SRAM from 80h to FFh. The valueSPIEND must be greater than SPISTART. The FIFO resides between SPISTART and SPIEND inclusive.
6-0 Read: The current value of the CPU Receive Pointer (CPUrxp). This indicates where the next byte will be

SPIRP taken from as the CPU reads SPIDATA. Reading SPIDATA decrements the receive counter and increments
the SPI Receive Pointer (SPIrxp) unless the receive counter is zero.

To sustain data transfers via the SPI while minimizing CPU overhead, the FIFO buffer will usually be filled
and emptied in bursts by the application software. To coordinate this type of activity, the SPI Receive
Control register (SPIRCON at 9Ch) and the SPI Transmit Control register (SPITCON at 9Dh) allow
interrupts to be determined by the amount of data in the buffer. A receive interrupt can be set to occur
when 2N or more bytes have arrived, and a transmit interrupt when 2N or less remain to be transmitted,
where N is between 0 and 7.

The receive buffer may be flushed by writing a '1' to RXFLUSH (bit 7 of SPIRCON), which causes CPUrxp
to be set equal to SPIrxp, and RXcount to 0.

The transmit buffer may be flushed by writing a '1' to TXFLUSH (bit 7 of SPITCON), which causes CPUtxp
to be set equal to SPItxp, and TXcount to 0.

SBAU101A–July 2005–Revised March 2007 Serial Peripheral Interface (SPI™) 109
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

SPI FIFO Buffer

Table 10-9. SPIRCON—SPI Receive Control Register
SPIRCON SFR 9Ch Reset Value = 00h

Bit # Name Action When Written

Flush Receive FIFO

Write:

0: No effect7 RXFLUSH

1: The pointer used by the CPU to fetch data from the FIFO (CPUrxp) is set equal to the pointer used by
the SPI interface to put data into the FIFO (SPIrxp). In effect, this clears the receive FIFO. The receive
counter, RXcount, is also cleared.

6-3 — Undefined

2 RXIRQ2 Receiver IRQ count threshold when in FIFO mode.
RXIRQ = RXIRQ2:RXIRQ1:RXIRQ0 = 000b to 111b

1 RXIRQ1
Generates SPI receive IRQ when receive count = 2RXIRQ or more (that is, 1 or more to 128 or more).

0 RXIRQ0 See ESPIR (bit 2 of AIE at A6h) and SPIR (bit 2 of AISTAT at A7h).

Bit # Name Interpretation When Read

7-0 RXCNT The number of bytes in the FIFO and RX BUF still to be read (0 to 129). This is RXcount.

Table 10-10. SPITCON—SPI Transmit Control Register
SPITCON SFR 9Dh Reset Value = 00h

Bit # Name Action When Written

Flush Transmit FIFO

Write:

0: No effect7 TXFLUSH

1: The pointer used by the CPU to put data into the FIFO (CPUtxp) is set equal to the pointer used by the
SPI to get data from the FIFO (SPItxp). In effect, this clears the transmit FIFO. The transmit counter
(TXcount) is also cleared.

6 — Undefined

SCK Driver Enable (in Master Mode)

Write:
5 CLK_EN

0: Disable SCK Driver

1: Enable SCK Driver

Drive Delay used with Drive Enable (DRV_EN). MOSI for master, MISO for slave.4 DRV_DLY Write:

00: Disable (tri-state) immediately

01: Enable output drive immediately
3 DRV_EN

10: Disable (tri-state) after current byte transfer

11: Enable output drive after current byte transfer

2 TXIRQ2 Transmit IRQ count threshold when in FIFO mode
TXIRQ = TXIRQ2:TXIRQ1:TXIRQ0 = 000b to 111b

1 TXIRQ1 Generates SPI transmit IRQ when transmit count = 2TXIRQ or less (that is, 1 or less to 128 or less).
See ESPIT (bit 3 of AIE at A6h) and SPIT (bit 3 of AISTAT at A7h).0 TXIRQ0

Bit # Name Interpretation When Read

7-0 TXCNT The number of bytes in the FIFO, TX BUF, and TX SR still to be transmitted (0 to 130). This is TXcount.

Serial Peripheral Interface (SPI™)110 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

10.5 SPI Examples

SPI Examples

Two examples are shown using the SPI. Example 10-1 shows a simple, polled environment. Example
10-2 shows an SPI program using interrupts.

Example 10-1. SPI, Simple, Polled Environment

// File SPIpolled.c - outputs and receives bytes via SPI
// MSC1211 EVM Switches 1:On SW3-12345678 SW5-12345678
// 0:Off 11110111 11110000
#include <Reg1211.h>
#include <stdio.h>
sbit RedLed = P3^4; // RED LED on EVM
sbit YellowLed = P3^5; // Yellow LED on EVM
sbit SlaveSelect = P1^0; // avoids onboard SPI devices
code at 0xFFF3 void autobaud(void);

unsigned char SPIoutin(unsigned char n)
{
while (!(AIE & 0x08)) RedLed=!RedLed; //wait for TX empty
SPIDATA=n; // output
while (!(AIE & 0x04)) YellowLed=!YellowLed; //wait for RX
return SPIDATA; // input

}

void main(void)
{ data unsigned char i,j=0x41;
AIE=0; // No interrupts
PDCON&=~0x01; // turns on SPI
P1DDRH=0x40; // CMOS output for P1.7
P1DDRL=0x01; // CMOS output for P1.4
SPICON=0xC4; // Divide 128, FIFO off, msb, master
SPITCON=0x28; // SCK driver on
SlaveSelect=1;
autobaud();
printf("Simple polled (loopback) SPI\n");
RI_0 = 0; // Clear received flag in UART
while(1){
while(!RI_0) {

RedLed=YellowLed=0;
SlaveSelect=0;
i=SPIoutin(j);
SlaveSelect=1;
putchar(i);

}
RI_0 = 0; // any character to pause
while(!RI_0); // wait for character
j=SBUF0; // get character
RI_0 = 0;
} // continue

}

A burst of characters is written to the FIFO in every second, and with MOSI and MISO joined together,
they are read back by the CPU whenever the number of received characters is 16 or more. If the burst
size is less than 16, two or more seconds will be needed to trigger a receive interrupt.

SBAU101A–July 2005–Revised March 2007 Serial Peripheral Interface (SPI™) 111
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

SPI Examples

Example 10-2. SPI FIFO Mode

// File spiFIFOint.c - outputs and receives bytes via SPI FIFO
// MSC1211 EVM Switches 1:On SW3-12345678 SW5-12345678
// 0:Off 11110111 11110000
#include <Reg1211.h>
#include <stdio.h>
#define xtal 22118400
sbit RedLed = P3^4; // RED LED on EVM
sbit YellowLed = P3^5; // Yellow LED on EVM
sbit SlaveSelect = P1^0; // avoids onboard SPI devices
code at 0xFFF3 void autobaud(void);

data unsigned char j=69; // Letter 'E'

/* Auxiliary Interrupt */
void AuxInt(void) interrupt 6 using 1
{ unsigned char i;
while (PAI) {
switch(PAI) {

case 3: // SPI RX
{ while (SPIRCON) putchar(SPIDATA); //empty the buffer

printf("\n");
break; }

case 8: // Seconds
{ i=SECINT; // remove seconds interrupt flag

for(i=65;i<=j;i++) {
while (!(AIE & 0x08));
SPIDATA=i; } // output

break; }
}

}
EICON&=~0x10; // remove AI flag

}

void main(void)
{ PDCON&=~0x03; // turns on System Timer and SPI
P1DDRH=0x40; // CMOS output for P1.7
P1DDRL=0x01; // CMOS output for P1.4
SPIEND=0x9F; // 32 byte buffer
SPISTART=0x80; // Start at 0x80 and initialise
SPICON=0xD4; // Divide 128, FIFO on, msb, master
SPIRCON=0x04; // RX IRQ on 16 or more
SPITCON=0x28; // SCK driver on
SlaveSelect=0;
autobaud();
MSEC=xtal/1000-1; // 1ms tick
HMSEC=100-1; // 100ms tick
SECINT=0x89; // write 9 immediately for 10 x 100 ms
printf("FIFO interrupt (loopback) SPI\n");
AIE=0x84; // enable Seconds and SPI RX interrupts
EICON|=0x20; // enable auxiliary interrupt
RI_0 = 0; // Clear received flag in UART
while(1){
while(!RI_0) {

YellowLed=!YellowLed; //main program
}

RI_0 = 0; // any character to pause
while(!RI_0); // wait for character
j=SBUF0; // limit is received character A..a allowed
RI_0 = 0;
} // continue

}

112 Serial Peripheral Interface (SPI™) SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

Chapter 11
SBAU101A–July 2005–Revised March 2007

Timers and Counters

This chapter describes the MSC121x timers and counters.

Topic ... Page

11.1 Description .. 114
11.2 Timer/Counters 0 and 1 ... 114
11.3 Timer/Counter 2 ... 119
11.4 Example Program Using Timers 0, 1, and 2 ... 124

SBAU101A–July 2005–Revised March 2007 Timers and Counters 113
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

11.1 Description

11.2 Timer/Counters 0 and 1

Description

The MSC121x includes three Timer/Counter modules (0, 1, and 2) that behave in the same way as those
found in the standard 8051/8052. When a module is clocked from the system clock, it changes at a known
rate, and in this mode is referred to as a timer. However, when clocked from an external source, it may be
considered as an event counter or timer. There are numerous modes of operation, which include but are
not limited to:

• 13-bit timer
• 16-bit gated timer
• 16-bit gated counter (fCLK must be eight times larger that the counter frequency)
• 8-bit with auto reload
• 16-bit timer capture
• Baud rate generator

Note: Not all modes are available within each module, but a combination of modes satisfies
many application environments.

Bits in TMOD at 89h and TCON at 88h configure the operation of Timer/Counter 0 and Timer/Counter 1.
They have identical relative behavior in modes 0, 1, and 2, but differ in mode 3, as expressed in the
following tables and figures.

