

ADS7038x Small, 8-Channel, 12-Bit ADC With SPI Interface, GPIOs, and CRC

1 Features

- Small package size:
 - WQFN 3mm × 3mm
- 8 channels configurable as any combination of:
 - Up to 8 analog inputs, digital inputs, or digital outputs
- GPIOs for I/O expansion:
 - Open-drain, push-pull digital outputs
- Analog watchdog:
 - Programmable thresholds per channel
 - Event counter for transient rejection
- Wide operating ranges:
 - AVDD: 2.35V to 5.5V
 - DVDD: 1.65V to 5.5V
 - -40°C to +125°C temperature range
- Enhanced-SPI digital interface:
 - High-speed, 60MHz interface
 - Achieve full throughput with >13.5MHz SPI
- CRC for read/write operation:
 - CRC on data read/write
 - CRC on power-up configuration
- Programmable averaging filters:
 - Programmable sample size for averaging
 - Averaging with internal conversions
 - 16-bit resolution

2 Applications

- Macro remote radio units (RRU)
- Battery management systems (BMS)
- String inverters
- Central inverters

3 Description

The ADS7038 is an easy-to-use, multiplexed, 12-bit, successive approximation register analog-to-digital converter (SAR ADC). The eight channels can be independently configured as either analog inputs, digital inputs, or digital outputs. The device has an internal oscillator for the ADC conversion process.

The ADS7038 communicates through an SPIcompatible interface and operates either in autonomous or single-shot conversion mode. The ADS7038 implements the analog watchdog function by event-triggered interrupts per channel using a digital window comparator with programmable high and low thresholds, hysteresis, and an event counter. The ADS7038 has a built-in cyclic redundancy check (CRC) for data read/write operations and the powerup configuration.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾
ADS7038, ADS7038H	RTE (WQFN, 16)	3mm × 3mm

- For more information, see the Mechanical, Packaging, and Orderable Information.
- The package size (length × width) is a nominal value and (2) includes pins, where applicable.

Device Information

PART NUMBER	SPEED
ADS7038	1MSPS
ADS7038H	1.5MSPS

Device Block Diagram

Example System Architecture AVDD DECAP AVDD High/Low Threshold DVDD LOAD Digital Window AIN0 / GPIO0 OVP AIN1 / GPIO1 Programmable Averaging Filters AIN2 / GPIO2 AIN3 / GPIO3 ADC MUX GPIO AIN4 / GPIO4 Sequencer SCLK AIN5 / GPIO5 Pin CFG SDI Verification AIN6 / GPIO6 GPO Write SDO AIN7 / GPIO7 GPI Read GND OVP: Over voltage protection OCP: Over current protection

ADS7038 Block Diagram and Applications

Table of Contents

1 Features1	7.3 Feature Description	14
2 Applications1	7.4 Device Functional Modes	25
3 Description1	8 Register Map	30
4 Device Comparison Table2	8.1 ADS7038 Registers	
5 Pin Configuration and Functions3	9 Application and Implementation	73
6 Specifications4	9.1 Application Information	
6.1 Absolute Maximum Ratings4	9.2 Typical Applications	
6.2 ESD Ratings4	9.3 Power Supply Recommendations	
6.3 Recommended Operating Conditions4	9.4 Layout	76
6.4 Thermal Information5	10 Device and Documentation Support	77
6.5 Electrical Characteristics5	10.1 Receiving Notification of Documentation Update	es <mark>77</mark>
6.6 Timing Requirements6	10.2 Support Resources	<mark>77</mark>
6.7 Switching Characteristics7	10.3 Trademarks	77
6.8 Timing Diagrams8	10.4 Electrostatic Discharge Caution	77
6.9 Typical Characteristics9	10.5 Glossary	77
7 Detailed Description13	11 Revision History	<mark>7</mark> 7
7.1 Overview	12 Mechanical, Packaging, and Orderable	
7.2 Functional Block Diagram13	Information	77

4 Device Comparison Table

PART NUMBER	DESCRIPTION	SPEED	CRC MODULE	ZERO-CROSSING- DETECT (ZCD) MODULE	ROOT-MEAN-SQUARE (RMS) MODULE
ADS7028		1 MSPS	Yes	Yes	Yes
ADS7038	8-channel, 12-bit ADC with SPI interface and GPIOs	1 MSPS	Yes	No	No
ADS7038-Q1		1MSPS	Yes	No	No
ADS7038H		1.5MSPS	Yes	No	No

5 Pin Configuration and Functions

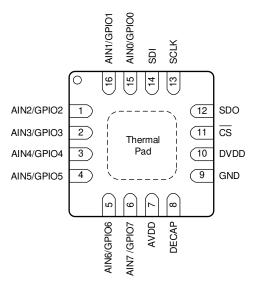


Figure 5-1. RTE Package, 16-Pin WQFN, Top View

Table 5-1. Pin Functions

PIN		FUNCTION(1)	DESCRIPTION	
NAME	NO.	FUNCTION	DESCRIPTION	
AIN0/GPIO0	15	AI, DI, DO	Channel 0; can be configured as either an analog input (default), digital input, or digital output.	
AIN1/GPIO1	16	AI, DI, DO	Channel 1; can be configured as either an analog input (default), digital input, or digital output.	
AIN2/GPIO2	1	AI, DI, DO	Channel 2; can be configured as either an analog input (default), digital input, or digital output.	
AIN3/GPIO3	2	AI, DI, DO	Channel 3; can be configured as either an analog input (default), digital input, or digital output.	
AIN4/GPIO4	3	AI, DI, DO	Channel 4; can be configured as either an analog input (default), digital input, or digital output.	
AIN5/GPIO5	4	AI, DI, DO	Channel 5; can be configured as either an analog input (default), digital input, or digital output.	
AIN6/GPIO6	5	AI, DI, DO	Channel 6; can be configured as either an analog input (default), digital input, or digital output.	
AIN7/GPIO7	6	AI, DI, DO	Channel 7; can be configured as either an analog input (default), digital input, or digital output.	
AVDD	7	Supply	Analog supply input, also used as the reference voltage to the ADC; connect a 1-µF decoupling capacitor to GND.	
CS	11	DI	Chip-select input pin; active low. The device takes control of the data bus when \overline{CS} is low. The device starts converting the active input channel on the rising edge of \overline{CS} . SDO goes hi-Z when \overline{CS} is high.	
DECAP	8	Supply	Connect a 1-µF decoupling capacitor to GND for the internal power supply.	
DVDD	10	Supply	Digital I/O supply voltage; connect a 1-µF decoupling capacitor to GND.	
GND	9	Supply	Ground for the power supply; all analog and digital signals are referred to this pin voltage.	
SCLK	13	DI	Serial clock for the SPI interface.	
SDI	14	DI	Serial data in for the device.	
SDO	12	DO	Serial data out for the device.	
Thermal pad	_	Supply	Exposed thermal pad; connect to GND.	

(1) AI = analog input, DI = digital input, and DO = digital output.

6 Specifications

6.1 Absolute Maximum Ratings

over operating ambient temperature range (unless otherwise noted)(1)

	MIN	MAX	UNIT
DVDD to GND	-0.3	5.5	V
AVDD to GND	-0.3	5.5	V
AINx / GPOx ⁽³⁾ to GND	GND - 0.3	AVDD + 0.3	V
Digital input to GND	GND - 0.3	5.5	V
Current through any pin except supply pins ⁽²⁾	-10	10	mA
Junction temperature, T _J	-40	125	°C
Storage temperature, T _{stg}	-60	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

6.2 ESD Ratings

			VALUE	UNIT
V	Floatroatatia diagharma	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	±2000	\/
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER	SUPPLY					
AVDD	Analog supply voltage		2.35	3.3	5.5	V
DVDD	Digital supply voltage		1.65	3.3	5.5	V
ANALO	G INPUTS	·			•	
FSR	Full-scale input range	AIN _X - GND	0		AVDD	V
V _{IN}	Absolute input voltage	AIN _X - GND	-0.1	P	VDD + 0.1	V
TEMPER	RATURE RANGE				1	
T _A	Ambient temperature		-40	25	125	°C

(1) AINx refers to AIN0, AIN1, AIN2, AIN3, AIN4, AIN5, AIN6, and AIN7.

⁽²⁾ Limit pin current to 10mA or less.

⁽³⁾ AINx / GPIOx refers to pins 1, 2, 3, 4, 5, 6, 15, and 16.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

		ADS7038, ADS7038H	
	THERMAL METRIC ⁽¹⁾	RTE (WQFN)	UNIT
		16 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	49.7	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	53.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	24.7	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	1.3	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	24.7	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	9.3	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

at AVDD = 5V, DVDD = 1.65V to 5.5V, and maximum throughput (unless otherwise noted); minimum and maximum values at $T_{\Delta} = -40^{\circ}\text{C}$ to +125°C; typical values at $T_{\Delta} = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALO	G INPUTS					
C _{SH}	Sampling capacitance			12		pF
DC PER	RFORMANCE					
	Resolution	No missing codes		12		bits
DNL	Differential nonlinearity		-0.75	±0.3	0.75	LSB
INL	Integral nonlinearity		-1.3	±0.5	1.3	LSB
V _(OS)	Input offset error	Post offset calibration	-2	±0.3	2	LSB
	Input offset thermal drift	Post offset calibration		±1		ppm/°C
G _E	Gain error		-0.075	±0.05	0.075	%FSR
	Gain error thermal drift			±1		ppm/°C
AC PEF	RFORMANCE					
OINIAD	Circulate major a distantism matic	AVDD = 5V, f _{IN} = 2kHz	70.2	72.9		-ID
SINAD	Signal-to-noise + distortion ratio	AVDD = 3V, f _{IN} = 2kHz	70.2	72.7		dB
CND	Ciamal ta maina matia	AVDD = 5V, f _{IN} = 2kHz	71.2	73.1		٦D
SNR	Signal-to-noise ratio	AVDD = 3V, f _{IN} = 2kHz	70.5	72.9		dB
THD	Total harmonic distortion	f _{IN} = 2kHz		-87.5		dB
SFDR	Spurious-free dynamic range	f _{IN} = 2kHz		91		dB
	Isolation crosstalk	f _{IN} = 100kHz		-100		dB
DECAP	Pin					
	Decoupling capacitor on DECAP pin		0.22	1	4.7	μF
SPI INT	ERFACE (CS, SCLK, SDI, SDO)					
V _{IH}	Input high logic level		0.7 x DVDD		5.5	V
V _{IL}	Input low logic level		-0.3		0.3 x DVDD	V
V	Output high lagic lavel	Source current = 2mA, DVDD > 2V	0.8 x DVDD		DVDD	V
V _{OH}	Output high logic level	Source current = 2mA, DVDD ≤ 2V	0.7 x DVDD		DVDD	V
V	Output low logic lovel	Sink current = 2mA, DVDD > 2V	0		0.4	V
V_{OL}	Output low logic level	Sink current = 2mA, DVDD ≤ 2V	0		0.2 x DVDD	V

6.5 Electrical Characteristics (continued)

at AVDD = 5V, DVDD = 1.65V to 5.5V, and maximum throughput (unless otherwise noted); minimum and maximum values at $T_{\Delta} = -40^{\circ}\text{C}$ to +125°C; typical values at $T_{\Delta} = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
GPIOs						
V _{IH}	Input high logic level		0.7 x AVDD		AVDD + 0.3	V
V_{IL}	Input low logic level		-0.3		0.3 x AVDD	V
	Input leakge current	GPIO configured as input		10	100	nA
V _{OH}	Output high logic level	GPO_DRIVE_CFG = push-pull, I _{SOURCE} = 2mA	0.8 x AVDD		AVDD	V
V _{OL}	Output low logic level	I _{SINK} = 2mA	0		0.2 x AVDD	V
I _{OH}	Output high source current	V _{OH} > 0.7 x AVDD			5	mA
I _{OL}	Output low sink current	V _{OL} < 0.3 x AVDD			5	mA
POWE	R-SUPPLY CURRENTS					
		Full throughput, AVDD = 5V		490	600	
I_{AVDD}	Analog supply current	Full throughput, AVDD = 3V		455	550	μΑ
		No conversion, AVDD = 5V		7	25	
		Full throughput, DVDD = 5V		560		
I_{DVDD}	Digital interface supply current	Full throughput, DVDD = 1.8V		162		μΑ
		No conversion, AVDD = 5V		0.7		

6.6 Timing Requirements

at AVDD = 5V, DVDD = 1.65V to 5.5V, and maximum throughput (unless otherwise noted); minimum and maximum values at $T_A = -40^{\circ}\text{C}$ to +125°C; typical values at $T_A = 25^{\circ}\text{C}$

.д	, урган гана и гд		MIN	MAX	UNIT
CONVERSI	ON CYCLE				
f	Sampling frequency	ADS7038		1000	kSPS
f _{CYCLE}	Sampling frequency	ADS7038H		1500	kSPS
t _{CYCLE}	ADC cycle-time period		1 / f _{CYCLE}		S
•	Acquisition time	ADS7038	300		ns
t _{ACQ}	Acquisition time	ADS7038H	200		ns
t _{QT_ACQ}	Quiet acquisition time		10		ns
t _{D_CNVCAP}	Quiet conversion time		10		ns
t _{WH_CSZ}	Pulse duration: CS high		200		ns
t _{WL_CSZ}	Pulse duration: CS low		200		ns
SPI INTERI	ACE TIMINGS				
f _{CLK}	Maximum SCLK frequency			60	MHz
t _{CLK}	Minimum SCLK time period		16.67		ns
t _{PH_CK}	SCLK high time		0.45	0.55	t _{CLK}
t _{PL_CK}	SCLK low time		0.45	0.55	t _{CLK}
t _{su_csck}	Setup time: CS falling to the first SCLK capture edge		3.5		ns
t _{SU_CKDI}	Setup time: SDI data valid to the SCLK capture edge		1.5		ns
t _{HT_CKDI}	Hold time: SCLK capture edge to data valid on SDI		2		ns
t _{D_CKCS}	Delay time: last SCLK falling to CS rising		6		ns

6.7 Switching Characteristics

at AVDD = 5V, DVDD = 1.65V to 5.5V, and maximum throughput (unless otherwise noted); minimum and maximum values at $T_A = -40$ °C to +125°C; typical values at $T_A = 25$ °C

	PARAMETER	Test Conditions	MIN	MAX	UNIT
CONVERSIO	ON CYCLE	•			
4	ADCi-n tim-	ADS7038		600	ns
t _{CONV}	ADC conversion time	ADS7038H		467	ns
RESET and	ALERT			'	
t _{PU}	Power-up time for device	AVDD ≥ 2.35 V, C _{DECAP} = 1 µF		5	ms
t _{RST}	Delay time; RST bit = 1b to device reset complete ⁽¹⁾			5	ms
t _{ALERT_HI}	ALERT high period	ALERT_LOGIC[1:0] = 1x	50	150	ns
t _{ALERT_LO}	ALERT low period	ALERT_LOGIC[1:0] = 1x	50	150	ns
SPI INTERF	ACE TIMINGS				
t _{DEN_CSDO}	Delay time: CS falling to data enable			15	ns
t _{DZ_CSDO}	Delay time: CS rising to SDO going Hi-Z			15	ns
t _{D_CKDO}	Delay time: SCLK launch edge to (next) data valid on SDO			16	ns
+	Hold time: SCLK launch edge to (previous)	DVDD >= 3V	4.3		no
t _{HT_CKDO}	data valid on SDO	DVDD < 3V	6.5		ns

⁽¹⁾ RST bit is automatically reset to 0b after t_{RST} .

6.8 Timing Diagrams

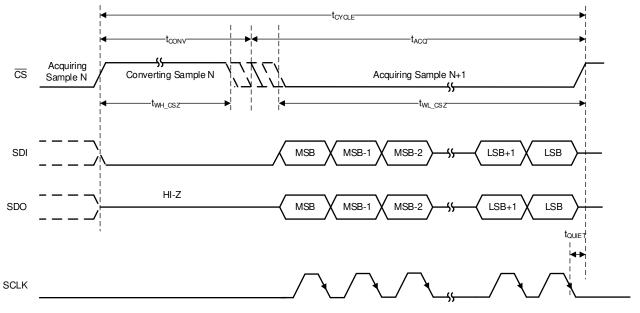
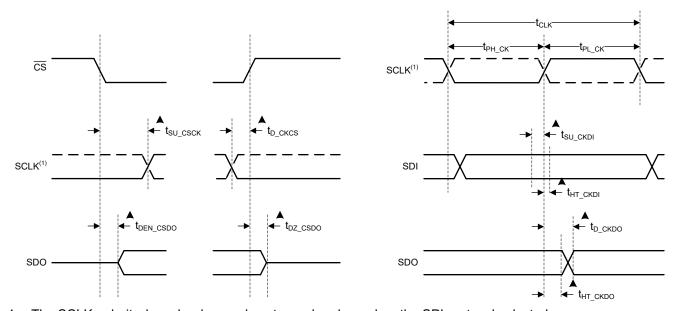



Figure 6-1. Conversion Cycle Timing

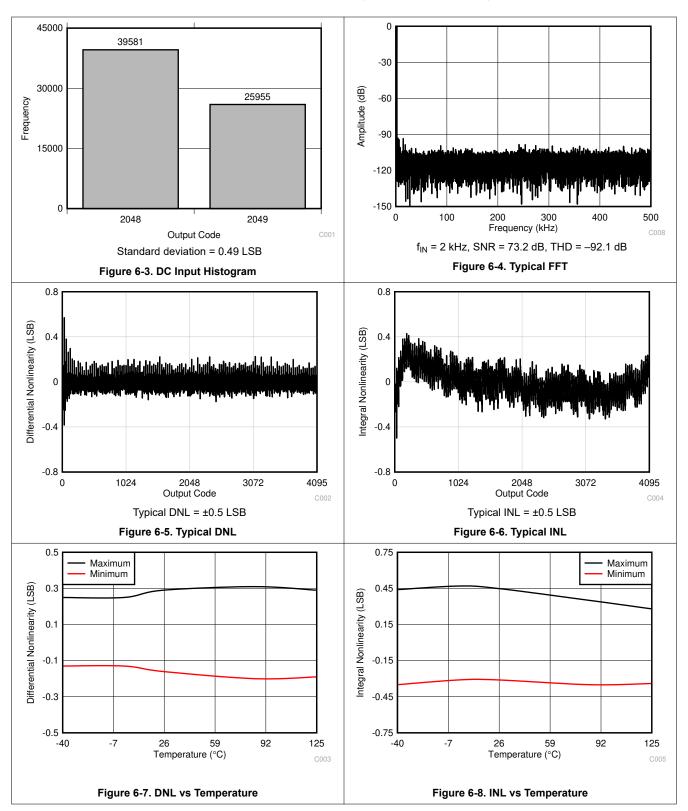
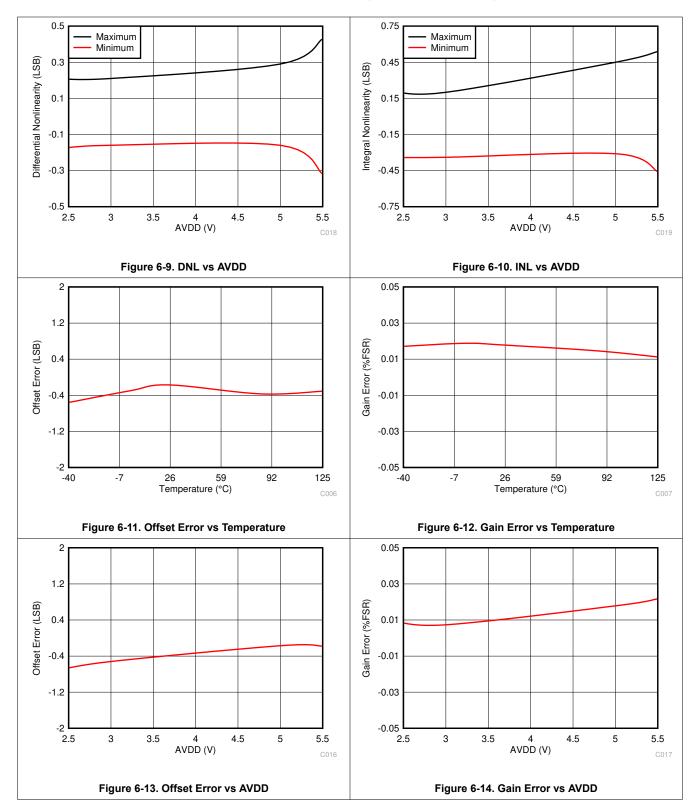