Table 11-1. TMOD—Timer Mode Control
TMOD SFR 89h Reset Value = 00h

Bit # Name Action or Interpretation

Timer/Counter 1 Gate Control

Write:
7 GATE

0: Operation of Timer/Counter 1 does not depend upon pin P3.3/INT1

1: Pin P3.3/INT1 has to be '1' to enable clocking. See TR1 (bit 6 of TCON at 88h)

Timer/Counter 1 Select

Write:
6 C/T

0: Timer/Counter is clocked at fCLK/12 (default) or fCLK/4. See CKCON.4 at 8Eh

1: Timer/Counter is clocked from pin P3.5/T1. See also TR1 (bit 6 of TCON at 88h)

5 M1 Timer/Counter 1 Mode Select
00 (Mode 0): 13-bit counter
01 (Mode 1): 16-bit counter

4 M0 10 (Mode 2): 8-bit counter with auto reload
11 (Mode 3): Timer/Counter 1 is halted, but holds its count. Same effect as clearing TR1.

Timer/Counter 0 Gate Control

Write:
3 GATE

0: Operation of Timer 1 does not depend upon pin P3.2/INT0

1: Pin P3.2/INT0 has to be '1' to enable clocking. See TR0 (bit 4 of TCON at 88h).

Timer/Counter 0 Select

Write:
2 C/T

0: Timer/Counter is clocked at fCLK/12 (default) or fCLK/4. See CKCON.3 at 8Eh.

1: Timer/Counter is clocked from pin P3.4/T0. See TR0 (bit 4 of TCON at 88h).

Timer/Counter 0 Mode Select
00 (Mode 0): 13-bit counter1 M1 01 (Mode 1): 16-bit counter0 M0 10 (Mode 2): 8-bit counter with auto reload
11 (Mode 3): Timer/Counter 0 acts as two independent 8-bit Timer/Counters.

Timers and Counters114 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

Timer/Counters 0 and 1

Table 11-2. TCON—Timer/Counter Control
TCON SFR 88h Reset Value = 00h

Bit # Name Action or Interpretation

Timer 1 (Interrupt) Overflow Flag

Read:

0: No Overflow

1: Timer 1 reached the maximum count and changed to 0
7 TF1

Write:

0: Clear flag

1: Set flag and generate interrupt request if unmasked

Cleared in software by writing 0, or cleared automatically as the processor jumps to the ISR at 001Bh

Timer 1 Run Control

Write:
6 TR1

0: Timer 1 cannot be clocked

1: Timer 1 may be clocked

Timer 0 (Interrupt) Overflow Flag

Read:

0: No Overflow

1: Timer 0 reached maximum count and changed to 0
5 TF0

Write:

0: Clear flag

1: Set flag and generate interrupt request if unmasked

Cleared in software by writing 0, or cleared automatically as the processor jumps to the ISR at 000Bh

Timer 0 Run Control

Write:
4 TR0

0: Timer 0 cannot be clocked

1: Timer 0 may be clocked

Interrupt 1 Edge Detect

If INT1 is edge-sensitive because IT1 = 1, IE1 is set when a negative edge is detected. It is cleared when the3 (1) IE1
CPU jumps to the ISR at 0013h or by writing 0 in software. If IT1 = 0, IE1 is set when the INT1 pin is low, and
cleared when the INT1 pin is high.

Interrupt 1 type select

Write:
2 IT1

0: INT1 is sensitive to a low level

1: INT1 is sensitive to a negative (falling) edge

Interrupt 0 edge select

If INT0 is edge-sensitive because IT0 = 1, IE0 is set when a negative edge is detected. It is cleared when the1 IE0
CPU jumps to the ISR at 0013h or by writing 0 in software. If IT0 = 0, IE1 is set when the INT0 pin is low, and
cleared when the INT0 pin is high.

Interrupt 0 type select

Write:
0 (1) IT0

0: INT0 is sensitive to a low level

1: INT0 is sensitive to a negative (falling) edge

(1) Bit 0 to bit 3 of TCON are not associated with the operation of any Timer/Counter.

SBAU101A–July 2005–Revised March 2007 Timers and Counters 115
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

11.2.1 Modes 0 and 1

7 6 5 4 3 2 1 0

Baud Rate to Serial Ports
(Timer 1 Only) Mode = 1

T0M is CKCON.3

fCLK/12 if T0M = 0

fCLK/4 if T0M = 1

Mode = 0

0

1

TH0

Pin T0

TR0

GATE
Pin INT0

TF0

Interrupt

Timer/Counters 0 and 1
Modes 0 and 1

TL0

7 6 5 4 3 2 1 0

NOTE: Signals and
names shown are
with respect to
Timer 0. The same
functional behavior
is available from
Timer 1.

C/T

Timer/Counters 0 and 1

The description that follows is with respect to Timer/Counter 0. but also applies to Timer/Counter 1 with
the appropriate re-allocation of control bits. However, only the overflow condition of Timer 1 is able to act
as a reference clock for the serial ports.

TH0:TL0 represents a 13-bit, negative-edge triggered up counter that can be clocked from a variety of
sources. When C/T is 0, it behaves as a gated timer running at either fCLK/12 (default) or fCLK/4. However,
when C/T is 1, it behaves as a gated event counter, where appropriate transitions on pin T0, TR0, GATE,
or pin INT0 cause it to increment.

In mode 0, the upper three bits of TL0 are undefined and should not be used.

When TH0 overflows from FFh to 00h, the interrupt flag (TF0) is set. It is cleared automatically as the CPU
jumps to the interrupt service routine (ISR) at 000Bh, or cleared manually by writing a '0' to it in software.

Figure 11-1. Timer 0/1—Modes 0 and 1

Table 11-3. Modes 0 and 1 Operation (1)

C/T T0M Pin T0 TR0 GATE Pin INT0 CLOCK

0 0 x 1 0 x fCLK/12

0 0 x 1 1 1 fCLK/12

0 1 x 1 0 x fCLK/4

0 1 x 1 1 1 fCLK/4

1 x 1 to 0 1 0 x Increment

1 x 1 to 0 1 1 1 Increment

1 x 1 1 to 0 0 x Increment

1 x 1 1 to 0 1 1 Increment

1 x 1 1 0 to 1 0 Increment

1 x 1 1 1 1 to 0 Increment

(1) For all other combinations of control bits and pins, TH0:TL0 is unchanged.

Timers and Counters116 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

11.2.2 Mode 2

Baud Rate to Serial Ports
(Timer 1 Only)

T0M is CKCON.3

fCLK/12 if T0M = 0

fCLK/4 if T0M = 1

0

1
Pin T0

TR0

GATE
Pin INT0

TF0Interrupt

Reload

Timer/Counters 0 and 1
Mode 2

TL0

7 6 5 4 3 2 1 0

TH0

7 6 5 4 3 2 1 0

NOTE: Signals and
names shown are
with respect to
Timer 0. The same
functional behavior
is available from
Timer 1.

C/T

11.2.3 Mode 3

T0M is CKCON.3

fCLK/12 if T0M = 0

fCLK/4 if T0M = 1

0 C/T

1
Pin T0

TR0

GATE
Pin INT0

TF1Interrupt

TR1Timer 0
Mode 3

TL0

TF0Interrupt

7 6 5 4 3 2 1 0

TH0

7 6 5 4 3 2 1 0

NOTE: TH0 triggers
the interrupt
associated with
Timer 1. When
Timer 0 is in Mode
3, Timer 1 can still
be used in Modes
0, 1, and 2, but
without an overflow
flag.

Timer/Counters 0 and 1

The description that follows is with respect to Timer/Counter 0, but applies to Timer/Counter 1 with
appropriate re-allocation of control bits. However, only the overflow condition of Timer 1 is able to act as a
reference clock for the serial ports.

Figure 11-2. Timer 0/1—Mode 2

TL0 represents an 8-bit, negative-edge triggered counter that is reloaded from TH0 as it overflows. It may
be from clocked from a variety of sources as described for modes 0 and 1.

The behavior of Timer/Counter 0 in mode 3 is not the same as that of Timer/Counter 1 because the
interrupt flag usually associated with Timer 1 is controlled by TH0.

Figure 11-3. Timer 0—Mode 3

TL0 is an 8-bit timer or counter that is clocked and gated in a manner similar to Mode 0. TH0 must be
clocked from the same source but is gated only by control bit TR1. Without TR1 and TF1, Timer 1 can still
be used for baud rate generation.

SBAU101A–July 2005–Revised March 2007 Timers and Counters 117
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

11.2.4 Summary of Control Bits and SFRs for Timer/Counters 0 and 1

Timer/Counters 0 and 1

Table 11-4. Control Bit and SFR Summary for Timer/Counters 0 and 1
Timer 1 Timer 0

Name SFR SFR Name SFR SFR
Signal, Control, or Data or Bit Address Bit Address or Bit Address Bit Address

Timer overflow flag TFx TCON.7 88h 8Fh TCON.5 88h 8Dh

Count high byte TH1 8Dh TH0 8Ch

Count low byte TL1 8Bh TL0 8Ah

Timer/Counter select C/T TMOD.6 89h TMOD.2 89h

Mode bit 1 M1 TMOD.5 89h TMOD.1 89h

Mode bit 0 M0 TMOD.4 89h TMOD.0 89h

Divide by 4 or 12 select TxM CKCON.4 8Eh CKCON.3 8Eh

External clock input Tx P3.5/T1 B0h B5h P3.4/T0 B0h B4h

Timer run control TRx TCON.6 88h 8Eh TCON.4 88h 8Ch

Internal timer gate GATE TMOD.7 89h TMOD.3 89h

External timer gate INTx P3.3/INT1 B0h B3h P3.2/INT0 B0h B2h

Enable interrupt ETx IE.3 A8h ABh IE.1 A8h A9h

Interrupt priority PTx IP.3 B8h BBh IP.1 B8h B9h

118 Timers and Counters SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

11.3 Timer/Counter 2

Timer/Counter 2

Timer/Counter 2 consists of the register pair TH2:TL2, which act as a 16-bit, negative-edge triggered up
counter. The associated register pair, RCAPH:RCAPL, may either capture the current value of TH2:TL2 or
provide a reload value according to the mode of operation selected by bits in T2CON at C8h.