1. The SCLK polarity, launch edge, and capture edge depend on the SPI protocol selected.

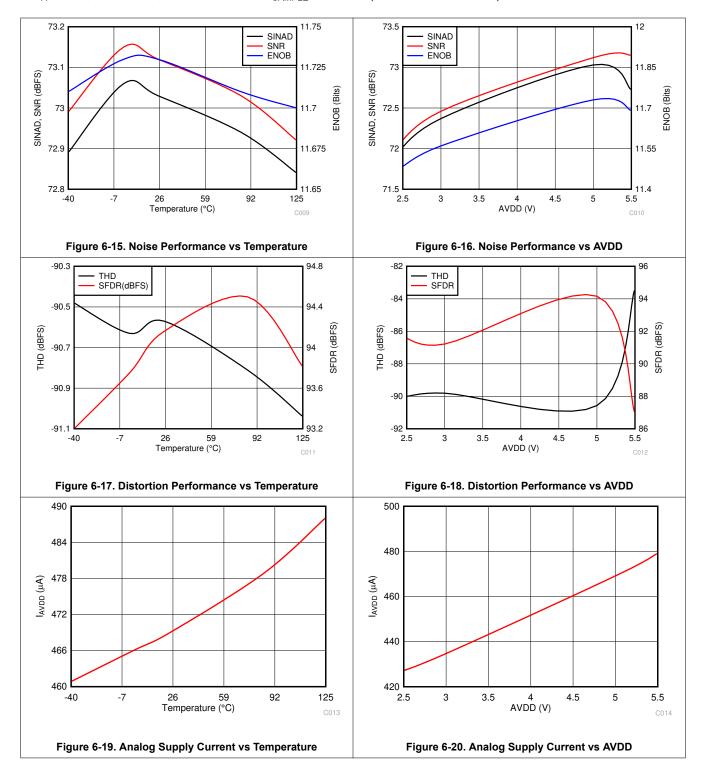
Figure 6-2. SPI-Compatible Serial Interface Timing

6.9 Typical Characteristics


at T_A = 25°C, AVDD = 5 V, DVDD = 1.8 V, and f_{SAMPLE} = 1 MSPS (unless otherwise noted)

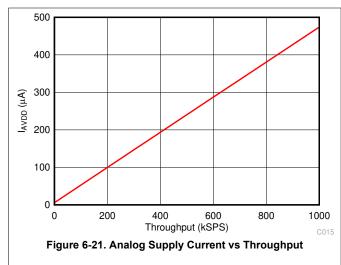
6.9 Typical Characteristics (continued)

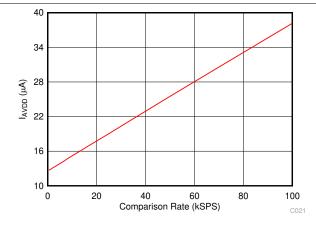
at T_A = 25°C, AVDD = 5 V, DVDD = 1.8 V, and f_{SAMPLE} = 1 MSPS (unless otherwise noted)


Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

6.9 Typical Characteristics (continued)


at T_A = 25°C, AVDD = 5 V, DVDD = 1.8 V, and f_{SAMPLE} = 1 MSPS (unless otherwise noted)


6.9 Typical Characteristics (continued)

at T_A = 25°C, AVDD = 5 V, DVDD = 1.8 V, and f_{SAMPLE} = 1 MSPS (unless otherwise noted)

750 650 550 IAVDD (µA) 450 350 250 150 0 500 1000 1500 2000 2500 3000 3500 Comparison Rate (kSPS)

Figure 6-22. Analog Supply Current vs Comparison Rate (OSC_SEL = 0) in Turbo Comparator Mode

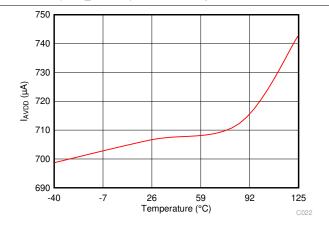


Figure 6-23. Analog Supply Current vs Comparison Rate (OSC_SEL = 1) in Turbo Comparator Mode

Figure 6-24. Analog Supply Current vs Temperature (OSC_SEL = 0, CLK_DIV = 0) in Turbo Comparator Mode

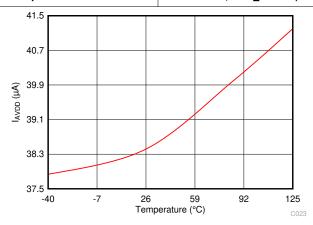
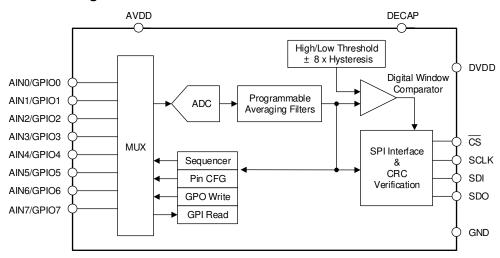


Figure 6-25. Analog Supply Current vs Temperature (OSC_SEL = 1, CLK_DIV = 0) in Turbo Comparator Mode

Product Folder Links: ADS7038 ADS7038H

12


7 Detailed Description

7.1 Overview

The ADS7038 is a small, eight-channel, multiplexed, 12-bit, 1-MSPS, analog-to-digital converter (ADC) with an enhanced-SPI serial interface. The eight channels of the ADS7038 can be individually configured as either analog inputs, digital inputs, or digital outputs. The device includes a digital window comparator that can be used to alert the host when a programmed high or low threshold is crossed on any input channel. The device uses an internal oscillator for conversion. The ADC can be used in manual mode for reading ADC data over the SPI interface or in autonomous and turbo comparator modes for monitoring the analog inputs without an active SPI interface.

The device features a programmable averaging filter that outputs a 16-bit result for enhanced resolution.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Multiplexer and ADC

The eight channels of the multiplexer can be independently configured as ADC inputs or general-purpose inputs/outputs (GPIOs). As shown in Figure 7-1, every AINx/GPIOx channel has ESD protection diodes to AVDD and GND. On power-up or after device reset, all eight multiplexer channels are configured as analog inputs.

Figure 7-1 shows an equivalent circuit for pins configured as analog inputs. The ADC sampling switch is represented by ideal switch (SW) in series with the resistor R_{SW} (typically 150 Ω) and the sampling capacitor, C_{SH} (typically 12 pF).

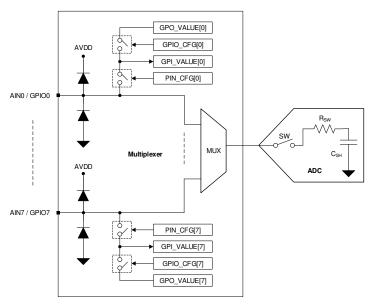


Figure 7-1. Analog Inputs, GPIOs, and ADC Connections

During acquisition, the SW switch is closed to allow the signal on the selected analog input channel to charge the internal sampling capacitor. During conversion, the SW switch is opened to disconnect the analog input channel from the sampling capacitor.

The multiplexer channels can be configured as GPIOs in the PIN_CFG register. The direction of a GPIO (either as an input or an output) can be set in the GPIO_CFG register. The logic level on the channels configured as digital inputs can be read from the GPI_VALUE register. The digital outputs can be accessed by writing to the GPO_VALUE register. The digital outputs can be configured as either open-drain or push-pull in the GPO_DRIVE_CFG register.

7.3.2 Reference

The device uses the analog supply voltage (AVDD) as the reference for the analog-to-digital conversion process. TI recommends connecting a $1-\mu F$, low-equivalent series resistance (ESR) ceramic decoupling capacitor between the AVDD and GND pins.

7.3.3 ADC Transfer Function

The ADC output is in straight binary format. Equation 1 computes the ADC resolution:

$$1 LSB = V_{REF} / 2^{N}$$
 (1)

where:

- V_{REF} = AVDD
- N = 12

Figure 7-2 and Table 7-1 detail the transfer characteristics for the device.

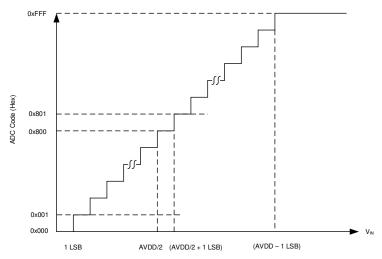


Figure 7-2. Ideal Transfer Characteristics

Table 7-1. Transfer Characteristics

INPUT VOLTAGE	CODE	IDEAL OUTPUT CODE
≤1 LSB	Zero	000
1 LSB to 2 LSBs	Zero + 1	001
(AVDD / 2) to (AVDD / 2) + 1 LSB	Mid-scale code	800
(AVDD / 2) + 1 LSB to (AVDD / 2) + 2 LSB	Mid-scale code + 1	801
≥ AVDD – 1 LSB	Full-scale code	FFF

7.3.4 ADC Offset Calibration

The variation in ADC offset error resulting from changes in temperature or AVDD can be calibrated by setting the CAL bit in the GENERAL_CFG register. The CAL bit is reset to 0 after calibration. The host can poll the CAL bit to check the ADC offset calibration completion status.

7.3.5 Programmable Averaging Filter

The TLA2518 features a built-in oversampling (OSR) function that can be used to average several samples. The averaging filter can be enabled by programming the OSR[2:0] bits in the OSR CFG register. The averaging filter configuration is common to all analog input channels. Figure 7-3 shows that the averaging filter module output is 16 bits long. In manual conversion mode and auto-sequence mode, only the first conversion for the selected analog input channel must be initiated by the host; see the Manual Mode and Auto-Sequence Mode sections. As shown in Figure 7-3, any remaining conversions for the selected averaging factor are generated internally. The time required to complete the averaging operation is determined by the sampling speed and number of samples to be averaged. As shown in Figure 7-3, the 16-bit result can be read out after the averaging operation completes.

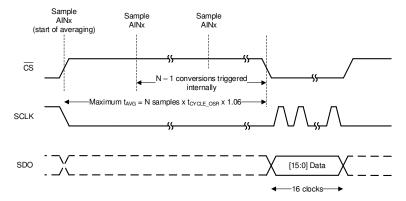


Figure 7-3. Averaging Example

In autonomous mode of operation, samples from analog input channels that are enabled in the AUTO SEQ CH SEL register are averaged sequentially. The digital window comparator compares the top 12 bits of the 16-bit average result with the thresholds.

Equation 2 provides the LSB value of the 16-bit average result.

$$1 LSB = \frac{AVDD}{2^{16}} \tag{2}$$

7.3.6 General-Purpose I/Os

The eight channels of the TLA2518 can be independently configured as analog inputs, digital inputs, or digital outputs. Table 7-2 describes how the PIN CFG and GPIO CFG registers can be used to configure the device channels.

Table 7-2. Configuring Channels as Analog Inputs or GPIOs

PIN_CFG[7:0]	GPIO_CFG[7:0]	GPO_DRIVE_CFG[7:0]	CHANNEL CONFIGURATION
0	х	х	Analog input (default)
1	0	х	Digital input
1	1	0	Digital output; open-drain driver
1	1	1	Digital output; push-pull driver

Digital outputs can be configured to logic 1 or 0 by writing to the GPO VALUE register. Reading the GPI VALUE register returns the logic level for all channels configured as digital inputs or digital outputs. The GPI VALUE register can be read to detect a failure in external components, such as a floating pullup resistor or a lowimpedance pulldown resistor, that prevents digital outputs being set to the desired logic level.

7.3.7 Oscillator and Timing Control

The device uses an internal oscillator for conversion. When using the averaging module, the host initiates the first conversion and subsequent conversions are generated internally by the device. Also, in autonomous mode of operation, the start of the conversion signal is generated by the device. Table 7-3 describes how the sampling rate can be controlled by the OSC_SEL and CLK_DIV[3:0] register fields when the device generates the start of the conversion

Table 7-3. Configuring Sampling Rate for Internal Conversion Start Control

	OSC_SEL = 0		OSC_SEL =	1
CLK_DIV[3:0]	SAMPLING FREQUENCY, f _{CYCLE_OSR} (kSPS)	CYCLE TIME, t _{CYCLE_OSR} (µs)	SAMPLING FREQUENCY, f _{CYCLE_OSR} (kSPS)	CYCLE TIME, t _{CYCLE_OSR} (μs)
0000b	1000	1	31.25	32
0001b	666.7	1.5	20.83	48
0010b	500	2	15.63	64
0011b	333.3	3	10.42	96
0100b	250	4	7.81	128
0101b	166.7	6	5.21	192
0110b	125	8	3.91	256
0111b	83	12	2.60	384
1000b	62.5	16	1.95	512
1001b	41.7	24	1.3	768
1010b	31.3	32	0.98	1024
1011b	20.8	48	0.65	1536
1100b	15.6	64	0.49	2048
1101b	10.4	96	0.33	3072
1110b	7.8	128	0.24	4096
1111b	5.2	192	0.16	6144

The conversion time of the device, given by tCONV in the Section 6.7 table, is independent of the OSC_SEL and CLK_DIV[3:0] configuration.

7.3.8 CRC on Data Interface

The ADS7028 features a cyclic redundancy check (CRC) module for checking the integrity of the data bits exchanged over the SPI interface. The CRC module is bidirectional, which appends an 8-bit CRC to every byte read from the device and also evaluates the CRC of every incoming byte over the SPI interface. The CRC module uses the CRC-8-CCITT polynomial ($x^8 + x^2 + x + 1$) for CRC computation.

To enable the CRC module, set the CRC_EN bit in the GENERAL_CFG register. Table 7-4 shows the different ways that a CRC error that occurs when configuring the ADS7028 can be detected.

Table 7-4. Configuring Channels as Analog Inputs or GPIOs

CRC ERROR NOTIFICATION	CONFIGURATION	DESCRIPTION
ALERT	ALERT_CRCIN = 1b	ALERT (internal signal) is asserted if a CRC error is detected
Status flags	APPEND_STATUS = 10b	4-bit status flags are appended to the ADC data. See the <i>Output Data</i> Format section for details.
Register read	_	Read the CRCERR_IN bit to check if a CRC error was detected.

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

When the ADS7028 detects a CRC error on the SPI interface, the erroneous data are ignored and the CRCERR_IN bit is set. Additional notifications can be enabled as described in Table 7-4. Further register writes are disabled until the CRCERR_IN bit is cleared by writing 1b to this bit. When using autonomous conversion mode, further conversions can be disabled on a CRC error on the SPI interface by setting CONV_ON_ERR = 1b.

7.3.8.1 Input CRC (From Host To Device)

The host must compute and append the appropriate 8-bit CRC to the command string in the same SPI frame (see *Register Read With CRC*). The ADC also computes the expected 8-bit CRC corresponding to the 24-bit payload received from the host and compares the calculated CRC code to the CRC received from the host. If a communication error is detected, the CRCERR_IN bit in the SYSTEM_STATUS register is set to 1b. The CRCERR IN bit is set in the following scenarios:

- The SPI communication frame did not have 32 clocks exactly, corresponding to a 24-bit data payload and an 8-bit CRC.
- The CRC calculated by the ADC over the received 24-bit payload does not match with the corresponding 8-bit CRC received from the host.

If a CRC error is detected by the device, the command does not execute and the CRCERR_IN flag is set to 1b. ADC conversion data read and register read, with a valid CRC from the host, are still supported. The error condition can be detected, as listed in Table 7-5, by either status flags or by a register read. Further register writes to the device are blocked until CRCERR_IN flag is cleared to 0b. Register write operation, with valid CRC from the host, to the SYSTEM_STATUS and GENERAL_CFG registers is still supported.

The device can be configured to set all channels to analog inputs on detecting a CRC error by setting CH_RST bit to 1b. This would ensure that channels which were configured as digital outputs are not driven by the device when CRC error is detected. All channels will be reset as per the configuration in the PIN_CFG and GPIO_CFG registers when CRCERR_IN flag is cleared.

The device can be configured to abort further conversions in autonomous and turbo comparator modes (see the *Autonomous Mode* and *Turbo Comparator Mode* sections), on detecting a CRC error, by setting CONV_ON_ERR = 1b.

CRC ERROR NOTIFICATION	CONFIGURATION	DESCRIPTION
ALERT	ALERT_CRCIN = 1b	ALERT (internal signal) is asserted if a CRC error is detected.
Status flags	APPEND_STATUS = 10b	See Status Flags for details.
Register read	_	Read the CRCERR_IN bit to check if a CRC error was detected.

Table 7-5. Configuring Notifications when CRC Error is Detected

7.3.8.2 Output CRC (From Device to Host)

The device appends an 8-bit CRC to the output data packet when the CRC module is enabled. The output data packet length can be one of the following:

- An 8-bit for register reads (see the Register Read With CRC section for more details).
- A 16-bit or 24-bit for ADC conversion result reads (see Section 7.3.9 for more details).

The SPI frame must be exactly 32 bits long when the CRC module is enabled.

7.3.9 Output Data Format

Figure 7-4 depicts various SPI frames for reading data from the device. The data output is MSB aligned. If averaging is enabled the output data from the ADC are 16 bits long, otherwise the output data are 12 bits long. Optionally, a 4-bit channel ID or status flags can be appended at the end of the output data by configuring the APPEND_STATUS field.

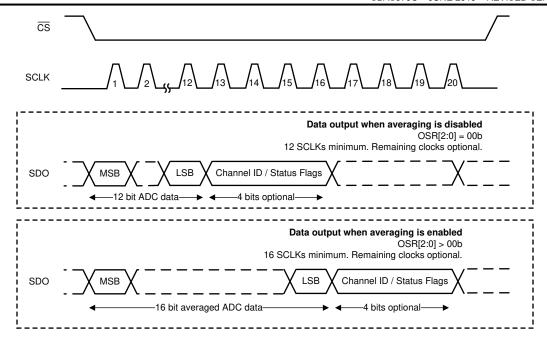


Figure 7-4. SPI Frames for Reading Data

7.3.9.1 Status Flags

Status flags can be appended to the ADC output by setting APPEND_STATUS = 10b. Status flags are not appended to data corresponding to a register read operation or when FIX_PAT = 1b. The 4-bit status flag field is constructed as follows:

Status flag[3:0] = { 1, 0, CRCERR_IN, ALERT }

- CRCERR_IN: This flag is the same as the CRCERR_IN bit in the SYSTEM_STATUS register.
- ALERT: This flag indicates if any of the event flags are set in the EVENT_FLAG register.

7.3.10 Digital Window Comparator

The internal digital window comparator (DWC) is available in both conversion modes (manual and autonomous). The DWC outputs an internal ALERT signal. The internal ALERT signal can be output on any one of the digital output channels by configuring the ALERT_PIN register. Figure 7-5 provides a block diagram for the digital window comparator.

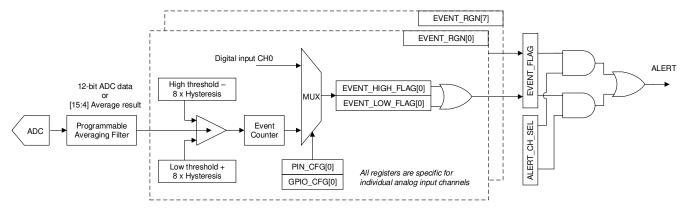


Figure 7-5. Digital Window Comparator Block Diagram

The low-side threshold, high-side threshold, event counter, and hysteresis parameters are independently programmable for each input channel. Figure 7-6 illustrates that the window comparator can monitor events for every analog input channel.

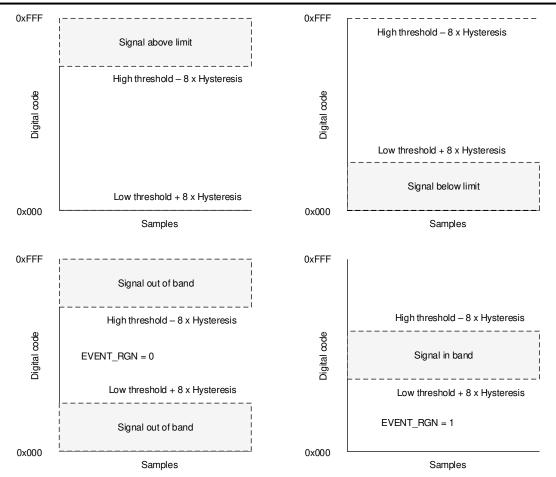


Figure 7-6. Event Monitoring With the Window Comparator

To enable the digital window comparator, set the DWC_EN bit in the GENERAL_CFG register. By default, hysteresis = 0, high threshold = 0xFFF, and low threshold = 0x000. For detecting when a signal is inband, the EVENT_RGN register must be configured. In each of the cases shown in Figure 7-6, either or both ALERT_HIGH_FLAG and ALERT_LOW_FLAG can be set. The programmable event counter counts consecutive threshold violations before alert flags are set. The event count can be set to a higher value to avoid transients in the input signal setting the alert flags.

In order to assert the ALERT signal (internal) when the alert flag is set for a particular analog input channel, set the corresponding bit in the DWC_CH_SEL register. Alert flags are set, irrespective of the DWC_CH_SEL configuration, if DWC_EN = 1 and high or low thresholds are exceeded.

7.3.10.1 Interrupts From Digital Inputs

Table 7-6 shows that rising edge or falling edge events can be detected on channels configured as digital inputs.

Table 7-6. Configuring Interrupts from Digital Inputs

PIN_CFG[7:0]	GPIO_CFG[7:0]	EVENT_RGN[7:0]	EVENT DESCRIPTION
1	0	0	ALERT_HIGH_FLAG is set on the rising edge on the digital input channel
1	0	1	ALERT_LOW_FLAG is set on the falling edge on the digital input channel

7.3.10.2 Triggering Digital Outputs with Alert and ZCD

Figure 7-7 shows that digital outputs can be updated in response to alerts from individual channels or synchronous to the zero-crossing-detect signal.

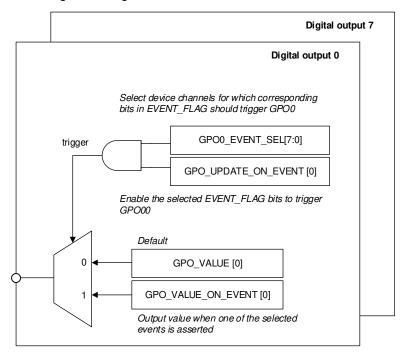
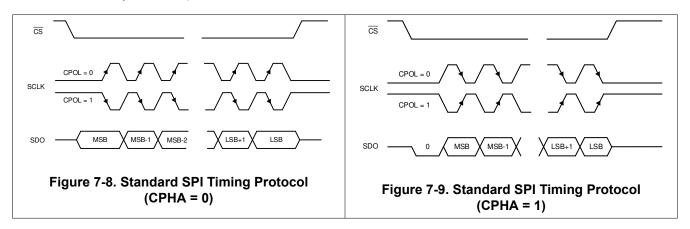


Figure 7-7. Block Diagram of the Digital Output Logic

7.3.11 Minimum, Maximum, and Latest Data Registers

The ADS7028 can record the minimum, maximum, and latest code (statistics registers) for every analog input channel. To enable or re-enable recording statistics, set the STATS_EN bit in the GENERAL_CFG register. Writing 1 to the STATS_EN bit reinitializes the statistics module. Afterwards, results from new conversions are recorded in the statistics registers.. Previous values can be read from the statistics registers until a new conversion result is available. Before reading the statistics registers, set STATS_EN = 0 to prevent any updates to this block of registers.

7.3.12 Device Programming


7.3.12.1 Enhanced-SPI Interface

The device features an enhanced-SPI interface that allows the host controller to operate at slower SCLK speeds and still achieve full throughput. As described in Table 7-7, the host controller can use any of the four SPI-compatible protocols (SPI-00, SPI-01, SPI-10, or SPI-11) to access the device.

Table 7-7. SPI Protocols for Configuring the Device

	PROTOCOL	SCLK POLARITY (At the CS Falling Edge)	SCLK PHASE (Capture Edge)	CPOL_CPHA[1:0]	DIAGRAM
	SPI-00	Low	Rising	00b	Figure 7-8
Γ	SPI-01	Low	Falling	01b	Figure 7-9
	SPI-10	High	Falling	10b	Figure 7-8
	SPI-11	High	Rising	11b	Figure 7-9

On power-up or after coming out of any asynchronous reset, the device supports the SPI-00 protocol for data read and data write operations. To select a different SPI-compatible protocol, program the CPOL_CPHA[1:0] field. This first write operation must adhere to the SPI-00 protocol. Any subsequent data transfer frames must adhere to the newly-selected protocol.

7.3.12.2 Register Read/Write Operation

The device supports the commands listed in Table 7-8 to access the internal configuration registers.

Table 7-8. Opcodes for Commands

OPCODE	COMMAND DESCRIPTION
0000 0000b	No operation
0001 0000b	Single register read
0000 1000b	Single register write
0001 1000b	Set bit
0010 0000b	Clear bit

7.3.12.2.1 Register Write

A 24-bit SPI frame is required for writing data to configuration registers. The 24-bit data on SDI, as shown in Figure 7-10, consists of an 8-bit write command (0000 1000b), an 8-bit register address, and 8-bit data. The write command is decoded on the $\overline{\text{CS}}$ rising edge and the specified register is updated with the 8-bit data specified during the register write operation.

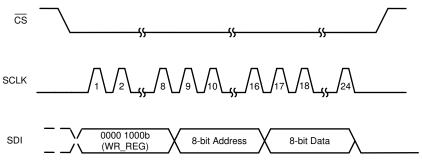


Figure 7-10. Register Write Operation

7.3.12.2.2 Register Read

Register read operation consists of two SPI frames: the first SPI frame initiates a register read and the second SPI frame reads data from the register address provided in the first frame. As shown in Figure 7-11, the 8-bit register address and the 8-bit dummy data are sent over the SDI pin during the first 24-bit frame with the read command (0001 0000b). On the rising edge of \overline{CS} , the read command is decoded and the requested register data are available for reading during the next frame. During the second frame, the first eight bits on SDO correspond to the requested register read. During the second frame, SDI can be used to initiate another operation or can be set to 0.

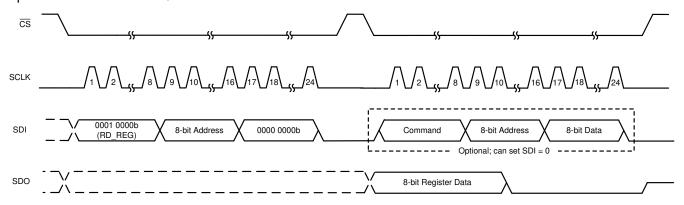


Figure 7-11. Register Read Operation

7.3.12.2.2.1 Register Read With CRC

A register read consists of two SPI frames, as described in the *Register Read* section. As shown in Figure 7-12, the device appends an 8-bit output CRC byte along with 8-bit register data when the CRC module is enabled during a register read. The output CRC is computed by the device on 8-bit register data.

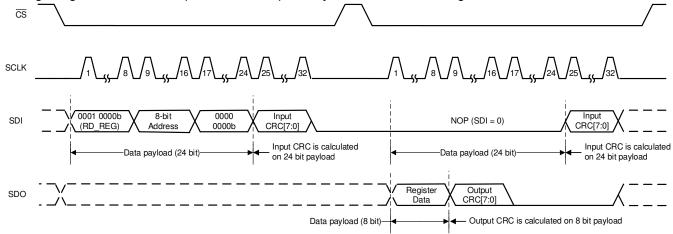


Figure 7-12. Register Read With CRC

7.4 Device Functional Modes

Table 7-9 lists the functional modes supported by the TLA2518.

Tabl	le 7	7-9.	Fun	ctior	าลไ	Mα	des

FUNCTIONAL MODE	CONVERSION CONTROL	MUX CONTROL	CONV_MODE[1:0]	SEQ_MODE[1:0]
Manual	CS rising edge	Register write to MANUAL_CHID	00b	00b
On-the-fly	CS rising edge	First 5 bits after the CS falling edge	00b	10b
Auto-sequence	CS rising edge	Channel sequencer	00b	01b
Autonomous	Internal to the device	Channel sequencer	01b	01b
Turbo comparator	Internal to the device	Channel sequencer	10b	01b

The device powers up in manual mode and can be configured into either of these modes by writing the configuration registers for the desired mode.

7.4.1 Device Power-Up and Reset

On power-up, the BOR bit is set indicating a power-cycle or reset event. The device can be reset by setting the RST bit or by recycling power on the AVDD pin.

7.4.2 Manual Mode

Manual mode allows the external host processor to directly select the analog input channel. Figure 7-13 shows the steps for operating the device in manual mode.

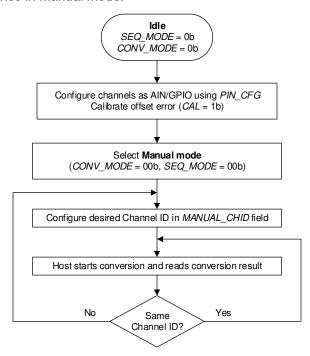


Figure 7-13. Device Operation in Manual Mode

In manual mode, the command to switch to a new channel (indicated by cycle N in Figure 7-14) is decoded by the device on the \overline{CS} rising edge. The \overline{CS} rising edge is also the start of the conversion signal, and therefore the device samples the previously selected MUX channel in cycle N+1. The newly selected analog input channel data are available in cycle N+2. For switching the analog input channel, a register write to the MANUAL_CHID field requires 24 clocks; see the *Register Write* section for more details. After a channel is selected, the number of clocks required for reading the output data depends on the device output data frame size; see the *Output Data Format* section for more details.

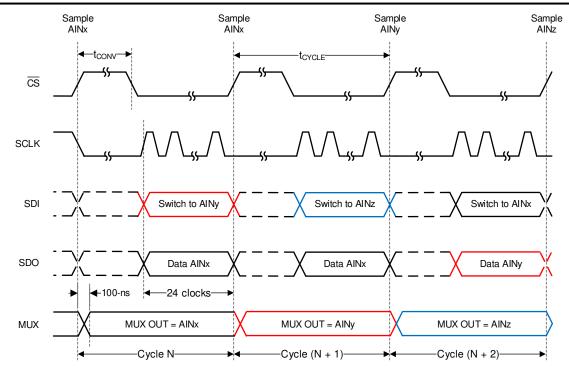


Figure 7-14. Starting Conversions and Reading Data in Manual Mode

7.4.3 On-the-Fly Mode

In the on-the-fly mode of operation, the analog input channel is selected, as shown in Figure 7-15, using the first five bits on SDI without waiting for the $\overline{\text{CS}}$ rising edge. Thus, the ADC samples the newly selected channel on the $\overline{\text{CS}}$ rising edge and there is no latency between the channel selection and the ADC output data.

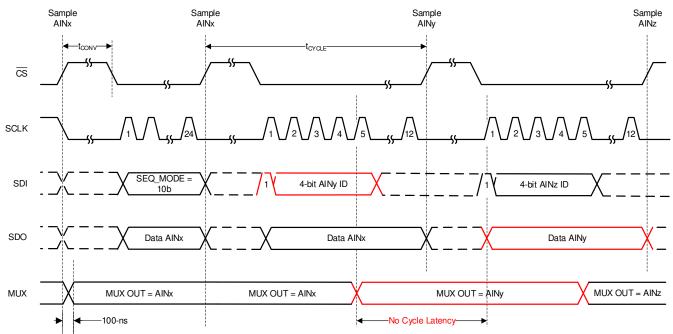


Figure 7-15. Starting Conversions and Reading Data in On-the-Fly Mode

The number of clocks required for reading the output data depends on the device output data frame size; see the *Output Data Format* section for more details.

7.4.4 Auto-Sequence Mode

In auto-sequence mode, the internal channel sequencer switches the multiplexer to the next analog input channel after every conversion. The desired analog input channels can be configured for sequencing in the AUTO_SEQ_CH_SEL register. To enable the channel sequencer, set SEQ_START = 1b. After every conversion, the channel sequencer switches the multiplexer to the next analog input in ascending order. To stop the channel sequencer from selecting channels, set SEQ_START = 0b.

In the example shown in Figure 7-16, AIN2 and AIN6 are enabled for sequencing in AUTO_SEQ_CH_SEL. The channel sequencer loops through AIN2 and AIN6 and repeats until SEQ_START is set to 0b. The number of clocks required for reading the output data depends on the device output data frame size; see the *Output Data Format* section for more details.

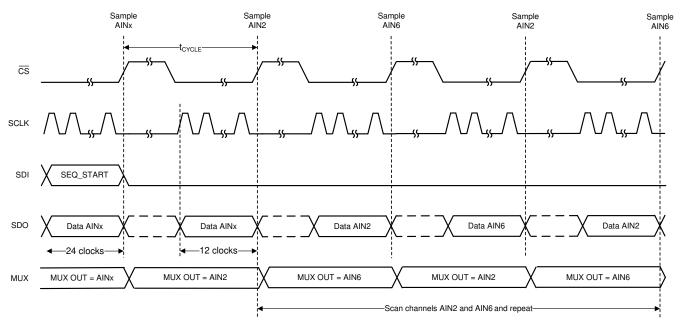


Figure 7-16. Starting Conversions and Reading Data in Auto-Sequence Mode

7.4.5 Autonomous Mode

In autonomous mode, the device can be programmed to monitor the voltage applied on the analog input pins of the device and generate an ALERT signal internal to the device when the programmable high or low threshold values are crossed. The internal ALERT signal can be mapped to any one digital output channel by configuring the channel ID in the ALERT_PIN[3:0] register field. In autonomous mode, the device generates the start of conversion using the internal oscillator. The first start of conversion must be provided by the host and the device generates the subsequent start of conversions.

Figure 7-17 shows the steps for configuring the functional mode to autonomous mode. Abort the ongoing sequence by setting SEQ_START to 0b before changing the functional mode or device configuration.

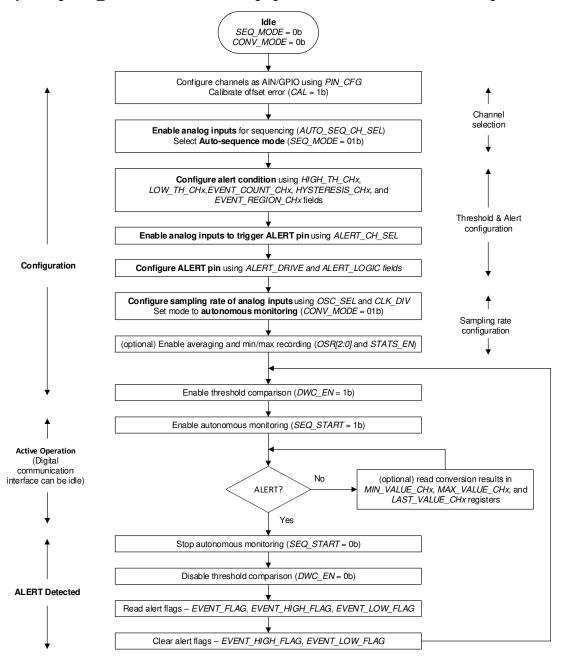


Figure 7-17. Configuring the Device in Autonomous Mode

7.4.6 Turbo Comparator Mode

Turbo comparator mode allows fast comparison with high/low thresholds using the digital window comparator. ADC output data is not available in this mode.

Figure 7-18 lists the comparison start and read frames for turbo comparator mode. The desired analog input channels can be configured for sequencing in the AUTO_SEQ_CH_SEL register. To enable the channel sequencer, set SEQ_START to 1b. After every comparison, the channel sequencer switches the multiplexer to the next analog input in ascending order. To stop the channel sequencer from selecting channels, set SEQ_START to 0b. See sction on *Oscillator and Timing Control* for more details on configuring speed in turbo comparator mode.

Abort the ongoing sequence by setting SEQ_START to 0b before changing the functional mode or device configuration.

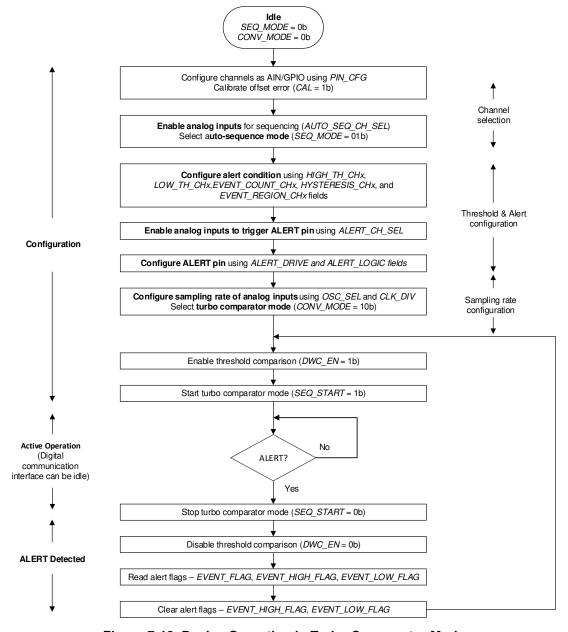


Figure 7-18. Device Operation in Turbo Comparator Mode

8 Register Map

8.1 ADS7038 Registers

Table 8-1 lists the ADS7038 registers. All register offset addresses not listed in Table 8-1 should be considered as reserved locations and the register contents should not be modified.

Table 8-1, ADS7038 Registers

Address	Acronym	Register Name	ADS7038 Registers Section
0x0	SYSTEM_STATUS	- regional riumo	SYSTEM_STATUS Register (Address = 0x0) [reset = 0x81]
0x1	GENERAL_CFG		GENERAL_CFG Register (Address = 0x1) [reset = 0x0]
0x1	DATA CFG		DATA CFG Register (Address = 0x1) [reset = 0x0]
0x2 0x3	OSR_CFG		OSR_CFG Register (Address = 0x2) [reset = 0x0]
0x4	OPMODE_CFG		OPMODE_CFG Register (Address = 0x4) [reset = 0x0]
0x4 0x5	PIN_CFG		PIN_CFG Register (Address = 0x4) [reset = 0x0]
0x7	GPIO_CFG		GPIO_CFG Register (Address = 0x0) [reset = 0x0]
0x7 0x9	GPO DRIVE CFG		GPO_DRIVE_CFG Register (Address = 0x7) [reset = 0x0]
0xB	GPO_VALUE		GPO_VALUE Register (Address = 0x8) [reset = 0x0]
0xD			
	GPI_VALUE		GPI_VALUE Register (Address = 0xD) [reset = 0x0]
0x10	SEQUENCE_CFG		SEQUENCE_CFG Register (Address = 0x10) [reset = 0x0]
0x11	CHANNEL_SEL		CHANNEL_SEL Register (Address = 0x11) [reset = 0x0]
0x12	AUTO_SEQ_CH_SEL		AUTO_SEQ_CH_SEL Register (Address = 0x12) [reset = 0x0]
0x14	ALERT_CH_SEL		ALERT_CH_SEL Register (Address = 0x14) [reset = 0x0]
0x16	ALERT_MAP		ALERT_MAP Register (Address = 0x16) [reset = 0x0]
0x17	ALERT_PIN_CFG		ALERT_PIN_CFG Register (Address = 0x17) [reset = 0x0]
0x18	EVENT_FLAG		EVENT_FLAG Register (Address = 0x18) [reset = 0x0]
0x1A	EVENT_HIGH_FLAG		EVENT_HIGH_FLAG Register (Address = 0x1A) [reset = 0x0]
0x1C	EVENT_LOW_FLAG		EVENT_LOW_FLAG Register (Address = 0x1C) [reset = 0x0]
0x1E	EVENT_RGN		EVENT_RGN Register (Address = 0x1E) [reset = 0x0]
0x20	HYSTERESIS_CH0		HYSTERESIS_CH0 Register (Address = 0x20) [reset = 0xF0]
0x21	HIGH_TH_CH0		HIGH_TH_CH0 Register (Address = 0x21) [reset = 0xFF]
0x22	EVENT_COUNT_CH0		EVENT_COUNT_CH0 Register (Address = 0x22) [reset = 0x0]
0x23	LOW_TH_CH0		LOW_TH_CH0 Register (Address = 0x23) [reset = 0x0]
0x24	HYSTERESIS_CH1		HYSTERESIS_CH1 Register (Address = 0x24) [reset = 0xF0]
0x25	HIGH_TH_CH1		HIGH_TH_CH1 Register (Address = 0x25) [reset = 0xFF]
0x26	EVENT_COUNT_CH1		EVENT_COUNT_CH1 Register (Address = 0x26) [reset = 0x0]
0x27	LOW_TH_CH1		LOW_TH_CH1 Register (Address = 0x27) [reset = 0x0]
0x28	HYSTERESIS_CH2		HYSTERESIS_CH2 Register (Address = 0x28) [reset = 0xF0]
0x29	HIGH_TH_CH2		HIGH_TH_CH2 Register (Address = 0x29) [reset = 0xFF]
0x2A	EVENT_COUNT_CH2		EVENT_COUNT_CH2 Register (Address = 0x2A) [reset = 0x0]
0x2B	LOW_TH_CH2		LOW_TH_CH2 Register (Address = 0x2B) [reset = 0x0]
0x2C	HYSTERESIS_CH3		HYSTERESIS_CH3 Register (Address = 0x2C) [reset = 0xF0]
0x2D	HIGH_TH_CH3		HIGH_TH_CH3 Register (Address = 0x2D) [reset = 0xFF]
0x2E	EVENT_COUNT_CH3		EVENT_COUNT_CH3 Register (Address = 0x2E) [reset = 0x0]
0x2F	LOW_TH_CH3		LOW_TH_CH3 Register (Address = 0x2F) [reset = 0x0]
0x30	HYSTERESIS_CH4		HYSTERESIS_CH4 Register (Address = 0x30) [reset = 0xF0]
0x31	HIGH_TH_CH4		HIGH_TH_CH4 Register (Address = 0x31) [reset = 0xFF]
0x32	EVENT_COUNT_CH4		EVENT_COUNT_CH4 Register (Address = 0x32) [reset = 0x0]
0x33	LOW_TH_CH4		LOW_TH_CH4 Register (Address = 0x33) [reset = 0x0]
0x34	HYSTERESIS_CH5		HYSTERESIS_CH5 Register (Address = 0x34) [reset = 0xF0]
0x35	HIGH_TH_CH5		HIGH_TH_CH5 Register (Address = 0x35) [reset = 0xFF]
0x36	EVENT_COUNT_CH5		EVENT_COUNT_CH5 Register (Address = 0x36) [reset = 0x0]
0x37	LOW_TH_CH5		LOW_TH_CH5 Register (Address = 0x37) [reset = 0x0]