Table 11-5. T2CON—Timer 2 Control
T2CON SFR C8h Reset Value = 00h

Bit # Name Action or Interpretation

Timer 2 Overflow Flag

Read:

0: No Overflow
1:Timer 2 reached maximum count of FFFFh and overflowed to 0. It is not cleared automatically as the7 TF2 processor jumps to the ISR at 002Bh.

Write:

0: Clear flag if set
1: Set overflow flag and generate interrupt if enabled

Timer 2 External Flag

This flag is set by a high-to-low transition on pin P1.1/T2EX with EXEN2 previously set.
6 EXF2 Write:

0: Clear flag if set
1: Set overflow flag and generate interrupt if enabled

Receive Clock Select

Write:
5 RCLK

0 (or 1): Timer 1 (or 2) overflow rate determines the receiver baud rate for USART0 in modes 1 or 3. Setting this
bit forces Timer 2 into a 16-bit auto-reload mode where the reference clock is fCLK/2 or pin P1.0/T2.
USART 1 can only be clocked from Timer/Counter 1.

Transmit Clock Select

Write:
4 TCLK

0 (or 1): Timer 1 (or 2) overflow rate determines the transmitter baud rate for USART0 in serial modes 1 or 3.
Setting this bit forces Timer 2 into a 16-bit auto-reload mode where the reference clock is fCLK/2 or pin
P1.0/T2. USART 1 can only be clocked from Timer/Counter 1.

Timer 2 External Enable

Write:
3 EXEN2

0: Ignore negative edges on pin P1.1/T2EX
1: Negative edge on pin P1.1/T2EX sets EXF2 and causes capture or reload depending on the operating mode
of Timer/Counter

Timer 2 Run Control

Write:2 TR2
0: Timer 2 cannot be clocked
1: Timer 2 may be clocked

Timer 2 Counter/Timer Select

Write:1 C/T2
0: Counter/Timer is clocked at fCLK/12 (default) or fCLK/4; or fCLK/2 in Baud Rate mode
1: Counter/Timer is clocked from pin P1.0/T2

Capture/Reload Select

Write:

0: Auto-reloads when Timer/Counter 2 overflows, or on high-to-low transitions of P1.1/T2EX, if EXEN2 = 10 CP/RL2
1:Captures on high-to-low transitions of P1.1/T2EX, if EXEN2 = 1

Note that if either RCLK or TCLK = 1, CP/RL2 does not function and Timer/Counter 2 auto-reloads following an
overflow.

SBAU101A–July 2005–Revised March 2007 Timers and Counters 119
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

11.3.1 16-Bit Timer/Counter with Optional Capture

T2M is CKCON.5

fCLK/12 if T2M = 0

fCLK/4 if T2M = 1

1−to−0
Edge

Detection

0 C/T2

1
Pin T2

TR2

EXF2

TF2

Timer 2
Interrupt

Capture

Pin
T2EX

EXEN2

Timer/Counter 2
16−Bit with Capture

RCAP2H

TH2

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

RCAP2L

TL2

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Timer/Counter 2

To select this mode, RCLK, TCLK, and CP/RL2 in T2CON must all be '0'.

Control bit TR2 is active high and enables either an internal clock or an external clock on pin P1.0/T2,
depending on the state of C/T2. Specifically, when C/T2 is '0', TH2:TL2 is a gated timer running at either
fCLK /12 (default) or fCLK/4. However, when C/T2 is '1', it is a gated event counter.

Figure 11-4. Timer/Counter 2—16-Bit with Capture

As TH2:TL2 overflows from FFFFh to 0000h, the interrupt flag (TF2) is set; this flag must be cleared in
software. If interrupt enables ET2 and EA (bits 5 and 7, respectively, of IE at A8h) are both '1', the CPU
jumps to the ISR at 002Bh. Writing a '1' to TF2 causes an interrupt, if it is enabled.

A negative-edge on pin P1.1/T2EX when control bit EXEN2 is '1' causes the current value of TH2:TL2 to
be copied into capture registers RCAP2H:RCAP2L and sets the interrupt flag (EXF2). This flag is ORed
with TF2 and may cause a Timer2 interrupt in a manner similar to TF2. EXF2 has to be cleared in
software and writing a '1' to it causes an interrupt, if it is enabled.

Timers and Counters120 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

11.3.2 16-Bit Timer/Counter with Automatic and Forced Reload

T2M is CKCON.5

fCLK/12 if T2M = 0

fCLK/4 if T2M = 1

1−to−0
Edge

Detection

0

1
Pin T2

TR2

EXF2

TF2

Timer 2
Interrupt

Pin
T2EX

EXEN2

Timer/Counter 2
16−Bit with Reload

RCAP2H

Reload

TH2

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

RCAP2L

TL2

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

C/T2

Timer/Counter 2

When RCLK and TCLK are both '0' but CP/RL2 is '1', RCAP2H:RCAP2L does not contain a captured
value as in the previous mode. Instead, it represents the value to be reloaded into TH2:TL2. Reloading
occurs because either TH2:TL2 overflows from FFFFh to 0000h, or pin P1.1/T2EX changes from '1' to '0',
while EXEN2 is '1'.

Figure 11-5. Timer/Counter 2—16-Bit with Reload

Control bit TR2 is active high and enables either an internal clock or an external clock on pin P1.0/T2,
according to the state of C/T2. Specifically, when C/T2 is '0', TH2:TL2 is a gated timer running at either
fCLK/12 (default) or fCLK/4. However, when C/T2 is '1', it is a gated event counter.

As TH2:TL2 overflows from FFFFh to 0000h, the interrupt flag (TF2) is set; this flag must be cleared in
software. If interrupt enables ET2 and EA (bits 5 and 7, respectively, of IE at A8h) are both '1', the CPU
jumps to the ISR at 002Bh. Writing a '1' to TF2 causes an interrupt if it is enabled.

A negative-edge on pin P1.1/T2EX when control bit EXEN2 is '1', causes the interrupt flag (EXF2) to be
set. It is ORed with TF2 and may cause a Timer2 interrupt in a manner similar to TF2. EXF2 has to be
cleared in software; writing a '1' to it causes an interrupt, if it is enabled.

SBAU101A–July 2005–Revised March 2007 Timers and Counters 121
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

11.3.3 Baud Rate Generator

fCLK + 2

1−to−0
Edge

Detection

0

1
Pin T2

TR2

EXF2

Rx Clock
Serial Port 0

Timer 2
Interrupt

Pin
T2EX

EXEN2

Timer/Counter 2
Baud Rate Generator

RCAP2H

Reload

0

1

0

1

1

0

TH2

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

RCAP2L

TL2

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Timer 1 Overflow

RCLK TCLK

Tx Clock
Serial Port 0

0

1divide
by 2

divide
by 16

divide
by 16

divide
by 16

EICON.7

PCON.7

Tx and Rx
Clocks

Serial Port 1

C/T2

Timer/Counter 2

When either RCLK is '1' or TCLK is '1', Timer/Counter 2 operates as a baud rate generator for serial port
0. In this mode, TH2:TL2 is reloaded from RCAP2H:RCAP2L whenever it overflows from FFFFh to 0000h.

Control bit TR2 is active high and enables either an internal clock or an external clock on pin P1.0/T2
according to the state of C/T2. Specifically, when C/T2 is '0', TH2:TL2 runs at fCLK/2; otherwise, when
C/T2 is '1', it runs at a rate determined by pin P1.0/T2.

A negative-edge on pin P1.1/T2EX when control bit EXEN2 is 1 causes the interrupt flag (EXF2) to be set.
If interrupt enables ET2 and EA (bits 5 and 7, respectively, of IE at A8h) are both '1', the CPU jumps to the
ISR at 002Bh. EXF2 has to be cleared in software and writing a '1' to it causes an interrupt, if enabled.

To accommodate applications that require different transmit and receive baud rates, the overflow of Timer
1, optionally divided by 2, may be selected as shown in Figure 11-6.

When Timer/Counter 2 uses the internal clock to determine the baud rate of serial port 0, the rate is given
by fCLK/32/(65536 - RCAP2H:RCAP2L).

Figure 11-6. Timer/Counter 2—Baud Rate Generator

Timers and Counters122 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

11.3.4 Summary of Timer/Counter 2 Mode Control

11.3.5 Summary of Control Bits and SFRs for Timer/Counter 2

11.3.6 Summary of Timer Modes

1
12
�

fCLK
8192

�
11059200

98304
� 112.5

1
2
�

1
16

�

fCLK
12 � (256 � TH1)

�
11059200

1152
� 9600 Baud

Where TH1 = 253

1
4
�

fCLK
(65536 � RCAP2H:RCAP2L)

�
11059200
4 � 12288

� 225

Where RCAP2H:RCAP2L = 53248

Timer/Counter 2

Table 11-6 summarizes how the Timer/Counter 2 mode is set by T2CON SFR bits.