Table 8-1. ADS7038 Registers (continued)

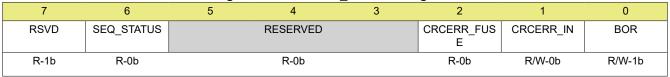
Address	Acronym	Register Name Section
0x38	HYSTERESIS_CH6	HYSTERESIS_CH6 Register (Address = 0x38) [reset = 0xF0]
0x39	HIGH_TH_CH6	HIGH_TH_CH6 Register (Address = 0x39) [reset = 0xFF]
0x3A	EVENT_COUNT_CH6	EVENT_COUNT_CH6 Register (Address = 0x3A) [reset = 0x0]
0x3B	LOW_TH_CH6	LOW_TH_CH6 Register (Address = 0x3B) [reset = 0x0]
0x3C	HYSTERESIS_CH7	HYSTERESIS_CH7 Register (Address = 0x3C) [reset = 0xF0]
0x3D	HIGH_TH_CH7	HIGH_TH_CH7 Register (Address = 0x3D) [reset = 0xFF]
0x3E	EVENT COUNT CH7	EVENT_COUNT_CH7 Register (Address = 0x3E) [reset = 0x0]
0x3F	LOW_TH_CH7	LOW TH CH7 Register (Address = 0x3F) [reset = 0x0]
0x4E	RESERVED	RESERVED Register (Address = 0x4E) [reset = 0x0]
0x60	MAX_CH0_LSB	MAX CH0 LSB Register (Address = 0x60) [reset = 0x0]
0x61	MAX_CH0_MSB	MAX_CH0_MSB Register (Address = 0x61) [reset = 0x0]
0x62	MAX_CH1_LSB	MAX_CH1_LSB Register (Address = 0x62) [reset = 0x0]
0x63	MAX_CH1_MSB	MAX_CH1_MSB Register (Address = 0x63) [reset = 0x0]
0x64	MAX_CH2_LSB	MAX_CH2_LSB Register (Address = 0x64) [reset = 0x0]
0x65	MAX CH2 MSB	MAX_CH2_MSB Register (Address = 0x65) [reset = 0x0]
0x66	MAX CH3 LSB	MAX_CH3_LSB Register (Address = 0x66) [reset = 0x0]
0x67	MAX_CH3_MSB	MAX_CH3_MSB Register (Address = 0x67) [reset = 0x0]
0x68	MAX_CH4_LSB	MAX_CH4_LSB Register (Address = 0x68) [reset = 0x0]
0x69	MAX_CH4_MSB	MAX_CH4_MSB Register (Address = 0x69) [reset = 0x0]
0x6A	MAX_CH5_LSB	MAX CH5 LSB Register (Address = 0x6A) [reset = 0x0]
0x6B	MAX_CH5_MSB	MAX CH5 MSB Register (Address = 0x6B) [reset = 0x0]
0x6C	MAX_CH6_LSB	MAX_CH6_LSB Register (Address = 0x6C) [reset = 0x0]
0x6D	MAX_CH6_MSB	MAX_CH6_MSB Register (Address = 0x6D) [reset = 0x0]
0x6E	MAX_CH7_LSB	MAX_CH7_LSB Register (Address = 0x6E) [reset = 0x0]
0x6F	MAX_CH7_MSB	MAX_CH7_MSB Register (Address = 0x6F) [reset = 0x0]
0x80	MIN_CH0_LSB	MIN_CH0_LSB Register (Address = 0x80) [reset = 0xFF]
0x81	MIN_CH0_MSB	MIN_CH0_MSB Register (Address = 0x81) [reset = 0xFF]
0x82	MIN_CH1_LSB	MIN_CH1_LSB Register (Address = 0x82) [reset = 0xFF]
0x83	MIN_CH1_MSB	MIN_CH1_MSB Register (Address = 0x83) [reset = 0xFF]
0x84	MIN_CH2_LSB	MIN_CH2_LSB Register (Address = 0x84) [reset = 0xFF]
0x85	MIN_CH2_MSB	MIN_CH2_MSB Register (Address = 0x85) [reset = 0xFF]
0x86	MIN_CH3_LSB	MIN_CH3_LSB Register (Address = 0x86) [reset = 0xFF]
0x87	MIN_CH3_MSB	MIN_CH3_MSB Register (Address = 0x87) [reset = 0xFF]
0x88	MIN_CH4_LSB	MIN_CH4_LSB Register (Address = 0x88) [reset = 0xFF]
0x89	MIN_CH4_MSB	MIN_CH4_MSB Register (Address = 0x89) [reset = 0xFF]
0x8A	MIN_CH5_LSB	MIN_CH5_LSB Register (Address = 0x8A) [reset = 0xFF]
0x8B	MIN_CH5_MSB	MIN_CH5_MSB Register (Address = 0x8B) [reset = 0xFF]
0x8C	MIN_CH6_LSB	MIN_CH6_LSB Register (Address = 0x8C) [reset = 0xFF]
0x8D	MIN_CH6_MSB	MIN_CH6_MSB Register (Address = 0x8D) [reset = 0xFF]
0x8E	MIN_CH7_LSB	MIN_CH7_LSB Register (Address = 0x8E) [reset = 0xFF]
0x8F	MIN_CH7_MSB	MIN_CH7_MSB Register (Address = 0x8F) [reset = 0xFF]
0xA0	RECENT_CH0_LSB	RECENT_CH0_LSB Register (Address = 0xA0) [reset = 0x0]
0xA1	RECENT_CH0_MSB	RECENT_CH0_MSB Register (Address = 0xA1) [reset = 0x0]
0xA2	RECENT_CH1_LSB	RECENT_CH1_LSB Register (Address = 0xA2) [reset = 0x0]
0xA3	RECENT_CH1_MSB	RECENT_CH1_MSB Register (Address = 0xA3) [reset = 0x0]
0xA4	RECENT_CH2_LSB	RECENT_CH2_LSB Register (Address = 0xA4) [reset = 0x0]
0xA5	RECENT_CH2_MSB	RECENT_CH2_MSB Register (Address = 0xA5) [reset = 0x0]
0xA6	RECENT_CH3_LSB	RECENT_CH3_LSB Register (Address = 0xA6) [reset = 0x0]
0xA7	RECENT_CH3_MSB	RECENT_CH3_MSB Register (Address = 0xA7) [reset = 0x0]
0xA8	RECENT_CH4_LSB	RECENT_CH4_LSB Register (Address = 0xA8) [reset = 0x0]

Table 8-1. ADS7038 Registers (continued)

Address	Acronym	Register Name	Section
0xA9	RECENT_CH4_MSB		RECENT_CH4_MSB Register (Address = 0xA9) [reset = 0x0]
0xAA	RECENT_CH5_LSB		RECENT_CH5_LSB Register (Address = 0xAA) [reset = 0x0]
0xAB	RECENT_CH5_MSB		RECENT_CH5_MSB Register (Address = 0xAB) [reset = 0x0]
0xAC	RECENT_CH6_LSB		RECENT_CH6_LSB Register (Address = 0xAC) [reset = 0x0]
0xAD	RECENT_CH6_MSB		RECENT_CH6_MSB Register (Address = 0xAD) [reset = 0x0]
0xAE	RECENT_CH7_LSB		RECENT_CH7_LSB Register (Address = 0xAE) [reset = 0x0]
0xAF	RECENT_CH7_MSB		RECENT_CH7_MSB Register (Address = 0xAF) [reset = 0x0]
0xC3	GPO0_TRIG_EVENT_SEL		GPO0_TRIG_EVENT_SEL Register (Address = 0xC3) [reset = 0x0]
0xC5	GPO1_TRIG_EVENT_SEL		GPO1_TRIG_EVENT_SEL Register (Address = 0xC5) [reset = 0x0]
0xC7	GPO2_TRIG_EVENT_SEL		GPO2_TRIG_EVENT_SEL Register (Address = 0xC7) [reset = 0x0]
0xC9	GPO3_TRIG_EVENT_SEL		GPO3_TRIG_EVENT_SEL Register (Address = 0xC9) [reset = 0x0]
0xCB	GPO4_TRIG_EVENT_SEL		GPO4_TRIG_EVENT_SEL Register (Address = 0xCB) [reset = 0x0]
0xCD	GPO5_TRIG_EVENT_SEL		GPO5_TRIG_EVENT_SEL Register (Address = 0xCD) [reset = 0x0]
0xCF	GPO6_TRIG_EVENT_SEL		GPO6_TRIG_EVENT_SEL Register (Address = 0xCF) [reset = 0x0]
0xD1	GPO7_TRIG_EVENT_SEL		GPO7_TRIG_EVENT_SEL Register (Address = 0xD1) [reset = 0x0]
0xE9	GPO_TRIGGER_CFG		GPO_TRIGGER_CFG Register (Address = 0xE9) [reset = 0x0]
0xEB	GPO_VALUE_TRIG		GPO_VALUE_TRIG Register (Address = 0xEB) [reset = 0x0]

Complex bit access types are encoded to fit into small table cells. Table 8-2 shows the codes that are used for access types in this section.

Table 8-2. ADS7038 Access Type Codes


Access Type	Code	Description					
Read Type	Read Type						
R	R	Read					
Write Type							
W	W	Write					
Reset or Default	Value						
-n		Value after reset or the default value					
Register Array V	ariables						
i,j,k,l,m,n		When these variables are used in a register name, an offset, or an address, they refer to the value of a register array where the register is part of a group of repeating registers. The register groups form a hierarchical structure and the array is represented with a formula.					
У		When this variable is used in a register name, an offset, or an address it refers to the value of a register array.					

8.1.1 SYSTEM_STATUS Register (Address = 0x0) [reset = 0x81]

SYSTEM_STATUS is shown in Figure 8-1 and described in Figure 8-1.

Return to the Summary Table.

Figure 8-1. SYSTEM_STATUS Register

Table 8-3. SYSTEM_STATUS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	RSVD	R	1b	Reads return 1b.
6	SEQ_STATUS	R	Ob	Status of the channel sequencer. 0b = Sequence stopped 1b = Sequence in progress
5-3	RESERVED	R	0b	Reserved. Reads return 010b.
2	CRCERR_FUSE	R	Ob	Device power-up configuration CRC check status. To re-evaluate this bit, software reset the device or power cycle AVDD. 0b = No problems detected in power-up configuration. 1b = Device configuration not loaded correctly.
1	CRCERR_IN	R/W	Ob	Status of CRC check on incoming data. Write 1b to clear this error flag. 0b = No CRC error. 1b = CRC error detected. All register writes, except to addresses 0x00 and 0x01, are blocked.
0	BOR	R/W	1b	Brown out reset indicator. This bit is set if brown out condition occurs or device is power cycled. Write 1b to this bit to clear the flag. 0b = No brown out from the last time this bit was cleared. 1b = Brown out condition detected or device power cycled.

8.1.2 GENERAL_CFG Register (Address = 0x1) [reset = 0x0]

GENERAL_CFG is shown in Figure 8-2 and described in Table 8-4.

Return to the Summary Table.

Figure 8-2. GENERAL CFG Register

					,		
7	6	5	4	3	2	1	0
RESERVED	CRC_EN	STATS_EN	DWC_EN	RESERVED	CH_RST	CAL	RST
R-0b	R/W-0b	R/W-0b	R/W-0b	R-0b	R/W-0b	R/W-0b	W-0b

Table 8-4. GENERAL_CFG Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	RESERVED	R	0b	Reserved. Reads return 1b.
6	CRC_EN	R/W	0b	Enable or disable the CRC on device interface. 0b = CRC module disabled. 1b = CRC appended to data output. CRC check is enabled on incoming data.
5	STATS_EN	R/W	0b	Enable or disable the statistics module. 0b = Minimum, maximum, and recent value registers are not updated. 1b = Clear minimum, maximum, and recent value registers and conitnue updating with new conversion results.

Table 8-4. GENERAL_CFG Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
4	DWC_EN	R/W	0b	Enable or disable the digital window comparator.
				0b = Reset or disable the digital window comparator.
				1b = Enable digital window comparator.
3	RESERVED	R	0b	Reserved. Reads return 0b.
2	CH_RST	R/W	0b	Force all channels to be analog inputs.
				0b = Normal operation.
				1b = All channels will be set as analog inputs irrespective of configuration in
				other registers.
1	CAL	R/W	0b	Calibrate ADC offset.
				0b = Normal operation.
				1b = ADC offset is calibrated. After calibration is complete, this bit is set to 0b.
0	RST	W	0b	Software reset all registers to default values.
				0b = Normal operation.
				1b = Device is reset. After reset is complete, this bit is set to 0b and BOR bit is
				set to 1b.
0				1b = All channels will be set as analog inputs irrespective of configuratio other registers. Calibrate ADC offset. 0b = Normal operation. 1b = ADC offset is calibrated. After calibration is complete, this bit is set Software reset all registers to default values. 0b = Normal operation. 1b = Device is reset. After reset is complete, this bit is set to 0b and BOF

8.1.3 DATA_CFG Register (Address = 0x2) [reset = 0x0]

DATA_CFG is shown in Figure 8-3 and described in Table 8-5.

Return to the Summary Table.

Figure 8-3. DATA_CFG Register

7	6	5	4	3	2	1	0
FIX_PAT	RESERVED	APPEND_STATUS[1:0]		RESERVED		CPOL_C	PHA[1:0]
R/W-0b	R-0b	R/W-0b		R-	0b	R/M	/-0b

Table 8-5. DATA_CFG Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	FIX_PAT	R/W	0b	Device outputs fixed data bits which can be helpful for debugging communication with the device. 0b = Normal operation. 1b = Device outputs fixed code 0xA5A repeatitively when reading ADC data.
6	RESERVED	R	0b	Reserved. Reads return 0b.
5-4	APPEND_STATUS[1:0]	R/W	ОЬ	Append 4-bit channel ID or status flags to output data. 00b: 01b: 10b: 11b: 0b = Channel ID and status flags are not appended to ADC data. 1b = 4-bit channel ID is appended to ADC data. 10b = 4-bit status flags are appended to ADC data. 11b = Reserved.
3-2	RESERVED	R	0b	Reserved. Reads return 0b.
1-0	CPOL_CPHA[1:0]	R/W	ОЬ	This field sets the polarity and phase of SPI communication. 0b = CPOL = 0, CPHA = 0. 1b = CPOL = 0, CPHA = 1. 10b = CPOL = 1, CPHA = 0. 11b = CPOL = 1, CPHA = 1.

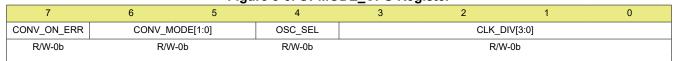
$8.1.4 OSR_CFG Register (Address = 0x3) [reset = 0x0]$

OSR_CFG is shown in Figure 8-4 and described in Table 8-6.

Return to the Summary Table.

Figure 8-4. OSR_CFG Register

Table 8-6. OSR CFG Register Field Descriptions


	i abio o di cont_oi o itogiotoi i iola bocomptiono							
Bit	Field	Туре	Reset	Description				
7-3	RESERVED	R	0b	Reserved. Reads return 0b.				
2-0	OSR[2:0]	R/W	0b	Selects the oversampling ratio for ADC conversion result.				
				0b = No averaging				
				1b = 2 samples				
				10b = 4 samples				
				11b = 8 samples				
				100b = 16 samples				
				101b = 32 samples				
				110b = 64 samples				
				111b = 128 samples				
	1	1	1					

8.1.5 $OPMODE_CFG$ Register (Address = 0x4) [reset = 0x0]

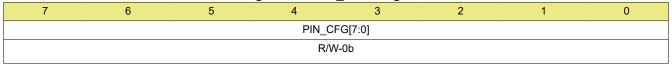
OPMODE CFG is shown in Figure 8-5 and described in Table 8-7.

Return to the Summary Table.

Figure 8-5. OPMODE_CFG Register

Table 8-7. OPMODE_CFG Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	CONV_ON_ERR	R/W	0b	Control continuation of autonomous modes if CRC error is detected on communication interface.
				0b = If CRC error is detected, device continues channel sequencing and pin
				configuration is retained. See the CRCERR_IN bit for more details.
				1b = If CRC error is detected, devicel changes all channels to analog inpts
				and channel sequencing is paused until CRCERR_IN = 1b. After clearing
				CRCERR_IN flag, device resumes channel sequencing and pin confguration is
				restored.
6-5	CONV_MODE[1:0]	R/W	0b	These bits set the mode of conversion of the ADC.
				0b = Manual mode; conversions are initiated by host.
				1b = Autonomous mode; conversions are initiated by the internal state
				machine.
4	OSC_SEL	R/W	0b	Selects the oscillator for internal timing generation.
				0b = High-speed oscillator.
				1b = Low-power oscillator.
3-0	CLK_DIV[3:0]	R/W	0b	Sampling speed control in autonomous monitoring mode (CONV_MODE = 01b). See the section on oscillator and timing control for details.



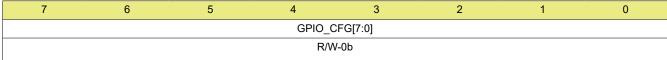
8.1.6 PIN_CFG Register (Address = 0x5) [reset = 0x0]

PIN_CFG is shown in Figure 8-6 and described in Table 8-8.

Return to the Summary Table.

Figure 8-6. PIN_CFG Register

Table 8-8. PIN_CFG Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	PIN_CFG[7:0]	R/W		Configure device channels AIN / GPIO [7:0] as analog inputs or GPIOs. 0b = Channel is configured as analog input. 1b = Channel is configured as GPIO.

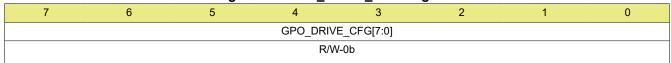
8.1.7 GPIO_CFG Register (Address = 0x7) [reset = 0x0]

GPIO CFG is shown in Figure 8-7 and described in Table 8-9.

Return to the Summary Table.

Figure 8-7. GPIO_CFG Register

Table 8-9. GPIO CFG Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	GPIO_CFG[7:0]	R/W		Configure GPIO[7:0] as either digital inputs or digital outputs.
				0b = GPIO is configured as digital input.
				1b = GPIO is configured as digital output.

8.1.8 GPO_DRIVE_CFG Register (Address = 0x9) [reset = 0x0]

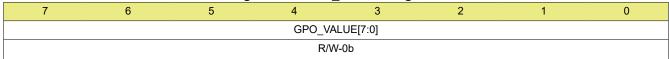
GPO_DRIVE_CFG is shown in Figure 8-8 and described in Table 8-10.

Return to the Summary Table.

Figure 8-8. GPO_DRIVE_CFG Register

Table 8-10. GPO_DRIVE_CFG Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	GPO_DRIVE_CFG[7:0]	R/W	ОЬ	Configure digital outputs GPO[7:0] as open-drain or push-pull outputs. 0b = Digital output is open-drain; connect external pullup resistor. 1b = Push-pull driver is used for digital output.



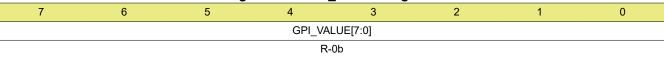
8.1.9 GPO_VALUE Register (Address = 0xB) [reset = 0x0]

GPO_VALUE is shown in Figure 8-9 and described in Table 8-11.

Return to the Summary Table.

Figure 8-9. GPO_VALUE Register

Table 8-11. GPO_VALUE Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	GPO_VALUE[7:0]	R/W		Logic level to be set on digital outputs GPO[7:0]. 0b = Digital output set to logic 0. 1b = Digital output set to logic 1.

8.1.10 GPI_VALUE Register (Address = 0xD) [reset = 0x0]

GPI_VALUE is shown in Figure 8-10 and described in Table 8-12.

Return to the Summary Table.

Figure 8-10. GPI_VALUE Register

Table 8-12. GPI_VALUE Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	GPI_VALUE[7:0]	R	0b	Readback the logic level on GPIO[7:0].
				0b = GPIO is at logic 0.
				1b = GPIO is at logic 1.

8.1.11 SEQUENCE CFG Register (Address = 0x10) [reset = 0x0]

SEQUENCE_CFG is shown in Figure 8-11 and described in Table 8-13.