Table 11-6. Mode Control Summary for Timer/Counter 2

RCLK TCLK CP/RL2 TR2 Mode

0 0 0 1 16-bit Timer/Counter with Auto-Reload

0 0 1 1 16-bit Timer/Counter with Capture

1 x x 1
Baud Rate Generator

x 1 x 1

x x x 0 Hold (Off)

Table 11-7. Control Bit and SFR Summary for Timer/Counter 2
Timer 2

Signal, Control, or Data Name or Bit SFR Address SFR Bit Address

Timer overflow flag TF2 T2CON.7 C8h CFh

External interrupt flag EXF2 T2CON.6 C8h CEh

Count high byte TH2 CDh

Count low byte TL2 CCh

Capture/reload high byte RCAP2H CBh

Capture/reload low byte RCAP2L CAh

Timer/counter select C/T2 T2CON.1 C8h C9h

Receiver clock select RCLK T2CON.5 C8h CDh

Transmitter clock select TCLK T2CON.4 C8h CCh

Capture/reload flag CP/RL2 T2CON.0 C8h C8h

Divide by 4 or 12 select T2M CKCON.5 8Eh

External clock input T2 P1.0 / T2 90h 90h

Timer run control TR2 T2CON.2 C8h CAh

Internal timer gate EXEN2 T2CON.3 C8h CBh

External trigger input T2EX P1.1 90h 91h

Enable interrupt ET2 IE.5 A8h ADh

Interrupt priority PT2 IP.5 B8h BDh

Table 11-8. Timer Modes
Timer Mode Type Clock Overflow or Baud Rate (11.0592MHz Clock)

0 0 13-bit fCLK/12

1 2 8-bit reload fCLK/12

2 16-bit reload fCLK/4

SBAU101A–July 2005–Revised March 2007 Timers and Counters 123
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

11.4 Example Program Using Timers 0, 1, and 2

Example Program Using Timers 0, 1, and 2

In Example 11-1, the red and yellow LEDs on the MSC1210 evaluation module are associated with
overflow interrupts from Timers 0 and 2, respectively. Serial port 0 is repeatedly tested for receipt of any
character at a baud rate of 9600, as determined by Timer 1. The character is echoed and TF2 is set to
generate an additional interrupt.

The red LED is on for one second and then off for one second, while the yellow LED flashes at half this
rate. Initially, the LEDs light at the same moment, but each received character causes an extra call
(Timer2Int), which produces an increasing visible phase shift between the flashing of the LEDs.

fCLK is the same frequency as the external (crystal) oscillator, unless the System Clock Divider SFR
(SYSCLK at C7h) is present and active. SYSCLK is provided in the MSC1211/12/13/14 with a default
value that causes no division of the external clock.

Example 11-1. Program Using Timers 0, 1, and 2

// File Timer012b.c - Timer 0 in 13-bit mode
// Timer 1 in 8-bit reload and Timer 2 in releoad
// MSC1210 EVM Switches 1:On SW3-12345678 SW6-12345678
// 0:Off 11110111 11110000
#include <Reg1210.h>
#include <stdio.h>
#define fclk 11059200
#define BAUD 9600
#define limit 225
sbit RedLed = P3^4; // RED LED on EVM
sbit YellowLed = P3^5; // Yellow LED on EVM

data unsigned int i=1, j=1;

void Timer0Int(void) interrupt 1 using 1
{ if(!--i) {i=limit; YellowLed=!YellowLed;}
}

void Timer2Int(void) interrupt 5 using 1
{ if(!--j) {j=limit; RedLed=!RedLed;}
TF2=0; // remove overflow flag

}

void main(void)
{ CKCON=0x20; // Timer 2 at fclk/4; Timers 0,1 at fclk/12
PCON =0x30; // SMOD = 0
TMOD =0x20; // Timer 1 Auto reload; Timer 0 13-bit
TCON =0x50; // TR1 and TR0 are 1
TH1 =256-fclk/32/12/BAUD; // Timer 1 reload value
T2CON=0x04; // TR2 is 1, and Timer 2 is auto-reload
RCAP2=65536-fclk/4/limit;
SCON0=0x52; // Asynchronous and enabled, TI_0=1, RI_0=0
while(!RI_0); // wait for key press
printf("\nMSC1210 Timer 0 in mode 0, Timer 1 in mode 2");
printf("\n Timer 2 in 16-bit auto reload\n");
IE =0xA2; // EA ET2 and ET1 enabled
while(1){
while(!RI_0); // wait for key press
SBUF0=SBUF0; // echo
TF2=1; // Force Timer 2 interrupt
RI_0=0;
}

}

124 Timers and Counters SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

Chapter 12
SBAU101A–July 2005–Revised March 2007

Serial Ports (USART0 and USART1)

This chapter describes the serial ports of the MSC121x.

Topic ... Page

12.1 Description .. 126
12.2 Control Bits in SCON0 and SCON1 ... 126
12.3 Pin and Interrupt Assignments... 127
12.4 Timer/Counters 1 and 2 Baud Rate Generation 127
12.5 Mode 0—8-Bit Synchronous .. 129
12.6 Mode 1—10-Bit Asynchronous... 130
12.7 Modes 2 and 3—11-Bit Asynchronous .. 131
12.8 Multiprocessor Communications.. 132
12.9 Example Program... 132

SBAU101A–July 2005–Revised March 2007 Serial Ports (USART0 and USART1) 125
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

12.1 Description

12.2 Control Bits in SCON0 and SCON1

Description

The MSC121x has two serial ports. Both may be configured in almost the same variety of synchronous or
asynchronous modes and clocked via fCLK, the overflow from Timer/Counter 1 or Timer/Counter 2. USART
stands for Universal Synchronous/Asynchronous Receiver/Transmitter.

Each port has a control register and a data register, referenced as SCON0 at 98h and SBUF0 at 99h for
serial port 0 and as SCON1 at C0h and SBUF1 at C1h for serial port 1.

Table 12-1. SCON0 and SCON1—Serial Port 0 and Serial Port 1 Control
SCON0 SFR 98h

SCON1 SFR C0h Reset Value = 00h

Action or Interpretation

Bit # Name0 Name1 Mode SM0 SM1 SM2 Function Length Rate (1)

0 0 0 0 Synchronous 8 fCLK /12

0 0 0 1 Synchronous 8 fCLK /4
7 SM0_0 SM0_1

0 Asynchronous 10
1 0 1 Timer (2)

1 (3) Asynchronous 10

0 Asynchronous 11
6 SM1_0 SM1_1 2 1 0 (2SMOD/64) × fCLK

(4)Asynchronous1 (5) 11(Multiprocessor)

3 1 1 0 Asynchronous 11
5 SM2_0 SM2_1 Timer (2)Asynchronous3 1 1 1 (5) 11(Multiprocessor)

Receive Enable

Write:
4 REN_0 REN_1

0: receive shift register is disabled

1: receive shift register is enabled (for mode 0, RI = 0 is also required)

Ninth Transmission Bit State
3 TB8_0 TB8_1

The state of the ninth bit to be transmitted in modes 2 and 3

Ninth Received Bit State
2 RB8_0 RB8_1 The state of the ninth bit received in modes 2 and 3. In mode 1, when SM2 = 0, RB8_0 is the state of the stop

bit. RB8_0 is not used in mode 0.

TI_0 Transmitter Interrupt Flag

This bit is set when the transmit buffer has been completely shifted out. In mode 0, this occurs at the end of the1 TI_0 TI_1
eighth data bit, while in all other modes it is set at the beginning of the STOP bit. This flag must be manually
cleared by software and can be set in software to cause an interrupt.

RI_0 Receiver Interrupt Flag

This bit indicates that a byte has been received in the input shift register. In mode 0, it is set at the end of the
0 RI_0 RI_1 eighth data bit; in mode 1, after the last sample of the incoming stop bit; and in modes 2 and 3, after the last

sample of the ninth data bit. This bit must be manually cleared by software and can be set in software to cause
an interrupt.

(1) If IDLE (bit 7 of PCON at 87h) is set, the CPU, Timer/Counters 0,1 and 2, and both serial ports will freeze until there is an
auxiliary interrupt or external wake-up (see AIE at A6h, EICON at D8h and EWU at C6h).

(2) In modes 1 and 3, serial port 0 may be clocked by Timer/Counter 1 or Timer/Counter 2, as determined by RCLK and TCLK (see
T2CON at C8h); whereas serial port 1 may be clocked only by Timer/Counter 1.

(3) In mode 1 with SM2 = 1, RI is activated only if a valid stop bit is received.
(4) For USART0, SMOD0 is bit 7 of PCON at 87h. For USART1, SMOD1 is bit 7 of EICON at D8h.
(5) In modes 2 and 3 with SM2 = 1, RI is activated only if the ninth received data bit is 1.

126 Serial Ports (USART0 and USART1) SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

12.3 Pin and Interrupt Assignments

12.4 Timer/Counters 1 and 2 Baud Rate Generation

Pin and Interrupt Assignments

Table 12-2. USART Pin and Interrupt Assignments
USART 0 : SBUF0 at 99h USART 1 : SBUF1 at C1h

Function Rx Pin Tx Pin Clock Rx Pin Tx Pin Clock

Mode 0 (1)
— P3.0 P3.1 — P1.2 P1.3Transmit triggered by write to SBUF

Mode 0 (1)
P3.0 — P3.1 P1.2 — P1.3Receive triggered by REN = 1 and RI = 0

Modes 1, 2, and 3
Transmit triggered by write to SBUF; TI = 1 when transmission completed. P3.0 P3.1 — P1.2 P1.3 —
Received data read via SBUF when RI = 1 and REN = 1.

SFR SFR Bit SFR SFR Bit
Name Address Address Name Address Address

Interrupt Enable IE.4 A8h ACh IE.6 A8h AEh

Interrupt Priority IP.4 B8h BCh IP.6 B8h BEh

(1) In mode 0, the Rx pin is used to receive and transmit synchronous data. Consequently, the corresponding data direction bits
should be defined as input, output, or bidirectional, as appropriate.

In asynchronous modes 1 and 3, the overflow rate of either Timer/Counter 1 or Timer/Counter 2 can
determine the receive or transmit baud rate for serial port 0. However, in these modes, USART1 can only
use the overflow rate of Timer/Counter 1.

The overflow of all Timer/Counters passes through a fixed divide-by-16 counter (see Figure 11-6) that is
reset when a START condition is identified. By default, the overflow output of Timer/Counter 1 is also
divided by two, but this may be avoided if SMODx = 1.

For Timer/Counter 1, see Table 12-4.