Return to the Summary Table.

Figure 8-11. SEQUENCE_CFG Register

7	6	5	4	3	2	1	0
	RESERVED		SEQ_START	RESE	RVED	SEQ_M	DDE[1:0]
	R-0b		R/W-0b	R-	0b	R/W	/-0b
	R-0b		R/W-0b	R-	0b	R/W	/-0

Table 8-13. SEQUENCE_CFG Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-5	RESERVED	R	0b	Reserved. Reads return 0b.
4	SEQ_START	R/W	0b	Control for start of channel sequence when using auto sequence mode (SEQ_MODE = 01b). 0b = Stop channel sequencing. 1b = Start channel sequencing in ascending order for channels enabled in AUTO_SEQ_CHSEL register.
3-2	RESERVED	R	0b	Reserved. Reads return 0b.

Table 8-13. SEQUENCE_CFG Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description			
1-0	SEQ_MODE[1:0]	R/W	0b	Selects the mode of scanning of analog input channels.			
				0b = Manual sequence mode; channel selected by MANUAL_CHID			
				field.			
				1b = Auto sequence mode; channel selected by			
				AUTO_SEQ_CHSEL.			
				10b = On-the-fly sequence mode.			
				11b = Reserved.			
I		1	1				

8.1.12 CHANNEL_SEL Register (Address = 0x11) [reset = 0x0]

CHANNEL_SEL is shown in Figure 8-12 and described in Table 8-14.

Return to the Summary Table.

Figure 8-12. CHANNEL_SEL Register

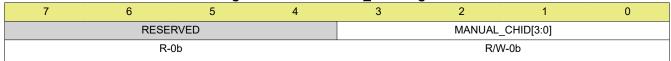


Table 8-14. CHANNEL SEL Register Field Descriptions

	iable	0-14. OHAI	MILL_OLL	Register i leid Descriptions
Bit	Field	Туре	Reset	Description
7-4	RESERVED	R	0b	Reserved. Reads return 0b.
3-0	MANUAL_CHID[3:0]	R/W	0b	In manual mode (SEQ_MODE = 00b), this field contains the 4-bit channel ID of the analog input channel for next ADC conversion. For valid ADC data, the selected channel must not be configured as GPIO in PIN_CFG register. 1xxx = Reserved. 0b = AIN0 1b = AIN1 10b = AIN2 11b = AIN3 100b = AIN4 101b = AIN5 110b = AIN6 111b = AIN7
		1		1110 - 4111

8.1.13 AUTO_SEQ_CH_SEL Register (Address = 0x12) [reset = 0x0]

AUTO_SEQ_CH_SEL is shown in Figure 8-13 and described in Table 8-15.

Return to the Summary Table.

Figure 8-13. AUTO_SEQ_CH_SEL Register

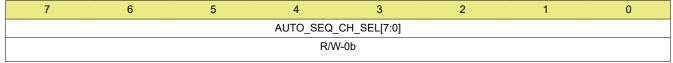
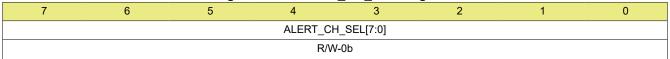


Table 8-15. AUTO_SEQ_CH_SEL Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	AUTO_SEQ_CH_SEL[7:0]	R/W		Select analog input channels AIN[7:0] in for auto sequencing mode. 0b = Analog input channel is not enabled in scanning sequence. 1b = Analog input channel is enabled in scanning sequence.



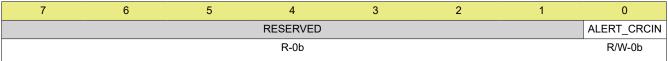
8.1.14 ALERT_CH_SEL Register (Address = 0x14) [reset = 0x0]

ALERT_CH_SEL is shown in Figure 8-14 and described in Table 8-16.

Return to the Summary Table.

Figure 8-14. ALERT_CH_SEL Register

Table 8-16. ALERT_CH_SEL Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	ALERT_CH_SEL[7:0]	R/W		Select channels for which the alert flags can assert the internal ALERT signal. The ALERT signal can be mapped to the digital output channel configured in the ALERT_PIN[3:0] field. 0b = Alert flags for this channel do not assert the ALERT pin. 1b = Alert flags for this channel assert the ALERT pin.

8.1.15 ALERT_MAP Register (Address = 0x16) [reset = 0x0]

ALERT_MAP is shown in Figure 8-15 and described in Table 8-17.

Return to the Summary Table.

Figure 8-15. ALERT_MAP Register

Table 8-17. ALERT_MAP Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	RESERVED	R	0b	Reserved. Reads return 0b.
0	ALERT_CRCIN	R/W	0b	Enable or disable the alert notification for CRC error on input data (CRCERR_IN = 1b). 0b = ALERT signal is not asserted when CRCERR_IN = 1b. 1b = ALERT signal is asserted when CRCERR_IN = 1b. Clear CRCERR_IN for deasserting the ALERT pin.

8.1.16 ALERT PIN CFG Register (Address = 0x17) [reset = 0x0]

ALERT_PIN_CFG is shown in Figure 8-16 and described in Table 8-18.

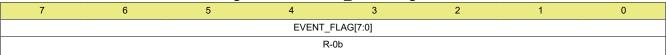
Return to the Summary Table.

Figure 8-16. ALERT_PIN_CFG Register

Table 8-18. ALERT_PIN_CFG Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	ALERT_PIN[3:0]	R/W		Internal ALERT output of the digital window comparator will be output on this channel. This channel must be configured as digital output.
3-2	RESERVED	R	0b	Reserved. Reads return 0b.

Table 8-18. ALERT_PIN_CFG Register Field Descriptions (continued)


Bit	Field	Туре	Reset	Description
1-0	ALERT_LOGIC[1:0]	R/W	0b	Configure how the ALERT signal is asserted.
				0b = Active low.
				1b = Active high.
				10b = Pulsed low (one logic low pulse once per alert flag).
				11b = Pulsed high (one logic high pulse once per alert flag).

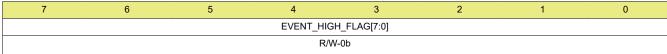
8.1.17 EVENT_FLAG Register (Address = 0x18) [reset = 0x0]

EVENT_FLAG is shown in Figure 8-17 and described in Table 8-19.

Return to the Summary Table.

Figure 8-17. EVENT FLAG Register

Table 8-19. EVENT_FLAG Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	EVENT_FLAG[7:0]	R		Alert flags indicating digital window comparator status for CH[7:0]. Clear individual bits of EVENT_HIGH_FLAG or EVENT_LOW_FLAG registers to clear the corresponding alert flag. 0b = Event condition not detected. 1b = Event condition detected.

8.1.18 EVENT_HIGH_FLAG Register (Address = 0x1A) [reset = 0x0]

EVENT_HIGH_FLAG is shown in Figure 8-18 and described in Table 8-20.

Return to the Summary Table.

Figure 8-18. EVENT_HIGH_FLAG Register

Table 8-20, EVENT HIGH FLAG Register Field Descriptions

Bit	Field	Туре	Reset	Description					
7-0	EVENT_HIGH_FLAG[7:0]	R/W	0b	Alert flag corresponding to high threshold of analog input or rising edge of digital input on CH[7:0]. Write 1b to clear this flag.					
				0b = No alert condition detected.					
				1b = Either high threshold was exceeded (analog input) or rising edge was detected (digital					
				input).					

8.1.19 EVENT_LOW_FLAG Register (Address = 0x1C) [reset = 0x0]

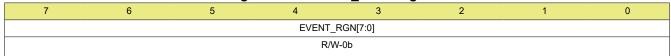
EVENT LOW FLAG is shown in Figure 8-19 and described in Table 8-21.

Return to the Summary Table.

Figure 8-19. EVENT LOW FLAG Register

		<u></u>	_	_			
7	6	5	4	3	2	1	0
			EVENT_LOV	W_FLAG[7:0]			
			R/V	V-0b			

Table 8-21. EVENT_LOW_FLAG Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	EVENT_LOW_FLAG[7:0]	R/W		Alert flag corresponding to low threshold of analog input or falling edge of digital input on CH[7:0]. Write 1b to clear this flag. 0b = No Event condition detected.
				1b = Either low threshold was exceeded (analog input) or falling edge was detected (digital
				input).

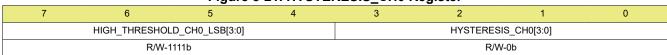
8.1.20 EVENT RGN Register (Address = 0x1E) [reset = 0x0]

EVENT_RGN is shown in Figure 8-20 and described in Table 8-22.

Return to the Summary Table.

Figure 8-20. EVENT_RGN Register

Table 8-22. EVENT_RGN Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	EVENT_RGN[7:0]	R/W	0b	Choice of region used in monitoring analog/digital inputs CH[7:0].
				0b = Alert flag is set if: (conversion result < low threshold) or (conversion result > high
				threshold). For digital inputs, logic 1 sets the alert flag.
				1b = Alert flag is set if: (low threshold > conversion result < high threshold). For digital
				inputs, logic 0 sets the alert flag.

8.1.21 HYSTERESIS_CH0 Register (Address = 0x20) [reset = 0xF0]

HYSTERESIS_CH0 is shown in Figure 8-21 and described in Table 8-23.

Return to the Summary Table.

Figure 8-21. HYSTERESIS_CH0 Register

Table 8-23. HYSTERESIS_CH0 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	HIGH_THRESHOLD_CH0_LSB[3:0]	R/W		Lower 4-bits of high threshold for analog input. These bits are compared with bits 3:0 of ADC conversion result.
3-0	HYSTERESIS_CH0[3:0]	R/W		4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left shifted 3 times and applied on the lower 7-bits of the threshold. Total hysteresis = 7-bits [4-bits, 000b]

8.1.22 HIGH_TH_CH0 Register (Address = 0x21) [reset = 0xFF]

HIGH_TH_CH0 is shown in Figure 8-22 and described in Table 8-24.

Return to the Summary Table.

Figure 8-22. HIGH_TH_CH0 Register

Table 8-24. HIGH_TH_CH0 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	HIGH_THRESHOLD_CH0	R/W		MSB aligned high threshold for analog input. These bits are
	_MSB[7:0]			compared with top 8 bits of ADC conversion result.

8.1.23 EVENT_COUNT_CH0 Register (Address = 0x22) [reset = 0x0]

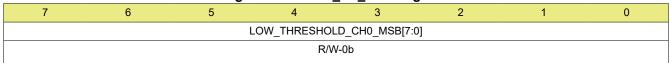
EVENT_COUNT_CH0 is shown in Figure 8-23 and described in Table 8-25.

Return to the Summary Table.

Figure 8-23. EVENT COUNT CH0 Register

_				_				
	7	6	5	4	3	2	1	0
Ī		LOW_THRESHOL	D_CH0_LSB[3:0]			EVENT_COL	JNT_CH0[3:0]	
	R/W-0b					R/V	V-0b	

Table 8-25. EVENT_COUNT_CH0 Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-4	LOW_THRESHOLD_CH0 _LSB[3:0]	R/W	0b	Lower 4-bits of low threshold for analog input. These bits are compared with bits 3:0 of ADC conversion result.
3-0	EVENT_COUNT_CH0[3:0]	R/W	0b	Configuration for checking 'n+1' consecutive samples above threshold before setting alert flag.

$8.1.24 LOW_TH_CH0 Register (Address = 0x23) [reset = 0x0]$

LOW_TH_CH0 is shown in Figure 8-24 and described in Table 8-26.

Return to the Summary Table.

Figure 8-24. LOW_TH_CH0 Register

Table 8-26. LOW_TH_CH0 Register Field Descriptions

Bi	it	Field	Туре	Reset	Description
7-0	0	LOW_THRESHOLD_CH0 _MSB[7:0]	R/W		MSB aligned high threshold for analog input. These bits are compared with top 8 bits of ADC conversion result.

8.1.25 HYSTERESIS_CH1 Register (Address = 0x24) [reset = 0xF0]

HYSTERESIS CH1 is shown in Figure 8-25 and described in Table 8-27.

Return to the Summary Table.

Figure 8-25. HYSTERESIS_CH1 Register

7	6	5	4	3	2	1	0
	HIGH_THRESHOL	D_CH1_LSB[3:0]]		HYSTERES	S_CH1[3:0]	
R/W-1111b					R/W	-0b	

Table 8-27. HYSTERESIS_CH1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	HIGH_THRESHOLD_CH1_LS B[3:0]	R/W	1111b	Lower 4-bits of high threshold for analog input. These bits are compared with bits 3:0 of ADC conversion result.
3-0	HYSTERESIS_CH1[3:0]	R/W	0b	4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left shifted 3 times and applied on the lower 7-bits of the threshold. Total hysteresis = 7-bits [4-bits, 000b]

8.1.26 HIGH_TH_CH1 Register (Address = 0x25) [reset = 0xFF]

HIGH_TH_CH1 is shown in Figure 8-26 and described in Table 8-28.

Return to the Summary Table.

Figure 8-26. HIGH_TH_CH1 Register

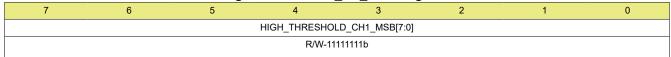


Table 8-28. HIGH_TH_CH1 Register Field Descriptions

_					
	Bit	Bit Field Type Res		Reset	Description
	7-0	HIGH_THRESHOLD_CH1_M SB[7:0]	R/W		MSB aligned high threshold for analog input. These bits are compared with top 8 bits of ADC conversion result.

8.1.27 EVENT_COUNT_CH1 Register (Address = 0x26) [reset = 0x0]

EVENT_COUNT_CH1 is shown in Figure 8-27 and described in Table 8-29.

Return to the Summary Table.

Figure 8-27. EVENT COUNT CH1 Register

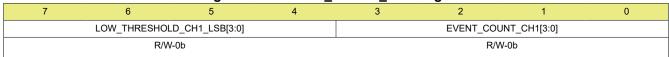


Table 8-29. EVENT_COUNT_CH1 Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-4	LOW_THRESHOLD_CH1_LS B[3:0]	R/W	0b	Lower 4-bits of low threshold for analog input. These bits are compared with bits 3:0 of ADC conversion result.
3-0	EVENT_COUNT_CH1[3:0]	R/W	0b	Configuration for checking 'n+1' consecutive samples above threshold before setting alert flag.

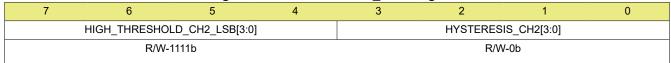
$8.1.28 LOW_{TH_CH1}$ Register (Address = 0x27) [reset = 0x0]

LOW_TH_CH1 is shown in Figure 8-28 and described in Table 8-30.

Return to the Summary Table.

Figure 8-28. LOW_TH_CH1 Register

Table 8-30. LOW_TH_CH1 Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	LOW_THRESHOLD_CH1 _MSB[7:0]	R/W		MSB aligned high threshold for analog input. These bits are compared with top 8 bits of ADC conversion result.

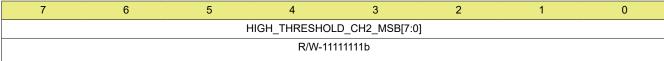
8.1.29 HYSTERESIS_CH2 Register (Address = 0x28) [reset = 0xF0]

HYSTERESIS_CH2 is shown in Figure 8-29 and described in Table 8-31.

Return to the Summary Table.

Figure 8-29. HYSTERESIS_CH2 Register

Table 8-31. HYSTERESIS_CH2 Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-4	HIGH_THRESHOLD_CH2 _LSB[3:0]	R/W		Lower 4-bits of high threshold for analog input. These bits are compared with bits 3:0 of ADC conversion result.
3-0	HYSTERESIS_CH2[3:0]	R/W		4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left shifted 3 times and applied on the lower 7-bits of the threshold. Total hysteresis = 7-bits [4-bits, 000b]

8.1.30 HIGH_TH_CH2 Register (Address = 0x29) [reset = 0xFF]

HIGH TH CH2 is shown in Figure 8-30 and described in Table 8-32.

Return to the Summary Table.

Figure 8-30. HIGH_TH_CH2 Register

Table 8-32. HIGH_TH_CH2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	HIGH_THRESHOLD_CH2 _MSB[7:0]	R/W		MSB aligned high threshold for analog input. These bits are compared with top 8 bits of ADC conversion result.

8.1.31 EVENT_COUNT_CH2 Register (Address = 0x2A) [reset = 0x0]

EVENT_COUNT_CH2 is shown in Figure 8-31 and described in Table 8-33.

Return to the Summary Table.

Figure 8-31. EVENT_COUNT_CH2 Register

Table 8-33. EVENT_COUNT_CH2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	LOW_THRESHOLD_CH2 _LSB[3:0]	R/W	0b	Lower 4-bits of low threshold for analog input. These bits are compared with bits 3:0 of ADC conversion result.
3-0	EVENT_COUNT_CH2[3:0]	R/W	0b	Configuration for checking 'n+1' consecutive samples above threshold before setting alert flag.



$8.1.32 LOW_TH_CH2 Register (Address = 0x2B) [reset = 0x0]$

LOW_TH_CH2 is shown in Figure 8-32 and described in Table 8-34.

Return to the Summary Table.

Figure 8-32. LOW_TH_CH2 Register

Table 8-34. LOW_TH_CH2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	LOW_THRESHOLD_CH2 _MSB[7:0]	R/W		MSB aligned high threshold for analog input. These bits are compared with top 8 bits of ADC conversion result.

8.1.33 HYSTERESIS_CH3 Register (Address = 0x2C) [reset = 0xF0]

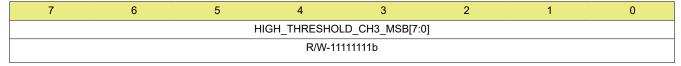
HYSTERESIS CH3 is shown in Figure 8-33 and described in Table 8-35.

Return to the Summary Table.

Figure 8-33. HYSTERESIS_CH3 Register

		<u> </u>					
7	6	5	4	3	2	1	0
	HIGH_THRESHOL	D_CH3_LSB[3:0)]		HYSTERES	IS_CH3[3:0]	
R/W-1111b					R/W	/-0b	

Table 8-35. HYSTERESIS_CH3 Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-4	HIGH_THRESHOLD_CH3 _LSB[3:0]	R/W	1111b	Lower 4-bits of high threshold for analog input. These bits are compared with bits 3:0 of ADC conversion result.
3-0	HYSTERESIS_CH3[3:0]	R/W	0b	4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left shifted 3 times and applied on the lower 7-bits of the threshold. Total hysteresis = 7-bits [4-bits, 000b]

8.1.34 HIGH_TH_CH3 Register (Address = 0x2D) [reset = 0xFF]

HIGH_TH_CH3 is shown in Figure 8-34 and described in Table 8-36.

Return to the Summary Table.

Figure 8-34. HIGH_TH_CH3 Register

Table 8-36. HIGH_TH_CH3 Register Field Descriptions

E	Bit	Field	Туре	Reset	Description
7	7-0	HIGH_THRESHOLD_CH3 _MSB[7:0]	R/W		MSB aligned high threshold for analog input. These bits are compared with top 8 bits of ADC conversion result.

8.1.35 EVENT_COUNT_CH3 Register (Address = 0x2E) [reset = 0x0]

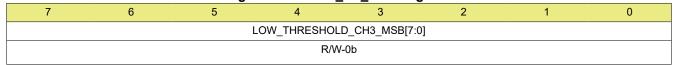
EVENT_COUNT_CH3 is shown in Figure 8-35 and described in Table 8-37.

Return to the Summary Table.

Figure 8-35. EVENT_COUNT_CH3 Register

7	6	5	4	3	2	1	0
LOW_THRESHOLD_CH3_LSB[3:0]					EVENT_COU	NT_CH3[3:0]	
R/W-0b					R/W	/-0b	

Table 8-37. EVENT_COUNT_CH3 Register Field Descriptions


Bit	t	Field	Туре	Reset	Description
7-4	4	LOW_THRESHOLD_CH3 _LSB[3:0]	R/W		Lower 4-bits of low threshold for analog input. These bits are compared with bits 3:0 of ADC conversion result.
3-0	0	EVENT_COUNT_CH3[3:0]	R/W		Configuration for checking 'n+1' consecutive samples above threshold before setting alert flag.

8.1.36 LOW_TH_CH3 Register (Address = 0x2F) [reset = 0x0]

LOW_TH_CH3 is shown in Figure 8-36 and described in Table 8-38.

Return to the Summary Table.

Figure 8-36. LOW_TH_CH3 Register

Table 8-38. LOW_TH_CH3 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	LOW_THRESHOLD_CH3	R/W	0b	MSB aligned high threshold for analog input. These bits are
	_MSB[7:0]			compared with top 8 bits of ADC conversion result.

8.1.37 HYSTERESIS_CH4 Register (Address = 0x30) [reset = 0xF0]

HYSTERESIS_CH4 is shown in Figure 8-37 and described in Table 8-39.

Return to the Summary Table.

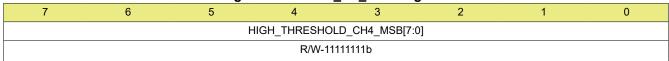
Figure 8-37. HYSTERESIS_CH4 Register

		ga.o	0 07.11.01.	·	logioto.		
7	6	5	4	3	2	1	0
	HIGH_THRESHOL	D_CH4_LSB[3:0]			HYSTERES	IS_CH4[3:0]	
R/W-1111b					R/W	/-0b	

Table 8-39. HYSTERESIS_CH4 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	HIGH_THRESHOLD_CH4 _LSB[3:0]	R/W	1111b	Lower 4-bits of high threshold for analog input. These bits are compared with bits 3:0 of ADC conversion result.
3-0	HYSTERESIS_CH4[3:0]	R/W		4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left shifted 3 times and applied on the lower 7-bits of the threshold. Total hysteresis = 7-bits [4-bits, 000b]

Product Folder Links: ADS7038 ADS7038H



8.1.38 HIGH_TH_CH4 Register (Address = 0x31) [reset = 0xFF]

HIGH_TH_CH4 is shown in Figure 8-38 and described in Table 8-40.

Return to the Summary Table.

Figure 8-38. HIGH_TH_CH4 Register

Table 8-40. HIGH_TH_CH4 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	HIGH_THRESHOLD_CH4	R/W	11111111b	MSB aligned high threshold for analog input. These bits are
	_MSB[7:0]			compared with top 8 bits of ADC conversion result.

8.1.39 EVENT_COUNT_CH4 Register (Address = 0x32) [reset = 0x0]

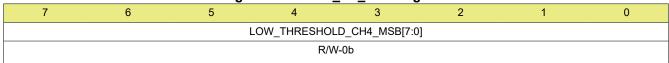
EVENT COUNT CH4 is shown in Figure 8-39 and described in Table 8-41.

Return to the Summary Table.

Figure 8-39. EVENT_COUNT_CH4 Register

		•	_	_	•		
7	6	5	4	3	2	1	0
	LOW_THRESHOL	D_CH4_LSB[3:0]			EVENT_COL	JNT_CH4[3:0]	
R/W-0b				R/V	V-0b		

Table 8-41. EVENT_COUNT_CH4 Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-4	LOW_THRESHOLD_CH4 _LSB[3:0]	R/W		Lower 4-bits of low threshold for analog input. These bits are compared with bits 3:0 of ADC conversion result.
3-0	EVENT_COUNT_CH4[3:0]	R/W		Configuration for checking 'n+1' consecutive samples above threshold before setting alert flag.

$8.1.40 LOW_{TH}_{CH4} Register (Address = 0x33) [reset = 0x0]$

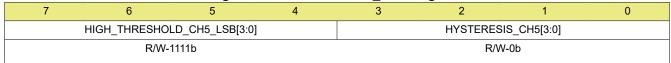
LOW_TH_CH4 is shown in Figure 8-40 and described in Table 8-42.

Return to the Summary Table.

Figure 8-40. LOW_TH_CH4 Register

Table 8-42. LOW_TH_CH4 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	LOW_THRESHOLD_CH4 _MSB[7:0]	R/W		MSB aligned high threshold for analog input. These bits are compared with top 8 bits of ADC conversion result.



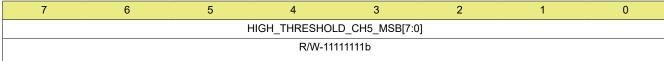
8.1.41 HYSTERESIS_CH5 Register (Address = 0x34) [reset = 0xF0]

HYSTERESIS_CH5 is shown in Figure 8-41 and described in Table 8-43.

Return to the Summary Table.

Figure 8-41. HYSTERESIS_CH5 Register

Table 8-43. HYSTERESIS_CH5 Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-4	HIGH_THRESHOLD_CH5 _LSB[3:0]	R/W		Lower 4-bits of high threshold for analog input. These bits are compared with bits 3:0 of ADC conversion result.
3-0	HYSTERESIS_CH5[3:0]	R/W		4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left shifted 3 times and applied on the lower 7-bits of the threshold. Total hysteresis = 7-bits [4-bits, 000b]

8.1.42 HIGH_TH_CH5 Register (Address = 0x35) [reset = 0xFF]

HIGH TH CH5 is shown in Figure 8-42 and described in Table 8-44.

Return to the Summary Table.

Figure 8-42. HIGH_TH_CH5 Register

Table 8-44. HIGH_TH_CH5 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	HIGH_THRESHOLD_CH5 _MSB[7:0]	R/W		MSB aligned high threshold for analog input. These bits are compared with top 8 bits of ADC conversion result.

8.1.43 EVENT_COUNT_CH5 Register (Address = 0x36) [reset = 0x0]

EVENT_COUNT_CH5 is shown in Figure 8-43 and described in Table 8-45.

Return to the Summary Table.

Figure 8-43. EVENT_COUNT_CH5 Register

7	6	5	4	3	2	1	0
	LOW_THRESHOL	D_CH5_LSB[3:0]			EVENT_COL	INT_CH5[3:0]	
R/W-0b					R/W	/-0b	

Table 8-45. EVENT_COUNT_CH5 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	LOW_THRESHOLD_CH5 _LSB[3:0]	R/W	0b	Lower 4-bits of low threshold for analog input. These bits are compared with bits 3:0 of ADC conversion result.
3-0	EVENT_COUNT_CH5[3:0]	R/W		Configuration for checking 'n+1' consecutive samples above threshold before setting alert flag.

Product Folder Links: ADS7038 ADS7038H

$8.1.44 LOW_TH_CH5 Register (Address = 0x37) [reset = 0x0]$

LOW_TH_CH5 is shown in Figure 8-44 and described in Table 8-46.

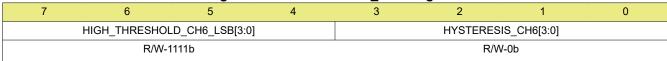
Return to the Summary Table.

Submit Document Feedback

Figure 8-44. LOW_TH_CH5 Register

7	6	5	4	3	2	1	0			
		L	OW_THRESHO	LD_CH5_MSB[7:0]					
			R/V	R/W-0b						

Table 8-46. LOW_TH_CH5 Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	LOW_THRESHOLD_CH5 _MSB[7:0]	R/W		MSB aligned high threshold for analog input. These bits are compared with top 8 bits of ADC conversion result.

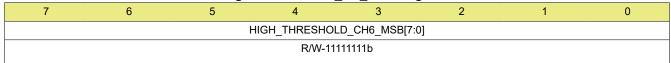
8.1.45 HYSTERESIS_CH6 Register (Address = 0x38) [reset = 0xF0]

HYSTERESIS_CH6 is shown in Figure 8-45 and described in Table 8-47.

Return to the Summary Table.

Figure 8-45. HYSTERESIS_CH6 Register

Table 8-47. HYSTERESIS_CH6 Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-4	HIGH_THRESHOLD_CH6 _LSB[3:0]	R/W	1111b	Lower 4-bits of high threshold for analog input. These bits are compared with bits 3:0 of ADC conversion result.
3-0	HYSTERESIS_CH6[3:0]	R/W	0b	4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left shifted 3 times and applied on the lower 7-bits of the threshold. Total hysteresis = 7-bits [4-bits, 000b]

8.1.46 HIGH_TH_CH6 Register (Address = 0x39) [reset = 0xFF]

HIGH_TH_CH6 is shown in Figure 8-46 and described in Table 8-48.

Return to the Summary Table.

Figure 8-46. HIGH_TH_CH6 Register

Table 8-48. HIGH_TH_CH6 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	HIGH_THRESHOLD_CH6 _MSB[7:0]	R/W		MSB aligned high threshold for analog input. These bits are compared with top 8 bits of ADC conversion result.

8.1.47 EVENT_COUNT_CH6 Register (Address = 0x3A) [reset = 0x0]

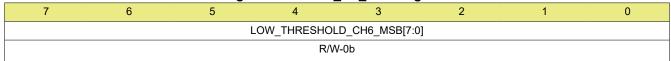
EVENT_COUNT_CH6 is shown in Figure 8-47 and described in Table 8-49.

Return to the Summary Table.

Figure 8-47. EVENT_COUNT_CH6 Register

7	6	5	4	3	2	1	0
	LOW_THRESHO	LD_CH6_LSB[3:0]			EVENT_COL	INT_CH6[3:0]	
	R/V	V-0b			R/V	/-0b	

Table 8-49. EVENT_COUNT_CH6 Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-4	LOW_THRESHOLD_CH6 _LSB[3:0]	R/W		Lower 4-bits of low threshold for analog input. These bits are compared with bits 3:0 of ADC conversion result.
3-0	EVENT_COUNT_CH6[3:0]	R/W		Configuration for checking 'n+1' consecutive samples above threshold before setting alert flag.

8.1.48 LOW_TH_CH6 Register (Address = 0x3B) [reset = 0x0]

LOW_TH_CH6 is shown in Figure 8-48 and described in Table 8-50.

Return to the Summary Table.

Figure 8-48. LOW_TH_CH6 Register

Table 8-50. LOW_TH_CH6 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	LOW_THRESHOLD_CH6 _MSB[7:0]	R/W		MSB aligned high threshold for analog input. These bits are compared with top 8 bits of ADC conversion result.

8.1.49 HYSTERESIS_CH7 Register (Address = 0x3C) [reset = 0xF0]

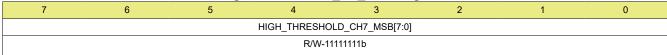
HYSTERESIS_CH7 is shown in Figure 8-49 and described in Table 8-51.

Return to the Summary Table.

Figure 8-49. HYSTERESIS_CH7 Register

7		6	5	4	3	2	1	0	
	HIGH_THRESHOLD_CH7_LSB[3:0]					HYSTERESIS_CH7[3:0]			
	R/W-1111b					R/W	-0b		

Table 8-51. HYSTERESIS_CH7 Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-4	HIGH_THRESHOLD_CH7_LS B[3:0]	R/W	1111b	Lower 4-bits of high threshold for analog input. These bits are compared with bits 3:0 of ADC conversion result.
3-0	HYSTERESIS_CH7[3:0]	R/W	0b	4-bit hysteresis for high and low thresholds. This 4-bit hysteris is left shifted 3 times and applied on the lower 7-bits of the threshold. Total hysteresis = 7-bits [4-bits, 000b]

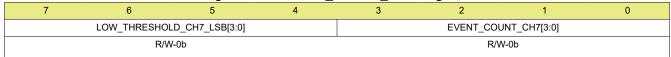
8.1.50 HIGH_TH_CH7 Register (Address = 0x3D) [reset = 0xFF]

HIGH_TH_CH7 is shown in Figure 8-50 and described in Table 8-52.

Return to the Summary Table.

Figure 8-50. HIGH_TH_CH7 Register

Table 8-52. HIGH TH CH7 Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	HIGH_THRESHOLD_CH7_M SB[7:0]	R/W		MSB aligned high threshold for analog input. These bits are compared with top 8 bits of ADC conversion result.

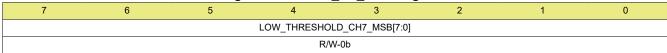
8.1.51 EVENT_COUNT_CH7 Register (Address = 0x3E) [reset = 0x0]

EVENT_COUNT_CH7 is shown in Figure 8-51 and described in Table 8-53.

Return to the Summary Table.

Figure 8-51. EVENT_COUNT_CH7 Register

Table 8-53. EVENT_COUNT_CH7 Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-4	LOW_THRESHOLD_CH7_LS B[3:0]	R/W	0b	Lower 4-bits of low threshold for analog input. These bits are compared with bits 3:0 of ADC conversion result.
3-0	EVENT_COUNT_CH7[3:0]	R/W	0b	Configuration for checking 'n+1' consecutive samples above threshold before setting alert flag.

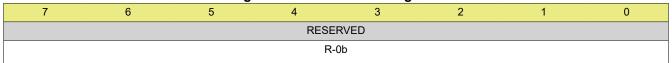
$8.1.52 LOW_TH_CH7 Register (Address = 0x3F) [reset = 0x0]$

LOW_TH_CH7 is shown in Figure 8-52 and described in Table 8-54.

Return to the Summary Table.

Figure 8-52. LOW_TH_CH7 Register

Table 8-54. LOW_TH_CH7 Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	LOW_THRESHOLD_CH7	R/W	0b	MSB aligned high threshold for analog input. These bits are
	_MSB[7:0]			compared with top 8 bits of ADC conversion result.

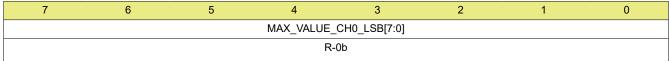
8.1.53 RESERVED Register (Address = 0x4E) [reset = 0x0]

RESERVED is shown in Figure 8-53 and described in Table 8-55.

Return to the Summary Table.

Figure 8-53. RESERVED Register

Table 8-55. RESERVED Register Field Descriptions


				<u> </u>
Bit	Field	Туре	Reset	Description
7-0	RESERVED	R	0b	Lower 4-bits of low threshold for analog input. These bits are
				compared with bits 3:0 of ADC conversion result.

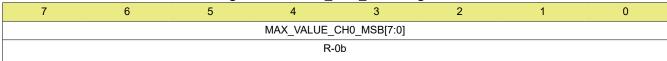
8.1.54 MAX_CH0_LSB Register (Address = 0x60) [reset = 0x0]

MAX_CH0_LSB is shown in Figure 8-54 and described in Table 8-56.

Return to the Summary Table.

Figure 8-54. MAX_CH0_LSB Register

Table 8-56. MAX_CH0_LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MAX_VALUE_CH0_LSB[7:0]	R		Maximum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0.

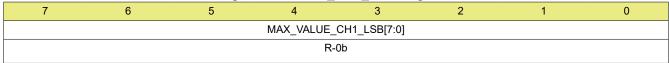
8.1.55 MAX_CH0_MSB Register (Address = 0x61) [reset = 0x0]

MAX_CH0_MSB is shown in Figure 8-55 and described in Table 8-57.

Return to the Summary Table.

Figure 8-55. MAX_CH0_MSB Register

Table 8-57. MAX_CH0_MSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MAX_VALUE_CH0_MSB[7:0]	R		Maximum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0.

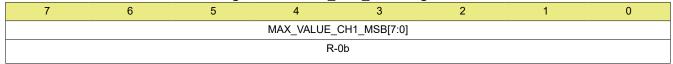
8.1.56 MAX_CH1_LSB Register (Address = 0x62) [reset = 0x0]

MAX CH1 LSB is shown in Figure 8-56 and described in Table 8-58.

Return to the Summary Table.

Figure 8-56. MAX_CH1_LSB Register

Table 8-58. MAX CH1 LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MAX_VALUE_CH1_LSB[7:0]	R		Maximum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0.

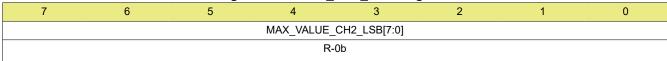
8.1.57 MAX_CH1_MSB Register (Address = 0x63) [reset = 0x0]

MAX_CH1_MSB is shown in Figure 8-57 and described in Table 8-59.

Return to the Summary Table.

Figure 8-57. MAX_CH1_MSB Register

Table 8-59. MAX_CH1_MSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MAX_VALUE_CH1_MSB[7:0]	R		Maximum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0.

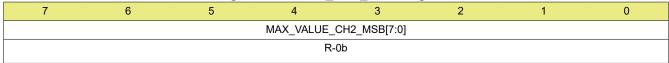
$8.1.58 \text{ MAX_CH2_LSB Register (Address = 0x64) [reset = 0x0]}$

MAX_CH2_LSB is shown in Figure 8-58 and described in Table 8-60.

Return to the Summary Table.

Figure 8-58. MAX_CH2_LSB Register

Table 8-60. MAX_CH2_LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MAX_VALUE_CH2_LSB[7	R		Maximum code recorded on the analog input channel from the last
	[:0]			time this register was read. Reading the register will reset the value to 0.

8.1.59 MAX_CH2_MSB Register (Address = 0x65) [reset = 0x0]

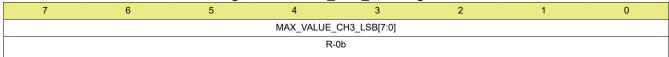
MAX_CH2_MSB is shown in Figure 8-59 and described in Table 8-61.

Return to the Summary Table.

Figure 8-59. MAX_CH2_MSB Register

Table 8-61. MAX_CH2_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	MAX_VALUE_CH2_MSB[7:0]	R		Maximum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0.



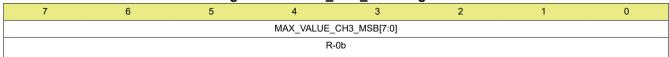
8.1.60 MAX_CH3_LSB Register (Address = 0x66) [reset = 0x0]

MAX_CH3_LSB is shown in Figure 8-60 and described in Table 8-62.

Return to the Summary Table.

Figure 8-60. MAX_CH3_LSB Register

Table 8-62. MAX_CH3_LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MAX_VALUE_CH3_LSB[7:0]	R		Maximum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0.

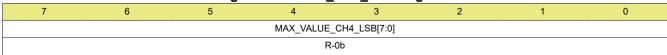
8.1.61 MAX_CH3_MSB Register (Address = 0x67) [reset = 0x0]

MAX_CH3_MSB is shown in Figure 8-61 and described in Table 8-63.

Return to the Summary Table.

Figure 8-61. MAX_CH3_MSB Register

Table 8-63. MAX_CH3_MSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MAX_VALUE_CH3_MSB[7:0]	R		Maximum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0.

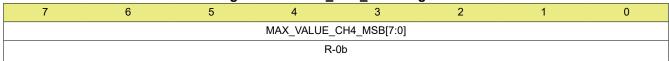
$8.1.62 \text{ MAX_CH4_LSB Register (Address = 0x68) [reset = 0x0]}$

MAX_CH4_LSB is shown in Figure 8-62 and described in Table 8-64.

Return to the Summary Table.

Figure 8-62. MAX CH4 LSB Register

Table 8-64. MAX_CH4_LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MAX_VALUE_CH4_LSB[7:0]	R		Maximum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0.

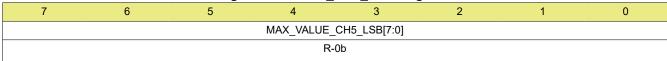
8.1.63 MAX_CH4_MSB Register (Address = 0x69) [reset = 0x0]

MAX_CH4_MSB is shown in Figure 8-63 and described in Table 8-65.

Return to the Summary Table.

Figure 8-63. MAX_CH4_MSB Register

Table 8-65. MAX_CH4_MSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MAX_VALUE_CH4_MSB[7:0]	R		Maximum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0.

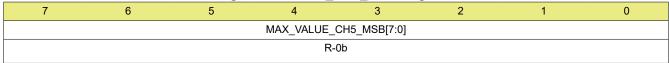
8.1.64 MAX_CH5_LSB Register (Address = 0x6A) [reset = 0x0]

MAX_CH5_LSB is shown in Figure 8-64 and described in Table 8-66.

Return to the Summary Table.

Figure 8-64. MAX_CH5_LSB Register

Table 8-66. MAX_CH5_LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MAX_VALUE_CH5_LSB[7:0]	R		Maximum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0.

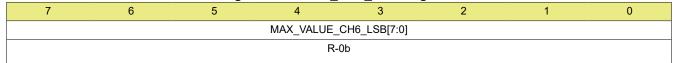
$8.1.65 \text{ MAX_CH5_MSB Register (Address = 0x6B) [reset = 0x0]}$

MAX_CH5_MSB is shown in Figure 8-65 and described in Table 8-67.

Return to the Summary Table.

Figure 8-65. MAX_CH5_MSB Register

Table 8-67. MAX_CH5_MSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MAX_VALUE_CH5_MSB[7:0]	R		Maximum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0.

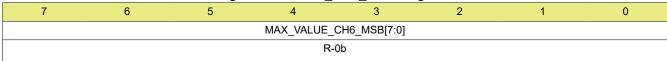
$8.1.66 \text{ MAX_CH6_LSB Register} (Address = 0x6C) [reset = 0x0]$

MAX_CH6_LSB is shown in Figure 8-66 and described in Table 8-68.

Return to the Summary Table.

Figure 8-66. MAX_CH6_LSB Register

Table 8-68. MAX_CH6_LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MAX_VALUE_CH6_LSB[7:0]	R		Maximum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0.

8.1.67 MAX_CH6_MSB Register (Address = 0x6D) [reset = 0x0]

MAX_CH6_MSB is shown in Figure 8-67 and described in Table 8-69.

Return to the Summary Table.