Table 12-3. Timer/Counter 2 Baud Rate Generation
Configuration Bits in

T2CON at C8h Serial Port 0 Rx Baud Rate (1) Serial Port 0 Tx Baud Rate (1) Serial Port 1 Rx and Tx Baud Rate (2)

RCLK (bit 5) TCLK (bit 4) SMOD0 = 0 SMOD0 = 1 SMOD0 = 0 SMOD0 = 1 SMOD1 = 0 SMOD1 = 1

0 0 Timer 1/32 Timer 1/16 Timer 1/32 Timer 1/16 Timer 1/32 Timer 1/16

0 1 Timer 1/32 Timer 1/16 Timer 2/16 Timer 2/16 Timer 1/32 Timer 1/16

1 0 Timer 2/16 Timer 2/16 Timer 1/32 Timer 1/16 Timer 1/32 Timer 1/16

1 1 Timer 2/16 Timer 2/16 Timer 2/16 Timer 2/16 Timer 1/32 Timer 1/16

(1) SMOD0 is bit 7 of PCON at 87h.
(2) SMOD1 is bit 7 of EICON at D8h.

Table 12-4. Timer/Counter 1 Baud Rate Generation (1)

Mode of Timer/Counter 1 Timer/Counter 1 Overflow Rate Timer/Counter 1 Overflow Rate
Determined by TMOD at 89h When Clocked Internally TMOD.6 = 0 When Clocked Externally TMOD.6 = 1

M1 (bit 5) M0 (bit 4) CKCON.4 = T1M = 0 CKCON.4 = T1M = 1 CKCON.4 = T1M = 0 or 1

0 0 fCLK/(12 × 8192) fCLK/(4 × 8192) fT1/8192

0 1 fCLK/(12 × 65536) fCLK/(12 × 65536) fT1/65536

1 0 fCLK/(12 × [256 – TH1]) fCLK/(4 × [256 – TH1]) fT1/(256 – TH1)

1 1 Stopped Stopped Stopped
(1) fT1 is the frequency of the signal at pin P3.5/T1.

For Timer/Counter 2:
When clocked internally because T2CON.1 = 0, Overflow Rate = fCLK/(2 × [65536 – RCAP2H:RCAP2L]).
When clocked from pin P1.0/T2 because T2CON.1 = 1, Overflow Rate = fT2/(65536 – RCAP2H:RCAP2L).

SBAU101A–July 2005–Revised March 2007 Serial Ports (USART0 and USART1) 127
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

�
1
16
�

fT1
8192

�
19660800
131072

� 150

�
1
2
�

1
16

�

fCLK
12 � (256 � TH1)

�
11059200
384 � 3

� 9600

�
1
16

�

fCLK
4 � (256 � TH1)

�
11059200
64 � 144

� 1200

�
1
16

�

fT1
(256 � TH1)

�
22118400
16 � 72

� 19200

�
1
2
�

1
16

�

fCLK
(65536 � RCAP2H:RCAP2L)

�
25000000
32 � 325

� 2404

�
1
2
�

1
16

�

fT2
(65536 � RCAP2H:RCAP2L)

�
10000000
16 � 130

� 4808

Timer/Counters 1 and 2 Baud Rate Generation

Table 12-5. USART Baud Rate Generation

Serial Port # Timer # Conditions Baud Rate

T2CON = xx00xxxxb;
PCON.7 = SMOD0 = 1;

0 1 TCON = 01000000b;
TMOD = 0100xxxxb;
fT1 = 19.660800MHz.

T2CON = xx00xxxxb;
PCON.7 = SMOD0 = 0;
CKCON.4 = T1M = 0;

0 1 TCON = 01000000b;
TMOD = 0010xxxxb;
TH1 = 253;
fCLK = 11.059200MHz

T2CON = xx00xxxxb;
EICON.7 = SMOD1 = 1;
CKCON.4 = T1M = 1;

1 1 TCON = 01000000b;
TMOD = 0010xxxxb;
TH1 = 112;
fCLK = 11.059200MHz

T2CON = xx00xxxxb;
EICON.7 = SMOD1 = 1;
TCON = 01000000b;1 1 TMOD = 0110xxxxb;
TH1 = 184;
fT1 = 22.118400MHz

T2CON = 00110100b;
0 2 RCAP2H:RCAP2L = 65211;

fCLK = 25MHz

T2CON = 00110110b;
0 2 RCAP2H:RCAP2L = 65406

;fT2 = 10MHz

128 Serial Ports (USART0 and USART1) SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

12.5 Mode 0—8-Bit Synchronous

clk

mem_ale

rxd0_in

rxd0_out

txd0

TI

RI

D0 D1 D2 D3 D4 D5 D6 D7

clk

mem_ale

rxd0_in

rxd0_out

txd0

TI

RI

D0 D1 D2 D3 D4 D5 D6 D7

Mode 0—8-Bit Synchronous

In mode 0, serial data are either received or transmitted eight bits at a time in a synchronous fashion with
respect to a shared input/output pin and a common clock output. Reception is triggered when REN = 1
and RI = 0, while transmission is triggered by a write to SBUF. If SM2 is '0', the clock runs at fCLK/12;
otherwise, it runs at fCLK/4, as shown in Figure 12-1 and Figure 12-2. There are no start or stop bits in this
mode.

RI is set three fCLK cycles after the eighth bit has been received, and TI is set three fCLK cycles after the
eighth bit has been transmitted. This is true when SM2 = 0, but the delays change to four fCLK cycles when
SM2 = 1.

Figure 12-1. Synchronous Receive at fCLK/4

Figure 12-2. Synchronous Transmit at fCLK/4

SBAU101A–July 2005–Revised March 2007 Serial Ports (USART0 and USART1) 129
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

12.6 Mode 1—10-Bit Asynchronous

RX CLK

rxd0_in

Bit Detector
Sampling

SHIFT

START STOPD0 D1 D2 D3 D4 D5 D6 D7

RI_0

Write to
SBUF0

TX CLK

SHIFT

txd0 START STOPD0 D1 D2 D3 D4 D5 D6 D7

TI_0

Mode 1—10-Bit Asynchronous

In mode 1, serial data are received or transmitted eight bits at a time, in an asynchronous fashion with
respect to independent input and output pins. The baud rate is determined by the overflow rate of
Timer/Counter 1 or 2 for serial port 0, or Timer/Counter 1 for serial port 1. Reception of a byte begins
when REN is 1 and a start bit is recognized. This sequence occurs after a high-to-low transition on the
receive pin, followed by a low level on two of three consecutive samples made at 7/16th, 8/16th, and
9/16th of the bit time. In this way, short-lived pulses are not regarded as a valid start bit. During reception,
eight bits are shifted into an input shift register, which is then loaded into the received SBUF register if:

1. RI is 0, and
2. SM2 is 1 and the stop bit is 1, or SM2 is 0 (that is, the state of the stop bit does not matter).

If these conditions are not met, the received data are lost and RI is not set. If SBUF is loaded, the state of
the stop bit is copied into RB8.

Transmission is triggered by a write to SBUF and results in a 10-bit frame consisting of a low-level start
bit, eight data bits, and a high-level stop bit. The start bit begins at the next rollover of the local
divide-by-16 counter, and TI is set at the beginning of the stop bit.

Figure 12-3. Asynchronous 10-Bit Transmit Timing

Figure 12-4. Asynchronous 10-Bit Receive Timing

130 Serial Ports (USART0 and USART1) SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

12.7 Modes 2 and 3—11-Bit Asynchronous

TX CLK

Write to
SBUF0

SHIFT

START STOPD0 D1 D2 D3 D4 D5 D6 D7 TB8

TI_0

txd0

RX CLK

rxd0_in

Bit Detector
Sampling

SHIFT

START STOPD0 D1 D2 D3 D4 D5 D6 D7 RB8

RI_0

Modes 2 and 3—11-Bit Asynchronous

Modes 2 and 3 are similar in principle to mode 1, except that the data field is extended to nine bits. During
reception, nine bits are shifted into an input shift register, of which eight bits are then loaded into the
received SBUF register if:

1. RI is 0, and
2. SM2 is 1 and the ninth bit is 1, or SM2 is 0 (that is, the state of the ninth bit does not matter).

If the conditions are not met, the received data are lost, RB8 is not loaded, and RI is not set. If SBUF is
loaded, the state of the ninth data bit is copied into RB8 at SCON.2, and RI is set.

Transmission is triggered by a write to SBUF and results in an 11-bit frame consisting of a low-level start
bit, eight data bits from SBUF, TB8 from SCON.3, and a high-level stop bit. The start bit begins at the next
rollover of the local divide-by-16 counter, and TI is set at the beginning of the stop bit.

For mode 2, the baud rate is fCLK/64 if SMOD is 0 (default), or fCLK/32 if SMOD is 1. SMOD0 is bit 7 of
PCON at 87h and SMOD1 is bit 7 of EICON at D8h.

For mode 3, the baud rate is determined by the overflow rate of Timer/Counters 1 or 2 for serial port 0, or
Timer/Counter 1 for serial port 1.

Figure 12-5. Asynchronous 11-Bit Receive

Figure 12-6. Asynchronous 11-Bit Transmit

SBAU101A–July 2005–Revised March 2007 Serial Ports (USART0 and USART1) 131
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

12.8 Multiprocessor Communications

12.9 Example Program

Serial Port 0 Receiver Software Buffer Serial Port 1 Transmitter

Serial Port 0 Transmitter Serial Port 1 Receiver

Multiprocessor Communications

For serial ports operating in modes 2 or 3 with control bit SM2 = 1, the RI flag will only be set if the ninth
bit of a received data field is 1. In this way, a byte may cause an interrupt only when the ninth data bit is 1.

In a multiprocessor system, when a master chooses to send a block of data to one of several slaves, it
first transmits an address with the ninth data bit (from SCON.3) at 1. Assuming all slaves initially have
SM2 set, each will be interrupted because RI is set; however, only the one matching the address will
change its SM2 bit to 0. Thereafter, data bytes with the ninth data bit at 0 will be ignored by unaddressed
slaves, but cause an interrupt in the addressed slave.

In Example 12-1, the program has both serial ports operating in mode 1, where asynchronous 8-bit data
are preceded by a start bit and succeeded by a stop bit. Since both ports have SM2 = 1 (SCONx.5 = 1),
the RI flags are set only if a valid stop bit is received.

Serial port 0 is configured to receive and transmit characters at 9600 baud using Timer/Counter 2,
whereas serial port 1 has a non-standard rate of approximately 21 baud using Timer1. Characters
received on serial port 0 are buffered in software and presented for transmission via serial port 1. It is
assumed that serial port 1 transmitter is looped back to serial port 1 receiver. Characters received at serial
port 1 are copied back to serial port 0, as shown in Figure 12-7.

Figure 12-7. Serial Port with Software Buffer

When implemented in a software development environment together with an MSC1210EVM, the user is
able to type characters at the PC keyboard and see the same characters on the download window, but
with a noticeable delay. The yellow LED will flicker as characters are passed at 21 baud on pin P1.2.

The baud rate of serial port 1 is slow, so the buffer may quickly fill up if keys are typed too rapidly.
Impending overflow is indicated by the red LED.

Example 12-1. Serial Port with Software Buffer Code

// File Serial01buf.c - Using serial ports 0 and 1 with a buffer
// MSC1210 EVM Switches 1:On SW3-12345678 SW6-12345678
// 0:Off 11110111 11110000
#include <Reg1210.h>
#define xtal 11059200
#define BAUD 9600
#define limit 8
sbit RedLed = P3^4; // RED LED on EVM
sbit YellowLed = P3^5; // Yellow LED on EVM
// Join J4 pins 2 and 3 on EVM for loopback
void main(void)
{ data unsigned char i=limit, j=limit,n=0; // empty buffer
idata unsigned char buffer[limit];
SCON0=0x70; // Serial Port 0 mode 1 (10 bit asyn.)
SCON1=0x72; // Serial Port 1 mode 1 (10 bit asyn.) TI => empty
RI_0 = RI_1 = 0; // clear received flags
CKCON=0x10; // Timer 1 at fclk/4
EICON=0x80; // SMOD1 = 1
TCON =0x40; // TR1 is 1
TMOD =0x00; // Timer1 13-bit. Baud = xtal/(16*4*8192)=21.1
T2CON=0x34; // Timer 2 is rate generator and enabled
RCAP2=65536-xtal/32/BAUD;

132 Serial Ports (USART0 and USART1) SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

Example Program

Example 12-1. Serial Port with Software Buffer Code (continued)

while(1){
if (RI_0) { // wait for key press

if (n<limit){ // put character into buffer
if (++i>limit) i=0; // wrap 'on' pointer
buffer[i]=SBUF0; // save save character
n++; // increment count
}

if (n>(limit-2)) RedLed=0; // show impending overflow
RI_0=0; // remove receive flag
}

if (TI_1) { // Is serial Port 2 Tx empty ?
if (n) { // Is buffer not empty ?
if (++j>limit) j=0; // wrap 'off' pointer
TI_1=0; // clear transmit finished flag
SBUF1=buffer[j]; // send character
n--; // decrement count
}

else RedLed=1; // turn off overflow LED
}

if (RI_1) { // is serial port 1 Rx full ?
SBUF0=SBUF1; // copy Rx port 1 to Tx port 0
RI_1=0;
}

YellowLed=!RXD1; // monitor serial port 1 bit stream
}

}

SBAU101A–July 2005–Revised March 2007 Serial Ports (USART0 and USART1) 133
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

Serial Ports (USART0 and USART1)134 SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

Chapter 13
SBAU101A–July 2005–Revised March 2007

Interrupts

This chapter describes the MSC121x interrupts.

Topic ... Page

13.1 Description .. 136
13.2 Standard and Extended Interrupts .. 137
13.3 Auxiliary Interrupt Sources.. 139
13.4 Multiple Interrupts .. 140
13.5 Example of Multiple and Nested Interrupts .. 140
13.6 Example of Wake Up from Idle ... 143

SBAU101A–July 2005–Revised March 2007 Interrupts 135
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

13.1 Description

Description

The MSC121x extends the interrupt sources provided by the 8051 architecture in two ways. First, the
MSC121x has more interrupts, which have programmable priorities of low or high. Second, the MSC121x
has a new group of auxiliary interrupts of highest priority.

When an interrupt occurs, the normal execution of machine-level codes is altered by the forced insertion
of an LCALL instruction to an address that depends upon the source of the interrupt. The interrupt itself is
generated when the following conditions are present:

1. An asynchronous event sets an interrupt flag.
2. The corresponding interrupt enable bit is set.
3. The group enable bit is set.
4. An interrupt of equal or higher priority has not already occurred.

Normal subroutines are entered via LCALL (or ACALL) instructions, which automatically push the Program
Counter (PC) onto the stack, and are terminated by the RET instruction, which recovers the PC from the
stack.

Interrupt service routines (ISRs) are similar but must be terminated by the RETI instruction, which not only
recovers the PC from the stack but also restores the interrupt level. Typically, at the start of an ISR, the
Program Status Word (PSW) and Accumulator are PUSHed onto the stack and POPed off just before the
RETI instruction. Once an RETI instruction has returned control to an interrupted environment and
restored the interrupt level, at least one instruction will be executed before another interrupt is
acknowledged.

When application code is written in C, protection of the operating context is usually managed by the
compiler.

136 Interrupts SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

13.2 Standard and Extended Interrupts
Standard and Extended Interrupts

Table 13-1 and Figure 13-1 show the standard and extended interrupts with low or high group priorities
and high or low relative priorities. Global Enable = EA (IE.7), where IE is at A8h. Note that in the first
column of Table 13-1, the normal text describes the event, while the italic text describes how to clear it.

By default, all standard and extended interrupts are grouped with a low priority. However, individual
interrupts may be changed to have a high priority by writing '1' to the appropriate bit within either the IP or
EIP registers. All interrupts in a high priority group are serviced before those of a low priority group, and
those within a group are serviced in the order of relative priority shown in Table 13-1. For example, if
Timer 0 and Serial Port 0 are both low priority, then the timer will be serviced before the port. However, if
bit 4 of IP at B8h is set to '1', the interrupt from Serial Port 0 will have a higher priority and be serviced
before Timer 0.

Any interrupt flag associated with a low or high priority interrupt may be set in software to cause an
interrupt, if enabled.

Table 13-1. Standard and Extended Interrupts
Priority

Flag Enable ISR Addr 0 = Low; 1 = High
Event Relative
Cleared by Name Bit (1) Name Bit (1) 00XXh Name Bit (1) Priority

External Interrupt 0 HighIE0 TCON.1 EX0 IE.0 03 PX0 IP.0Notes (2) and (3) 1

Timer 0 Overflow TF0 TCON.5 ET0 IE.1 0B PT0 IP.1 2Cleared automatically

External Interrupt 1 IE1 TCON.3 EX1 IE.2 13 PX1 IP.2 3Notes (2) and (3)

Timer 1 Overflow TF1 TCON.7 ET1 IE.3 1B PT1 IP.3 4Cleared automatically

Serial Port 0 RI_0 SCON0.0 ES0 IE.4 23 PS0 IP.4 5Clear RI_0

Serial Port 0 TI_0 SCON0.1 ES0 IE.4 23 PS0 IP.4 5Clear TI_0

Timer 2 Overflow TF2 T2CON.7 ET2 IE.5 2B PT2 IP.5 6Clear TF2

Serial Port 1 RI_1 SCON1.0 ES1 IE.6 3B PS1 IP.6 7Clear RI_1

Serial Port 1 TI_1 SCON1.1 ES1 IE.6 3B PS1 IP.6 7Clear TI_1

External Interrupt 2
Positive Edge IE2 EXIF.4 EX2 EIE.0 43 PX2 EIP.0 8
Clear IE2

External Interrupt 3
Negative Edge IE3 EXIF.5 EX3 EIE.1 4B PX3 EIP.1 9
Clear IE3

External Interrupt 4
Positive Edge IE4 EXIF.6 EX4 EIE.2 53 PX4 EIP.2 10
Clear IE4

External Interrupt 5
Negative Edge IE5 EXIF.7 EX5 EIE.3 5B PX5 EIP.3 11
Clear IE5

Watchdog (3) (4) 12WDTI EICON.3 EWDI EIE.4 63 PWDI EIP.4Clear WDTI Low

(1) Interrupt Enable (IE) is at A8h; Interrupt Priority (IP) is at B8h. Extended Interrupt Enable (EIE) is at E8h; Extended Interrupt
Priority (EIP) is at F8h; External Interrupt Flag (EXIF) is at 91h.

(2) If the interrupt was edge triggered, the flag is cleared automatically as the ISR is entered; otherwise, the flag follows the state of
the pin.

(3) May also cause a wakeup from idle, if enabled.
(4) For the Watchdog Timer to generate an interrupt, bit 3 of HCR0 must be cleared; otherwise, a reset (default) will occur.

SBAU101A–July 2005–Revised March 2007 Interrupts 137
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

IE0
EX0

ET0

EA

IE.0

IE.1

IE.2

IP

Register

IE

Register

TCON.1

TF0
TCON.5

ET1

IE.3

TF1
TCON.7

ES0

IE.4

RI_0 SCON0.0

TI_0
SCON0.1

RI_1 SCON1.0

TI_1
SCON1.1

ET2

IE.5
TF2

TCON.7

WDTI
EICON.3

ES1

IE.6

EX2

EIE.0

INT2

EX3

EIE.1

INT3

EX4

EIE.2

INT4

EX5

EIE.3

INT5

EWDI

EIE.4

EIE

Register

EIP

Register

IP.0

IP.1

IP.2

IP.3

IP.4

IP.5

IP.6

EIP.0

EIP.1

EIP.2

EIP.3

EIP.4

EXIF.4

EXIF.5

EXIF.6

EXIF.7

INT0 IT0
1

0

IE1
EX1

TCON.3

INT1 IT1
1

0

IE2

IE3

IE4

IE5

NOTE: Shaded boxes are interrupt flags.