Figure 8-67. MAX_CH6_MSB Register

Table 8-69. MAX_CH6_MSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MAX_VALUE_CH6_MSB[7:0]	R		Maximum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0.

8.1.68 MAX_CH7_LSB Register (Address = 0x6E) [reset = 0x0]

MAX_CH7_LSB is shown in Figure 8-68 and described in Table 8-70.

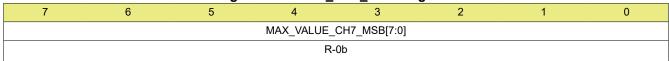
Return to the Summary Table.

Figure 8-68. MAX_CH7_LSB Register

Table 8-70. MAX_CH7_LSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	MAX_VALUE_CH7_LSB[7:0]	R		Maximum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0.

Product Folder Links: ADS7038 ADS7038H


56

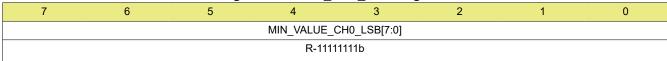
8.1.69 MAX_CH7_MSB Register (Address = 0x6F) [reset = 0x0]

MAX_CH7_MSB is shown in Figure 8-69 and described in Table 8-71.

Return to the Summary Table.

Figure 8-69. MAX_CH7_MSB Register

Table 8-71. MAX_CH7_MSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MAX_VALUE_CH7_MSB[7:0]	R		Maximum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0.

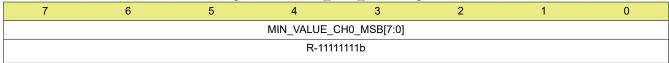
8.1.70 MIN_CH0_LSB Register (Address = 0x80) [reset = 0xFF]

MIN_CH0_LSB is shown in Figure 8-70 and described in Table 8-72.

Return to the Summary Table.

Figure 8-70. MIN_CH0_LSB Register

Table 8-72. MIN_CH0_LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MIN_VALUE_CH0_LSB[7: 0]	R		Minimum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0xFF.

8.1.71 MIN_CH0_MSB Register (Address = 0x81) [reset = 0xFF]

MIN_CH0_MSB is shown in Figure 8-71 and described in Table 8-73.

Return to the Summary Table.

Figure 8-71. MIN_CH0_MSB Register

Table 8-73. MIN_CH0_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	MIN_VALUE_CH0_MSB[7:0]	R		Minimum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0xFF.

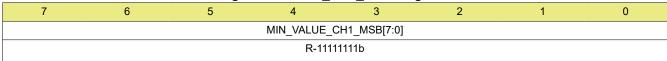
8.1.72 MIN_CH1_LSB Register (Address = 0x82) [reset = 0xFF]

MIN_CH1_LSB is shown in Figure 8-72 and described in Table 8-74.

Return to the Summary Table.

Figure 8-72. MIN_CH1_LSB Register

Table 8-74. MIN_CH1_LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MIN_VALUE_CH1_LSB[7: 0]	R		Minimum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0xFF.

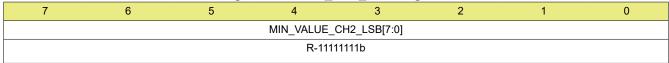
8.1.73 MIN_CH1_MSB Register (Address = 0x83) [reset = 0xFF]

MIN_CH1_MSB is shown in Figure 8-73 and described in Table 8-75.

Return to the Summary Table.

Figure 8-73. MIN_CH1_MSB Register

Table 8-75. MIN_CH1_MSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MIN_VALUE_CH1_MSB[7:0]	R		Minimum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0xFF.

8.1.74 MIN_CH2_LSB Register (Address = 0x84) [reset = 0xFF]

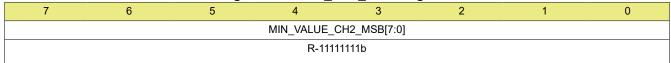
MIN CH2 LSB is shown in Figure 8-74 and described in Table 8-76.

Return to the Summary Table.

Figure 8-74. MIN_CH2_LSB Register

Table 8-76. MIN_CH2_LSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	MIN_VALUE_CH2_LSB[7: 0]	R		Minimum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0xFF.



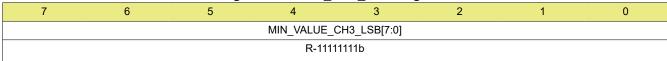
8.1.75 MIN_CH2_MSB Register (Address = 0x85) [reset = 0xFF]

MIN_CH2_MSB is shown in Figure 8-75 and described in Table 8-77.

Return to the Summary Table.

Figure 8-75. MIN_CH2_MSB Register

Table 8-77. MIN_CH2_MSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MIN_VALUE_CH2_MSB[7:0]	R		Minimum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0xFF.

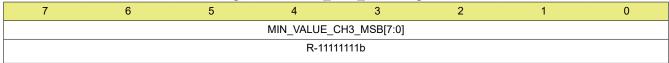
8.1.76 MIN_CH3_LSB Register (Address = 0x86) [reset = 0xFF]

MIN_CH3_LSB is shown in Figure 8-76 and described in Table 8-78.

Return to the Summary Table.

Figure 8-76. MIN_CH3_LSB Register

Table 8-78. MIN_CH3_LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MIN_VALUE_CH3_LSB[7: 0]	R		Minimum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0xFF.

8.1.77 MIN_CH3_MSB Register (Address = 0x87) [reset = 0xFF]

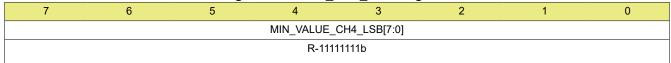
MIN CH3 MSB is shown in Figure 8-77 and described in Table 8-79.

Return to the Summary Table.

Figure 8-77. MIN_CH3_MSB Register

Table 8-79. MIN_CH3_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	MIN_VALUE_CH3_MSB[7:0]	R		Minimum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0xFF.



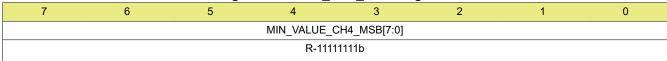
8.1.78 MIN_CH4_LSB Register (Address = 0x88) [reset = 0xFF]

MIN_CH4_LSB is shown in Figure 8-78 and described in Table 8-80.

Return to the Summary Table.

Figure 8-78. MIN_CH4_LSB Register

Table 8-80. MIN_CH4_LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MIN_VALUE_CH4_LSB[7: 0]	R		Minimum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0xFF.

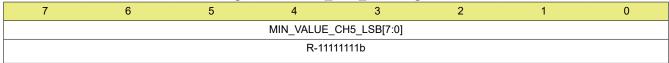
8.1.79 MIN_CH4_MSB Register (Address = 0x89) [reset = 0xFF]

MIN_CH4_MSB is shown in Figure 8-79 and described in Table 8-81.

Return to the Summary Table.

Figure 8-79. MIN_CH4_MSB Register

Table 8-81. MIN_CH4_MSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MIN_VALUE_CH4_MSB[7:0]	R		Minimum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0xFF.

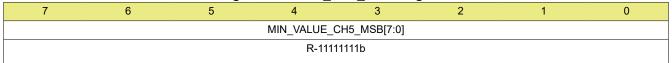
8.1.80 MIN_CH5_LSB Register (Address = 0x8A) [reset = 0xFF]

MIN CH5 LSB is shown in Figure 8-80 and described in Table 8-82.

Return to the Summary Table.

Figure 8-80. MIN_CH5_LSB Register

Table 8-82. MIN_CH5_LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MIN_VALUE_CH5_LSB[7: 0]	R		Minimum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0xFF.

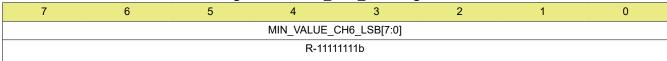
8.1.81 MIN_CH5_MSB Register (Address = 0x8B) [reset = 0xFF]

MIN_CH5_MSB is shown in Figure 8-81 and described in Table 8-83.

Return to the Summary Table.

Figure 8-81. MIN_CH5_MSB Register

Table 8-83. MIN_CH5_MSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MIN_VALUE_CH5_MSB[7:0]	R		Minimum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0xFF.

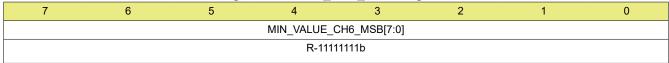
8.1.82 MIN_CH6_LSB Register (Address = 0x8C) [reset = 0xFF]

MIN_CH6_LSB is shown in Figure 8-82 and described in Table 8-84.

Return to the Summary Table.

Figure 8-82. MIN_CH6_LSB Register

Table 8-84. MIN_CH6_LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MIN_VALUE_CH6_LSB[7: 0]	R		Minimum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0xFF.

8.1.83 MIN_CH6_MSB Register (Address = 0x8D) [reset = 0xFF]

MIN CH6 MSB is shown in Figure 8-83 and described in Table 8-85.

Return to the Summary Table.

Figure 8-83. MIN_CH6_MSB Register

Table 8-85. MIN_CH6_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	MIN_VALUE_CH6_MSB[7 :0]	R		Minimum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0xFF.

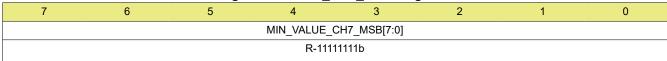
8.1.84 MIN_CH7_LSB Register (Address = 0x8E) [reset = 0xFF]

MIN_CH7_LSB is shown in Figure 8-84 and described in Table 8-86.

Return to the Summary Table.

Figure 8-84. MIN_CH7_LSB Register

Table 8-86. MIN_CH7_LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MIN_VALUE_CH7_LSB[7: 0]	R		Minimum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0xFF.

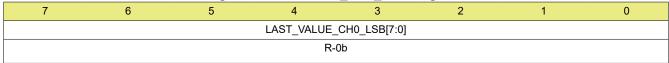
8.1.85 MIN_CH7_MSB Register (Address = 0x8F) [reset = 0xFF]

MIN_CH7_MSB is shown in Figure 8-85 and described in Table 8-87.

Return to the Summary Table.

Figure 8-85. MIN_CH7_MSB Register

Table 8-87. MIN_CH7_MSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	MIN_VALUE_CH7_MSB[7:0]	R		Minimum code recorded on the analog input channel from the last time this register was read. Reading the register will reset the value to 0xFF.

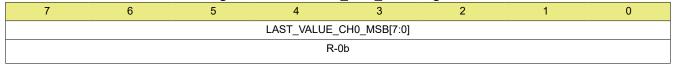
8.1.86 RECENT_CH0_LSB Register (Address = 0xA0) [reset = 0x0]

RECENT_CH0_LSB is shown in Figure 8-86 and described in Table 8-88.

Return to the Summary Table.

Figure 8-86. RECENT_CH0_LSB Register

Table 8-88, RECENT CH0 LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	LAST_VALUE_CH0_LSB[7:0]	R	0b	Next 8 bits of the last result for this analog input channel.

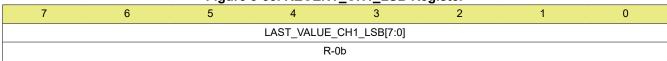
8.1.87 RECENT_CH0_MSB Register (Address = 0xA1) [reset = 0x0]

RECENT_CH0_MSB is shown in Figure 8-87 and described in Table 8-89.

Return to the Summary Table.

Figure 8-87. RECENT_CH0_MSB Register

Table 8-89. RECENT_CH0_MSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	LAST_VALUE_CH0_MSB[R	0b	MSB aligned first 8 bits of the last result for this analog input
	7:0]			channel.

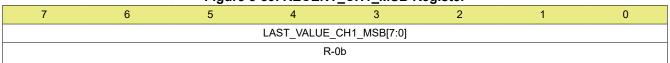
8.1.88 RECENT_CH1_LSB Register (Address = 0xA2) [reset = 0x0]

RECENT CH1 LSB is shown in Figure 8-88 and described in Table 8-90.

Return to the Summary Table.

Figure 8-88. RECENT_CH1_LSB Register

Table 8-90. RECENT_CH1_LSB Register Field Descriptions


Bit	:	Field	Туре	Reset	Description
7-0		LAST_VALUE_CH1_LSB[7:0]	R	0b	Next 8 bits of the last result for this analog input channel.

8.1.89 RECENT_CH1_MSB Register (Address = 0xA3) [reset = 0x0]

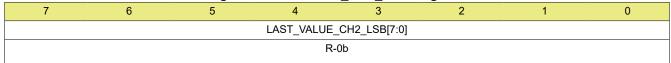
RECENT_CH1_MSB is shown in Figure 8-89 and described in Table 8-91.

Return to the Summary Table.

Figure 8-89. RECENT_CH1_MSB Register

Table 8-91. RECENT_CH1_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	LAST_VALUE_CH1_MSB[7:0]	R		MSB aligned first 8 bits of the last result for this analog input channel.



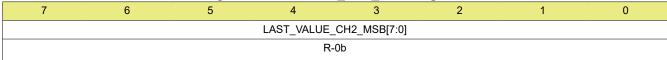
8.1.90 RECENT_CH2_LSB Register (Address = 0xA4) [reset = 0x0]

RECENT_CH2_LSB is shown in Figure 8-90 and described in Table 8-92.

Return to the Summary Table.

Figure 8-90. RECENT_CH2_LSB Register

Table 8-92. RECENT_CH2_LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	LAST_VALUE_CH2_LSB[7:0]	R	0b	Next 8 bits of the last result for this analog input channel.

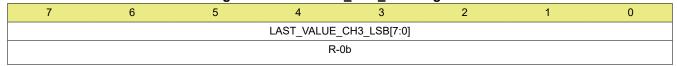
8.1.91 RECENT_CH2_MSB Register (Address = 0xA5) [reset = 0x0]

RECENT_CH2_MSB is shown in Figure 8-91 and described in Table 8-93.

Return to the Summary Table.

Figure 8-91. RECENT_CH2_MSB Register

Table 8-93. RECENT_CH2_MSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	LAST_VALUE_CH2_MSB[R	0b	MSB aligned first 8 bits of the last result for this analog input
	7:0]			channel.

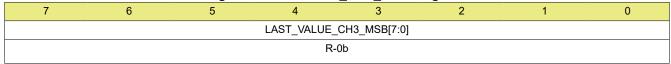
8.1.92 RECENT_CH3_LSB Register (Address = 0xA6) [reset = 0x0]

RECENT_CH3_LSB is shown in Figure 8-92 and described in Table 8-94.

Return to the Summary Table.

Figure 8-92. RECENT_CH3_LSB Register

Table 8-94. RECENT_CH3_LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	LAST_VALUE_CH3_LSB[7:0]	R	0b	Next 8 bits of the last result for this analog input channel.

8.1.93 RECENT_CH3_MSB Register (Address = 0xA7) [reset = 0x0]

RECENT_CH3_MSB is shown in Figure 8-93 and described in Table 8-95.

Return to the Summary Table.

Figure 8-93. RECENT_CH3_MSB Register

Table 8-95. RECENT_CH3_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	LAST_VALUE_CH3_MSB[7:0]	R		MSB aligned first 8 bits of the last result for this analog input channel.

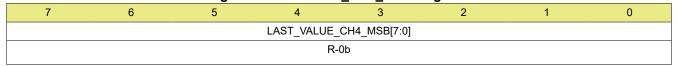
8.1.94 RECENT_CH4_LSB Register (Address = 0xA8) [reset = 0x0]

RECENT_CH4_LSB is shown in Figure 8-94 and described in Table 8-96.

Return to the Summary Table.

Figure 8-94. RECENT_CH4_LSB Register

Table 8-96. RECENT_CH4_LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	LAST_VALUE_CH4_LSB[7:0]	R	0b	Next 8 bits of the last result for this analog input channel.

8.1.95 RECENT_CH4_MSB Register (Address = 0xA9) [reset = 0x0]

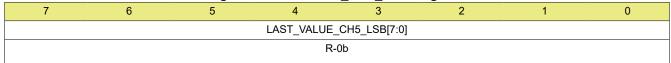
RECENT_CH4_MSB is shown in Figure 8-95 and described in Table 8-97.

Return to the Summary Table.

Figure 8-95. RECENT_CH4_MSB Register

Table 8-97. RECENT_CH4_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	LAST_VALUE_CH4_MSB[7:0]	R		MSB aligned first 8 bits of the last result for this analog input channel.



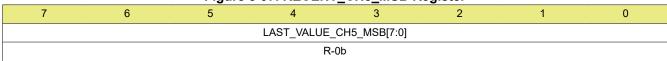
8.1.96 RECENT_CH5_LSB Register (Address = 0xAA) [reset = 0x0]

RECENT_CH5_LSB is shown in Figure 8-96 and described in Table 8-98.

Return to the Summary Table.

Figure 8-96. RECENT_CH5_LSB Register

Table 8-98. RECENT_CH5_LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	LAST_VALUE_CH5_LSB[7:0]	R	0b	Next 8 bits of the last result for this analog input channel.

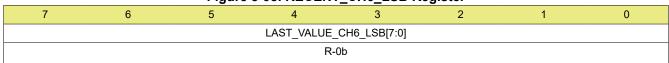
8.1.97 RECENT_CH5_MSB Register (Address = 0xAB) [reset = 0x0]

RECENT CH5 MSB is shown in Figure 8-97 and described in Table 8-99.

Return to the Summary Table.

Figure 8-97. RECENT_CH5_MSB Register

Table 8-99. RECENT_CH5_MSB Register Field Descriptions


	Bit	Field	Туре	Reset	Description
Г	7-0	LAST_VALUE_CH5_MSB[R	0b	MSB aligned first 8 bits of the last result for this analog input
		7:0]			channel.

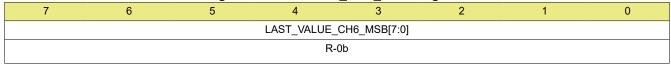
8.1.98 RECENT_CH6_LSB Register (Address = 0xAC) [reset = 0x0]

RECENT_CH6_LSB is shown in Figure 8-98 and described in Table 8-100.

Return to the Summary Table.

Figure 8-98. RECENT_CH6_LSB Register

Table 8-100. RECENT_CH6_LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	LAST_VALUE_CH6_LSB[7:0]	R	0b	Next 8 bits of the last result for this analog input channel.

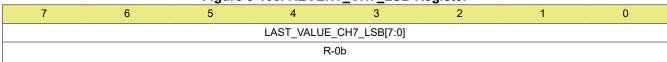
8.1.99 RECENT_CH6_MSB Register (Address = 0xAD) [reset = 0x0]

RECENT_CH6_MSB is shown in Figure 8-99 and described in Table 8-101.

Return to the Summary Table.

Figure 8-99. RECENT_CH6_MSB Register

Table 8-101. RECENT_CH6_MSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	LAST_VALUE_CH6_MSB[7:0]	R		MSB aligned first 8 bits of the last result for this analog input channel.

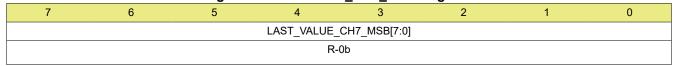
8.1.100 RECENT_CH7_LSB Register (Address = 0xAE) [reset = 0x0]

RECENT CH7 LSB is shown in Figure 8-100 and described in Table 8-102.

Return to the Summary Table.

Figure 8-100. RECENT_CH7_LSB Register

Table 8-102. RECENT_CH7_LSB Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	LAST_VALUE_CH7_LSB[7:0]	R	0b	Next 8 bits of the last result for this analog input channel.

8.1.101 RECENT_CH7_MSB Register (Address = 0xAF) [reset = 0x0]

RECENT_CH7_MSB is shown in Figure 8-101 and described in Table 8-103.

Return to the Summary Table.

Figure 8-101. RECENT_CH7_MSB Register

Table 8-103. RECENT_CH7_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	LAST_VALUE_CH7_MSB[7:0]	R		MSB aligned first 8 bits of the last result for this analog input channel.

8.1.102 GPO0_TRIG_EVENT_SEL Register (Address = 0xC3) [reset = 0x0]

GPO0_TRIG_EVENT_SEL is shown in Figure 8-102 and described in Table 8-104.

Return to the Summary Table.

Figure 8-102. GPO0_TRIG_EVENT_SEL Register

Table 8-104. GPO0_TRIG_EVENT_SEL Register Field Descriptions

_					
	Bit	Field	Туре	Reset	Description
	7-0	GPO0_TRIG_EVENT_SE L[7:0]	R/W		Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger an event based update on GPO0. 0b = Alert flags for the AIN/GPIO corresponding to this bit do not trigger GPO0 output. 1b = Alert flags for the AIN/GPIO corresponding to this bit do trigger GPO0 output.
					trigger GPO0 output. 1b = Alert flags for the AIN/GPIO corresponding to this bit do trigger

8.1.103 GPO1_TRIG_EVENT_SEL Register (Address = 0xC5) [reset = 0x0]

GPO1_TRIG_EVENT_SEL is shown in Figure 8-103 and described in Table 8-105.