Low

Interrupt

High

L
o
w

-P
ri
o
ri
ty

 I
n
te

rr
u
p
ts

In
te

rr
u
p
t
P

o
lli

n
g
 S

e
q
u

e
n

c
e

Auxiliary

Interrupts

Highest

Priority

Lowest

Priority

H
ig

h
-P

ri
o
ri
ty

 I
n
te

rr
u
p
ts

In
te

rr
u
p
t
P

o
lli

n
g
 S

e
q

u
e
n
c
e

Standard and Extended Interrupts

Figure 13-1. Interrupts

138 Interrupts SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

13.3 Auxiliary Interrupt Sources

Auxiliary Interrupt Sources

Table 13-2 shows the auxiliary interrupts with highest group priority. Global Enable = EAI (EICON.5),
where EICON is at D8h, Auxiliary Interrupt Enable (AIE) is at A6h. All these interrupts set the AI flag
(EICON.4), which must be cleared in software in addition to the individual interrupt flags. Setting AI in
software generates an auxiliary interrupt, if enabled. Note that in the first column of Table 13-2, the normal
text describes the event, while the italic text describes how to clear it.

When multiple auxiliary interrupts are enabled, the ISR at 0033h can read the Pending Auxiliary Interrupt
(PAI) at A5h to identify the interrupt of greatest relative priority. If PAI returns 0, there is no pending
auxiliary interrupt.

Pending (active and enabled) interrupts can be identified by testing the corresponding bits in AISTAT at
A7h. This allows the programmer to service auxiliary interrupts with arbitrary and even dynamic relative
priorities.

Unlike the Interrupt Enable (IE) register at A8h, which returns the value of enable (mask) bits when read,
the Auxiliary Interrupt Enable (AIE) register returns the status of interrupt flags before masking. This
means that read/modify/write operations on AIE may unintentionally enable interrupts and should not be
used.

Unlike flags in the low and high priority groups, no interrupt flag in the highest priority group may be set in
software to cause an interrupt. However, AI (EICON.4) can be set to trigger an auxiliary interrupt, but a
user-specific mechanism must be used to recognize this as a separate source.

For a particular interrupt flag to be set, the corresponding subsystem must be powered up as determined
by bits in PDCON at F1h. For example, PDCON.3 must be 0 for an ADC interrupt to occur.

Table 13-2. Auxiliary Interrupts with Highest Group Priority
Flag Enable ISR Addr

Event Relative Priority and
Cleared By Name Bit Name Bit 00XXh Priority Value from PAI

DVDD Low-Voltage EDLVB AIE.0 EDLVB AIE.0 33 Highest 1Voltage is restored

HW Breakpoint BP BPCON.7 EBP BPCON.0 33 Highest 1Set BPCON.7=1

AVDD Low Voltage EALV AIE.1 EALV AIE.1 33 Highest 2Voltage is restored

SPI (or I2C) Receive ESPIR AIE.2 ESPIR AIE.2 33 Highest 3
Read SPIDATA at 9Bh

SPI (or I2C) Transmit ESPIT AIE.3 ESPIT AIE.3 33 Highest 4
Write SPIDATA at 9Bh

Milliseconds Timer EMSEC AIE.4 EMSEC AIE.4 33 Highest 5Read MSINT at FAh

ADC Conversion EADC AIE.5 EADC AIE.5 33 Highest 6Read ADRESL at D9h

Summation Register ESUM AIE.6 ESUM AIE.6 33 Highest 7Read SUMR0 at E2h

Seconds timer ESEC AIE.7 ESEC AIE.7 33 Highest 8Read SECINT at F9h

SBAU101A–July 2005–Revised March 2007 Interrupts 139
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

13.4 Multiple Interrupts

13.5 Example of Multiple and Nested Interrupts

Multiple Interrupts

In some applications, there may be no interrupts, while in others there may be many. When there is just
one interrupt, the ISR is most often relatively easy to write and the model of the timing is simple. However,
with multiple sources of different priorities, the complexity, in terms of timing and exact behavior, grows
quickly. Since there are three groups of priority (classed as low, high, and highest), it is possible to have
three nested levels of interrupts. For example, the main program may be interrupted by an event of low
priority, but the ISR may be interrupted by an event of high priority, which in turn could be interrupted by
an event of highest priority.

It is essential that there be no unintentional interaction between different interrupts, and that the operating
environment or context be restored prior to termination of an ISR. For all but the simplest of ISRs, it is
necessary to save and restore the primary context (PSW and Accumulator) to and from the stack.
Similarly, working registers R0 to R7 may need to be PUSHed and POPed, but this process is
time-consuming and can be avoided by register bank switching.

Once the primary context has been PUSHed onto the stack, the value of bits 4 and 3 in the PSW may be
changed to select a different bank of 8-bit working registers. In this way, the values in the previous bank
are not changed by instructions that reference registers relative to the new bank. It is practical to allocate
bank 0 to the main program, bank 1 to low interrupts, bank 2 to high, and bank 3 to highest. Since working
registers are also mapped to memory locations, it is possible to modify (and corrupt) any register by
writing to an explicit location. For example, R4 of bank 2 is at data address 14h. Care may be needed in
this regard when using multiple interrupts.

Example 13-1 shows ISRs for interrupts of low, high, and highest priority. Based on a clock of
11.0592MHz, the program does the following:

1. Toggles signal sync3 (P1.3) as frequently as possible, subject to servicing interrupts. Assuming the
main program is implemented as the instruction CPL P1.3, sync3 will toggle every 0.723µs.

2. Transmits a digit between 0 and 3 at 9600 baud on serial port 0 every 20ms, as triggered by the
milliseconds system timer.

3. Uses the interrupt from Timer 0 to toggle sync0 (P1.0) every 278µs.
4. Uses the interrupt from Timer 2 to toggle sync2 (P1.2) every 10ms.
5. Receives characters from serial port 0 via an interrupt and toggles sync1 (P1.1).
6. Shows the level of interrupt nesting by the value of the digit transmitted.

If the time to execute the ISR associated with Timer 0 is short, then most interrupts will occur with respect
to the main program. However, every application with multiple interrupts should cater to the least likely
combination of events. In this case, it is possible that the main program is interrupted by an overflow from
either Timer 0 or Timer 2, which is then interrupted due to a character received on serial port 0, which
itself is interrupted by the milliseconds timer. The variable called level will then be 3 and cause a '3' to be
transmitted because the MSINT ISR forces a transmit interrupt for serial port 0 by setting TI_0.

The characters most often transmitted are '1' and '2'. However, a '3' may be seen occasionally, depending
upon the relative timing of the received character with respect to the other interrupts. The probability is
affected considerably by the rate at which characters are received, the value of LIMIT, and the efficiency
of the code produced by the compiler.

140 Interrupts SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

Example of Multiple and Nested Interrupts

Example 13-1. Multiple and Nested Interrupts

// File Interrupts_4.c
// MSC1210 EVM Switches 1:On SW3-12345678 SW6-12345678
// 0:Off 11110111 11110000
#include <Reg1210.h>
#include <stdio.h>
#define xtal 11059200
#define BAUD 9600
#define LIMIT 150
#define RATE 100
sbit RedLed = P3^4; // RED LED on EVM
sbit YellowLed = P3^5; // Yellow LED on EVM
sbit sync0 = P1^0; // Port 1 bit 0
Example 13-1. (Continued)
sbit sync1 = P1^1; // Port 1 bit 1
sbit sync2 = P1^2; // Port 1 bit 2
sbit sync3 = P1^3; // Port 1 bit 3

data unsigned int j; char level=0, send;

void process(void)
{ data char i; // simulate additional execution time
for(i=0;i<LIMIT;i++);

}

void MsecInt(void) interrupt 6 using 3
{ data char temp;
level++;
temp=MSINT; // read MSINT to remove interrupt
AI=0; // remove auxiliary flag
send='0'+level; // characters '1' to '3'
TI_0=1; // trigger serial output
level--;

}

void Serial0Int(void) interrupt 4 using 2
{ level++;
RedLed=YellowLed; // monitor
if(RI_0) {
sync1=!sync1; // monitor
process(); // simulate additional execution time
RI_0=0; // remove Rx flag
}

if(TI_0) { // test transmit interrupt flag
TI_0=0; // remove Tx flag
if(send) {SBUF0=send; send=0;}
}

level--;
}
void Timer0Int(void) interrupt 1 using 1
{ level++;
sync0=!sync0; // monitor
YellowLed=0;
process(); // simulate additional execution time
YellowLed=1;
level--;

}

SBAU101A–July 2005–Revised March 2007 Interrupts 141
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

Example of Multiple and Nested Interrupts

Example 13-1. Multiple and Nested Interrupts (continued)

void Timer2Int(void) interrupt 5 using 1
{ level++;
sync2=!sync2; // monitor
TF2=0; // remove Timer 2 overflow flag
level--;

}

void main(void)
{ PDCON=0x7D; // System Timer enabled
SCON0=0x50; // Serial 0 enable; RI_0 cleared
CKCON=0x20; // Timer 2 at fclk/4; Timers 0 and 1 at fclk/12
PCON =0x30; // SMOD = 0 => normal Baud rate eqution
TMOD =0x22; // Timers 1 and 0 Auto reload
TCON =0x50; // TR1 and TR0 are 1
TH1 =256-xtal/32/12/BAUD; // Timer 1 reload value
TH0 =0; // Overflows every 256 * 12 * tclk
T2CON=0x04; // Timer 2 is auto-reload and TR2 is 1
RCAP2=65536-xtal/4/RATE;
MSEC=xtal/1000 - 1; // 1 ms reference
MSINT=20 - 1; // 20 ms interrupt interval
IP =0x90; // Priorities Timer2 'low', Serial0 'high', Timer0 'low'
IE =0xB2; // EA ET2, ES0 and ET0 enabled
AIE =0x10; // EMSEC enabled
EICON=0x60; // Auxiliary interrupts enabled
while(1){
sync3=!sync3; // foreground program
}

}

Interrupts from Timers 0 and 2 are both in the low priority group, and are therefore mutually exclusive and
share register bank 1. The priority of Serial Port 0 is raised to high by writing a '1' to bit 4 of register IP,
and therefore uses a different register bank. Similarly, since the milliseconds interrupt is in the highest
group, the ISR is allocated its own register bank.

If interrupts from Timer 0 and Timer 2 are pending at the same moment, Timer 0 will be serviced first
because it has a higher relative priority within the low group.

In this particular example, individual ISRs may not use registers, depending upon the efficiency and
optimization level of the compiler. However, the allocation of register banks ensures mutually exclusive
contexts and is the usual practice.

The interrupt number used in C is given by (ISR Address – 3) divided by 8.

142 Interrupts SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

13.6 Example of Wake Up from Idle

Example of Wake Up from Idle

In order to reduce operating power, the MSC121x can be placed into an idle state by writing '1' to bit 0 of
PCON at 87h. In this state, the CPU, Timers 0, 1, and 2, and the USARTs are not clocked, although other
peripherals remain active (unless previously powered-down via bits in PDCON at F1h). Once in the idle
state, normal operation is resumed by an enabled auxiliary interrupt or an enabled wake-up condition.

Three wake-up conditions are enabled by bits in the Enable Wake Up (EWU) SFR at C6h, as shown in
Table 13-3.

Table 13-3. EWU—Enable Wake Up
EWU SFR C6h Reset Value = 00h

Bit # Name Action or Interpretation

7-3 Undefined

Enable wake up on watchdog timer

2 EWUWDT 0: Disable wake up on watchdog timer interrupt

1: Enable wake up on watchdog timer interrupt

Enable wake up on external 1

1 EWUEX1 0: Disable wake up on external interrupt source 1

1: Enable wake up on external interrupt source 1

Enable wake up on external 0

0 EWUEX0 0: Disable wake up on external interrupt source 0

1: Enable wake up on external interrupt source 0

SBAU101A–July 2005–Revised March 2007 Interrupts 143
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

Example of Wake Up from Idle

It is possible to synchronize the activity of a program to an external input by repeatedly reading its level;
however, that requires more power than configuring an interrupt and placing the MSC1211 into an idle
state.

Example 13-2. Wake Up From Idle

// File Idle.c
// MSC1210 EVM Switches 1:On SW3-12345678 SW6-12345678
// 0:Off 11110111 11110000
#include <Reg1210.h>

sbit sync0 = P1^0; // Port 1 bit 0
sbit sync1 = P1^1; // Port 1 bit 1
sbit sync2 = P1^2; // Port 1 bit 2

data unsigned char j;

void INT0Int(void) interrupt 0 using 1 // No action
{
sync1=!sync1; // monitor for interest
}

void main(void)
{ IE =0x81; // EA EX0
EWU =0x01; // Enable Wakeup
IT0 =1; // Falling edge on INT0
while(1){
while(!INT0); // wait for INT0=1
sync2=0;
PCON|=1; // IDLE
sync2=1;
for(j=0;j<30;j++) sync0=!sync0;
}

}

If an external interrupt is configured for falling-edge detection, the IDLE bit must be set when the input is
high. Similarly, for rising-edge detection, IDLE must be set when the input is low.

144 Interrupts SBAU101A–July 2005–Revised March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

www.ti.com

Revision History

Revision History

Changes from Original (April 2005) to A Revision .. Page

• Changed document format; updated to new document standard... 9
• Added new Figure 2-2... 25
• Changed format of Table 2-1... 25
• Changed + sign to ± (typo) in ODAC (E6h) description .. 37
• Changed equation in section 4.5 .. 48
• Added definition to α and β in section 6.3 .. 65
• Changed reference from Table 6-3 to Table 6-5 (typo)... 72
• Changed "?" to "x" (typo) in Table 9-9... 102
• Changed "0 1" to "0 or 1" (typo) in bit # 4 port value of Table 10-2 ... 105
• Added fCLK text to 3rd bullet of Section 11.1.. 114
• Changed Bit 0 text in Table 11-5... 119
• Added new section 11.3.4 and new Table 11-6.. 123
• Added new section 11.3.6 and new Table 11-8.. 123
• Changed function text for Modes 1, 2, and 3 in Table 12-2 .. 127
• Changed 655362 to 65536 (typo) in Table 12-4 ... 127
• Changed comment text for TI_1=0 in Example 12-1 .. 133
• Added new Figure 13-1.. 138
• Changed list item 3 from 278ms to 278µs in section 13.5.. 140
• Changed "MsecInt" to "MSINT" (typo) in section 13.5 .. 140

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

SBAU101A–July 2005–Revised March 2007 Interrupts 145
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU101A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to
discontinue any product or service without notice. Customers should obtain the latest relevant information
before placing orders and should verify that such information is current and complete. All products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by government requirements, testing
of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible
for their products and applications using TI components. To minimize the risks associated with customer
products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,
or process in which TI products or services are used. Information published by TI regarding third-party
products or services does not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or
other intellectual property of the third party, or a license from TI under the patents or other intellectual
property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony
 Video & Imaging www.ti.com/video
 Wireless www.ti.com/wireless

Mailing Address: Texas Instruments
 Post Office Box 655303 Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/lpw
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	Table of Contents
	Preface
	1 Introduction
	1.1 MSC121x Description
	1.2 MSC121x Pinout
	1.2.1 Input/Output (I/O) Ports—P0, P1, P2, and P3
	1.2.1.1 Port 0—P0
	1.2.1.2 Port 1—P1
	1.2.1.3 Port 2—P2
	1.2.1.4 Port 3—P3

	1.2.2 Oscillator XOUT (pin 1) and XIN (pin 2)
	1.2.3 Reset Line—RST (pin 13)
	1.2.4 Address Latch Enable—ALE (pin 45)
	1.2.5 Program Store Enable—PSEN (pin 44)
	1.2.6 External Access—EA (pin 48)

	1.3 Enhanced 8051 Core
	1.4 Family Compatibility
	1.5 Flash Memory
	1.6 Internal SRAM
	1.7 High-Performance Analog Functions
	1.8 High-Performance Peripherals

	2 MSC121x Addressable Resources
	2.1 Introduction
	2.2 Program Memory and Data Memory
	2.3 Scratchpad RAM and Special Function Registers
	2.4 Beyond 64K Bytes

	3 Special Function Registers
	3.1 Introduction
	3.2 Referencing SFRs in Assembly and C Languages
	3.3 SFR Types
	3.4 SFR Overview

	4 Programmer's Model and Instruction Set
	4.1 Introduction
	4.2 Registers
	4.3 Instruction Types and Addressing Modes
	4.4 MSC121x Op-Code Table
	4.5 Example of MSC121x Instructions

	5 System Clocks, Timers, and Functions
	5.1 Timing Chain and Clock Controls
	5.2 System Clock Divider (MSC1211/12/13/14)
	5.2.1 Behavior in Delay Mode (DIVMOD = '10')

	5.3 Watchdog Timer
	5.3.1 Watchdog Timer Example Program

	5.4 Low-Voltage Detection
	5.5 Hardware Configuration
	5.6 Breakpoints

	6 Analog-To-Digital Converters
	6.1 ADC Functional Blocks
	6.2 ADC Signal Flow and General Description
	6.3 Analog Input Stage
	6.4 Input Impedance, PGA, and Voltage References
	6.5 Offset DAC
	6.6 ADC Data Rate, Filters, and Calibration
	6.7 32-Bit Summation Register
	6.8 Accessing the ADC Multi-Byte Conversion in C
	6.9 ADC Example Program

	7 Digital-To-Analog Converters
	7.1 Introduction
	7.2 DAC Selection
	7.3 DAC Configuration and Control
	7.4 DAC Technology and Limitations
	7.5 DAC Example Program

	8 Pulse-Width Modulator and Tone Generator
	8.1 Description
	8.2 PWM Generator Example

	9 Inter-IC (I2C) Subsystem
	9.1 Introduction to the I2C Bus
	9.2 I2C Terminology
	9.3 I2C Bus Lines and Basic Timing
	9.4 I2C Data Transfers and the Acknowledge Bit
	9.5 I2C Principal Registers
	9.6 I2C Related Registers
	9.7 I2C Example—MSC1211/13 as a Master
	9.8 I2C Example—MSC1211/13 as a Slave
	9.9 I2C Example—MSC1211/13 as an Interrupt-Driven Slave
	9.10 I2C Synchronization and Arbitration
	9.11 I2C Fast Mode
	9.12 I2C General Call
	9.13 I2C 10-Bit Addressing

	10 Serial Peripheral Interface (SPI)
	10.1 Description
	10.2 SPI Configuration
	10.3 SPI Interrupts
	10.4 SPI FIFO Buffer
	10.5 SPI Examples

	11 Timers and Counters
	11.1 Description
	11.2 Timer/Counters 0 and 1
	11.2.1 Modes 0 and 1
	11.2.2 Mode 2
	11.2.3 Mode 3
	11.2.4 Summary of Control Bits and SFRs for Timer/Counters 0 and 1

	11.3 Timer/Counter 2
	11.3.1 16-Bit Timer/Counter with Optional Capture
	11.3.2 16-Bit Timer/Counter with Automatic and Forced Reload
	11.3.3 Baud Rate Generator
	11.3.4 Summary of Timer/Counter 2 Mode Control
	11.3.5 Summary of Control Bits and SFRs for Timer/Counter 2
	11.3.6 Summary of Timer Modes

	11.4 Example Program Using Timers 0, 1, and 2

	12 Serial Ports (USART0 and USART1)
	12.1 Description
	12.2 Control Bits in SCON0 and SCON1
	12.3 Pin and Interrupt Assignments
	12.4 Timer/Counters 1 and 2 Baud Rate Generation
	12.5 Mode 0—8-Bit Synchronous
	12.6 Mode 1—10-Bit Asynchronous
	12.7 Modes 2 and 3—11-Bit Asynchronous
	12.8 Multiprocessor Communications
	12.9 Example Program

	13 Interrupts
	13.1 Description
	13.2 Standard and Extended Interrupts
	13.3 Auxiliary Interrupt Sources
	13.4 Multiple Interrupts
	13.5 Example of Multiple and Nested Interrupts
	13.6 Example of Wake Up from Idle

	Revision History