Return to the Summary Table.

Figure 8-103. GPO1_TRIG_EVENT_SEL Register

Table 8-105. GPO1_TRIG_EVENT_SEL Register Field Descriptions

Reset	Description					
0b	Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger an event based update on GPO1. 0b = Alert flags for the AIN/GPIO corresponding to this bit do not trigger GPO1 output. 1b = Alert flags for the AIN/GPIO corresponding to this bit do trigger GPO1 output.					

8.1.104 GPO2_TRIG_EVENT_SEL Register (Address = 0xC7) [reset = 0x0]

GPO2_TRIG_EVENT_SEL is shown in Figure 8-104 and described in Table 8-106.

Return to the Summary Table.

Figure 8-104. GPO2_TRIG_EVENT_SEL Register

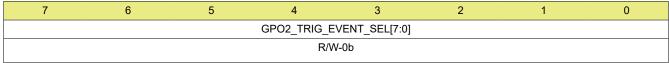


Table 8-106. GPO2 TRIG EVENT SEL Register Field Descriptions

1000 0 1001 01 01_1110_E1E111_01E 110giotoi 1 1010 00001iptione						
Bit	Field	Туре	Reset	Description		
7-0	GPO2_TRIG_EVENT_SE L[7:0]	R/W	0b	Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger an event based update on GPO2. 0b = Alert flags for the AIN/GPIO corresponding to this bit do not trigger GPO2 output. 1b = Alert flags for the AIN/GPIO corresponding to this bit do trigger GPO2 output.		

8.1.105 GPO3_TRIG_EVENT_SEL Register (Address = 0xC9) [reset = 0x0]

GPO3_TRIG_EVENT_SEL is shown in Figure 8-105 and described in Table 8-107.

Return to the Summary Table.

Figure 8-105. GPO3_TRIG_EVENT_SEL Register

Table 8-107. GPO3_TRIG_EVENT_SEL Register Field Descriptions

Bit Field Type Reset Description 7-0 GPO3 TRIG EVENT SE R/W 0b Select the inputs AIN/GPIO[7:0], analog or digital, which can	
7-0 GPO3 TRIG EVENT SE R/W 0h Select the inputs AIN/GPIOI7:01 analog or digital which can	
L[7:0] an event based update on GPO3. 0b = Alert flags for the AIN/GPIO corresponding to this bit do trigger GPO3 output. 1b = Alert flags for the AIN/GPIO corresponding to this bit do GPO3 output.	not

8.1.106 GPO4_TRIG_EVENT_SEL Register (Address = 0xCB) [reset = 0x0]

GPO4 TRIG EVENT SEL is shown in Figure 8-106 and described in Table 8-108.

Return to the Summary Table.

Figure 8-106. GPO4_TRIG_EVENT_SEL Register

Table 8-108. GPO4_TRIG_EVENT_SEL Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	GPO4_TRIG_EVENT_SE L[7:0]	R/W		Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger an event based update on GPO4. 0b = Alert flags for the AIN/GPIO corresponding to this bit do not trigger GPO4 output. 1b = Alert flags for the AIN/GPIO corresponding to this bit do trigger GPO4 output.

8.1.107 GPO5_TRIG_EVENT_SEL Register (Address = 0xCD) [reset = 0x0]

GPO5_TRIG_EVENT_SEL is shown in Figure 8-107 and described in Table 8-109.

Return to the Summary Table.

Figure 8-107. GPO5_TRIG_EVENT_SEL Register

Table 8-109. GPO5_TRIG_EVENT_SEL Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	GPO5_TRIG_EVENT_SE L[7:0]	R/W	0b	Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger an event based update on GPO5. 0b = Alert flags for the AIN/GPIO corresponding to this bit do not trigger GPO5 output. 1b = Alert flags for the AIN/GPIO corresponding to this bit do trigger GPO5 output.

8.1.108 GPO6_TRIG_EVENT_SEL Register (Address = 0xCF) [reset = 0x0]

GPO6_TRIG_EVENT_SEL is shown in Figure 8-108 and described in Table 8-110.

Return to the Summary Table.

Figure 8-108. GPO6_TRIG_EVENT_SEL Register

Table 8-110. GPO6_TRIG_EVENT_SEL Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	GPO6_TRIG_EVENT_SE L[7:0]	R/W	0b	Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger an event based update on GPO6. 0b = Alert flags for the AIN/GPIO corresponding to this bit do not trigger GPO6 output. 1b = Alert flags for the AIN/GPIO corresponding to this bit do trigger GPO6 output.

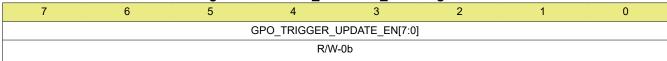
8.1.109 GPO7_TRIG_EVENT_SEL Register (Address = 0xD1) [reset = 0x0]

GPO7_TRIG_EVENT_SEL is shown in Figure 8-109 and described in Table 8-111.

Return to the Summary Table.

Figure 8-109. GPO7_TRIG_EVENT_SEL Register

Table 8-111. GPO7_TRIG_EVENT_SEL Register Field Descriptions


Bit	Field	Туре	Reset	Description
7-0	GPO7_TRIG_EVENT_SE L[7:0]	R/W	0b	Select the inputs AIN/GPIO[7:0], analog or digital, which can trigger an event based update on GPO7. 0b = Alert flags for the AIN/GPIO corresponding to this bit do not trigger GPO7 output. 1b = Alert flags for the AIN/GPIO corresponding to this bit do trigger GPO7 output.

8.1.110 GPO_TRIGGER_CFG Register (Address = 0xE9) [reset = 0x0]

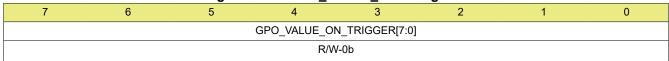
GPO_TRIGGER_CFG is shown in Figure 8-110 and described in Table 8-112.

Return to the Summary Table.

Figure 8-110. GPO_TRIGGER_CFG Register

Table 8-112. GPO_TRIGGER_CFG Register Field Descriptions

Bit	Field	Туре	Reset	Description		
7-0	GPO_TRIGGER_UPDATE _EN[7:0]	R/W	Ob	Update digital outputs GPO[7:0] when the corresponding trigger is set. 0b = Digital output is not updated in response to the alert flags. 1b = Digital output is updated when the corresponding alert flags are set. Configure GPOx_TRIG_EVENT_SEL register to select which alert flags can trigger an update on the desired GPO.		



8.1.111 GPO_VALUE_TRIG Register (Address = 0xEB) [reset = 0x0]

GPO_VALUE_TRIG is shown in Figure 8-111 and described in Table 8-113.

Return to the Summary Table.

Figure 8-111. GPO_VALUE_TRIG Register

Table 8-113. GPO_VALUE_TRIG Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	GPO_VALUE_ON_TRIGG ER[7:0]	R/W		Value to be set on digital outputs GPO[7:0] when the corresponding trigger occurs. GPO update on alert flags must be enabled in the corresponding bit in the GPO_TRIGGER_CFG register. 0b = Digital output is set to logic 0. 1b = Digital output is set to logic 1.

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The two primary circuits required to maximize the performance of a high-precision, successive approximation register analog-to-digital converter (SAR ADC) are the input driver and the reference driver circuits. This section details some general principles for designing the input driver circuit, reference driver circuit, and provides some application circuits designed for the ADS7038.

9.2 Typical Applications

9.2.1 Mixed-Channel Configuration

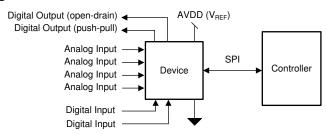


Figure 9-1. DAQ Circuit: Single-Supply DAQ

9.2.1.1 Design Requirements

The goal of this application is to configure some channels of the ADS7038 as digital inputs, open-drain digital outputs, and push-pull digital outputs.

9.2.1.2 Detailed Design Procedure

The ADS7038 can support GPIO functionality at each input pin. Any analog input pin can be independently configured as a digital input, a digital open-drain output, or a digital push-pull output though the PIN_CFG and GPIO_CFG registers; see Table 7-2.

9.2.1.2.1 Digital Input

The digital input functionality can be used to monitor a signal within the system. Figure 9-2 illustrates that the state of the digital input can be read from the GPI VALUE register.

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

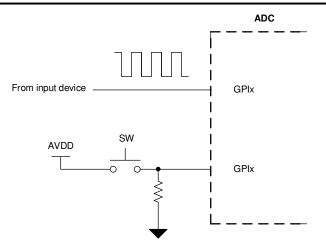


Figure 9-2. Digital Input

9.2.1.2.2 Digital Open-Drain Output

The channels of the ADS7038 can be configured as digital open-drain outputs supporting an output voltage up to 5.5 V. An open-drain output, as shown in Figure 9-3, consists of an internal FET (Q) connected to ground. The output is idle when not driven by the device, which means Q is off and the pullup resistor, R_{PULL_UP}, connects the GPOx node to the desired output voltage. The output voltage can range anywhere up to 5.5 V, depending on the external voltage that the GPIOx is pulled up to. When the device is driving the output, Q turns on, thus connecting the pullup resistor to ground and bringing the node voltage at GPOx low.

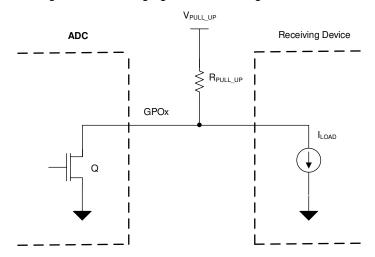


Figure 9-3. Digital Open-Drain Output

The minimum value of the pullup resistor, as calculated in Equation 3, is given by the ratio of V_{PULL_UP} and the maximum current supported by the device digital output (5 mA).

$$R_{MIN} = (V_{PULL\ UP} / 5 \text{ mA}) \tag{3}$$

The maximum value of the pullup resistor, as calculated in Equation 4, depends on the minimum input current requirement, I_{LOAD}, of the receiving device driven by this GPIO.

$$R_{MAX} = (V_{PULL} UP / I_{LOAD})$$
(4)

Select R_{PULL_UP} such that $R_{MIN} < R_{PULL_UP} < R_{MAX}$.

Product Folder Links: ADS7038 ADS7038H

9.2.1.3 Application Curve

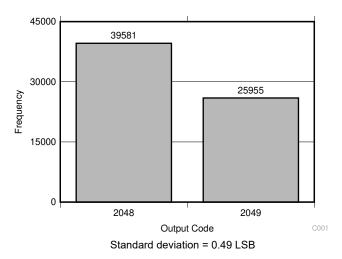


Figure 9-4. DC Input Histogram

9.2.2 Digital Push-Pull Output Configuration

The channels of the ADS7038 can be configured as digital push-pull outputs supporting an output voltage up to AVDD. As shown in Figure 9-5, a push-pull output consists of two mirrored opposite bipolar transistors, Q1 and Q2. The device can both source and sink current because only one transistor is on at a time (either Q2 is on and pulls the output low, or Q1 is on and sets the output high). A push-pull configuration always drives the line opposed to an open-drain output where the line is left floating.

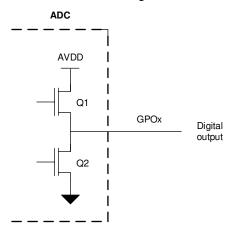


Figure 9-5. Digital Push-Pull Output

9.3 Power Supply Recommendations

9.3.1 AVDD and DVDD Supply Recommendations

The ADS7038 has two separate power supplies: AVDD and DVDD. The device operates on AVDD; DVDD is used for the interface circuits. For supplies greater than 2.35V, AVDD and DVDD can be shorted externally if single-supply operation is desired. The AVDD supply also defines the full-scale input range of the device. Decouple the AVDD and DVDD pins individually, as shown in Figure 9-6, with 1µF ceramic decoupling capacitors. The minimum capacitor value required for AVDD and DVDD is 200nF and 20nF, respectively. If both supplies are powered from the same source, a minimum capacitor value of 220nF is required for decoupling.

Connect 1µF ceramic decoupling capacitors between the DECAP and GND pins.

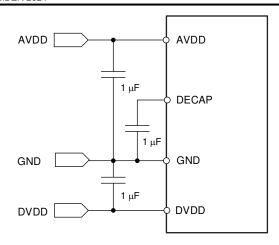


Figure 9-6. Power-Supply Decoupling

9.4 Layout

9.4.1 Layout Guidelines

Figure 9-7 shows a board layout example for the ADS7038. Avoid crossing digital lines with the analog signal path and keep the analog input signals and the AVDD supply away from noise sources.

Use 1µF ceramic bypass capacitors in close proximity to the analog (AVDD) and digital (DVDD) power-supply pins. Avoid placing vias between the AVDD and DVDD pins and the bypass capacitors. Connect the GND pin to the ground plane using short, low-impedance paths. The AVDD supply voltage also functions as the reference voltage for the ADS7038. Place the decoupling capacitor for AVDD close to the device AVDD and GND pins and connect the decoupling capacitor to the device pins with thick copper tracks.

9.4.2 Layout Example

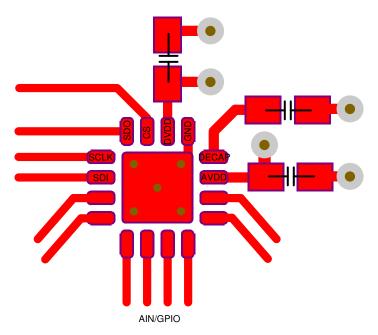


Figure 9-7. Example Layout

Submit Document Feedback

10 Device and Documentation Support

10.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.3 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

10.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

11 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

C	nanges from Revision B (June 2020) to Revision C (September 2024)	Page
•	Updated the numbering format for tables, figures, and cross-references throughout the document	1
•	Added ADS7038H device to document	1
•	Added full throughput sub-bullet to Enhanced-SPI digital interface bullet in Features section	1
•	Changed <i>Description</i> section: Deleted <i>1 MSPS</i> from first paragraph, added ADS7038H to <i>Package</i>	
	Information table, and added Device Information table	1
•	Added Speed column and ADS7038H row to Device Comparison Table	
•	Changed SPI-Compatible Serial Interface Timing figure to include t _{HT CKDO} timing	8
•	Changed last paragraph of Input CRC (From Host To Device) section	
С	hanges from Revision A (December 2019) to Revision B (June 2020)	Page
•	Changed description of DECAP pin in Pin Functions table	3
•	Added last sentence to AVDD and DVDD Supply Recommendations section	75
•	Changed last sentence of Layout Guidelines section	76

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 23-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
ADS7038HIRTER	Active	Production	WQFN (RTE) 16	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	A7038H
ADS7038HIRTER.A	Active	Production	WQFN (RTE) 16	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	A7038H
ADS7038IRTER	Active	Production	WQFN (RTE) 16	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	7038
ADS7038IRTER.A	Active	Production	WQFN (RTE) 16	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	7038
ADS7038IRTERG4.A	Active	Production	WQFN (RTE) 16	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	7038
ADS7038IRTET	Active	Production	WQFN (RTE) 16	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	7038
ADS7038IRTET.A	Active	Production	WQFN (RTE) 16	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	7038

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

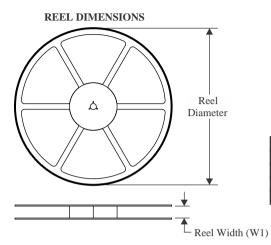
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

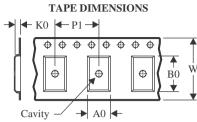
PACKAGE OPTION ADDENDUM

www.ti.com 23-May-2025

OTHER QUALIFIED VERSIONS OF ADS7038:

Automotive : ADS7038-Q1


NOTE: Qualified Version Definitions:

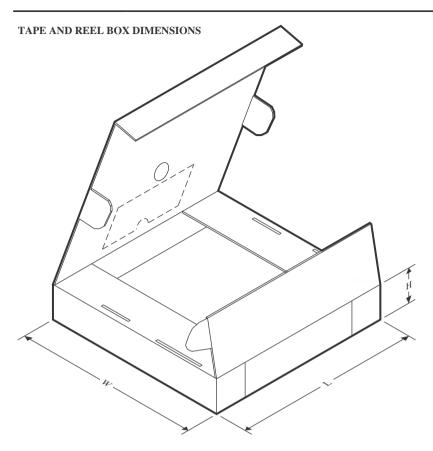

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 30-Jan-2025

TAPE AND REEL INFORMATION

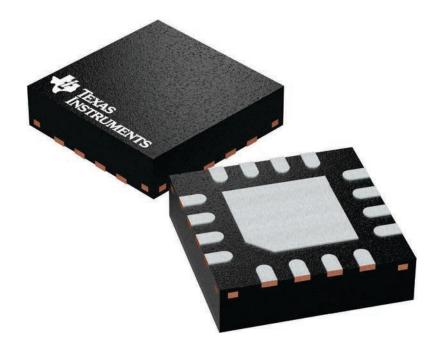
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

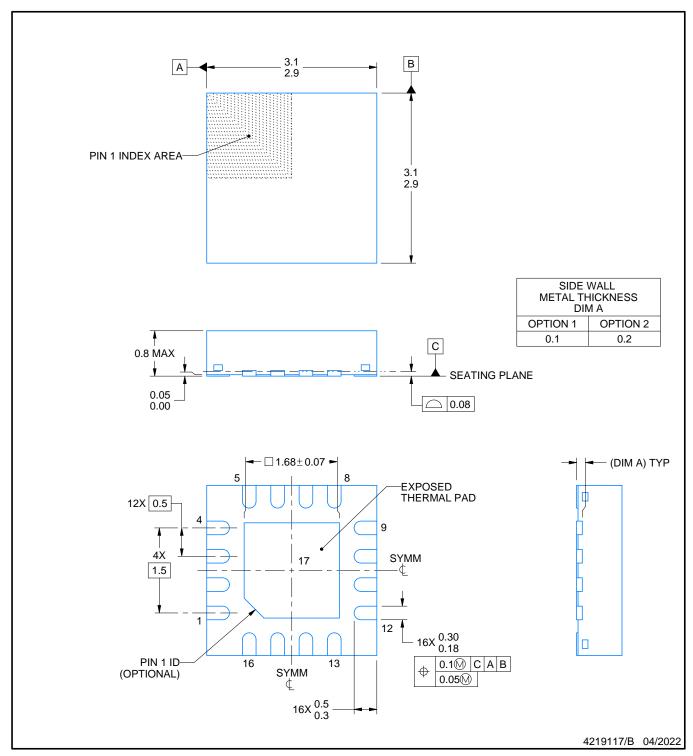
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ADS7038HIRTER	WQFN	RTE	16	5000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
ADS7038IRTER	WQFN	RTE	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
ADS7038IRTET	WQFN	RTE	16	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

www.ti.com 30-Jan-2025


*All dimensions are nominal

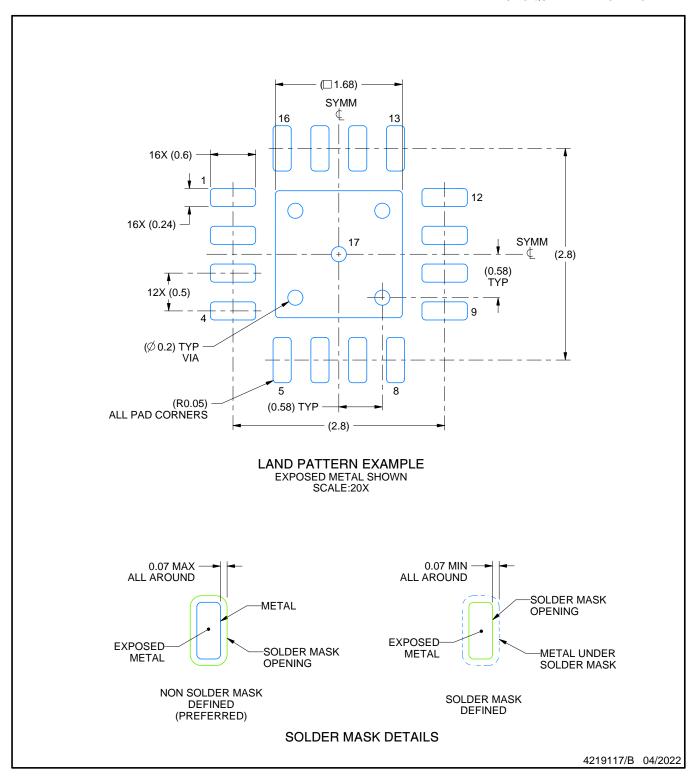
Device	Device Package Type		Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
ADS7038HIRTER	WQFN	RTE	16	5000	367.0	367.0	35.0	
ADS7038IRTER	WQFN	RTE	16	3000	367.0	367.0	35.0	
ADS7038IRTET	WQFN	RTE	16	250	210.0	185.0	35.0	

3 x 3, 0.5 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

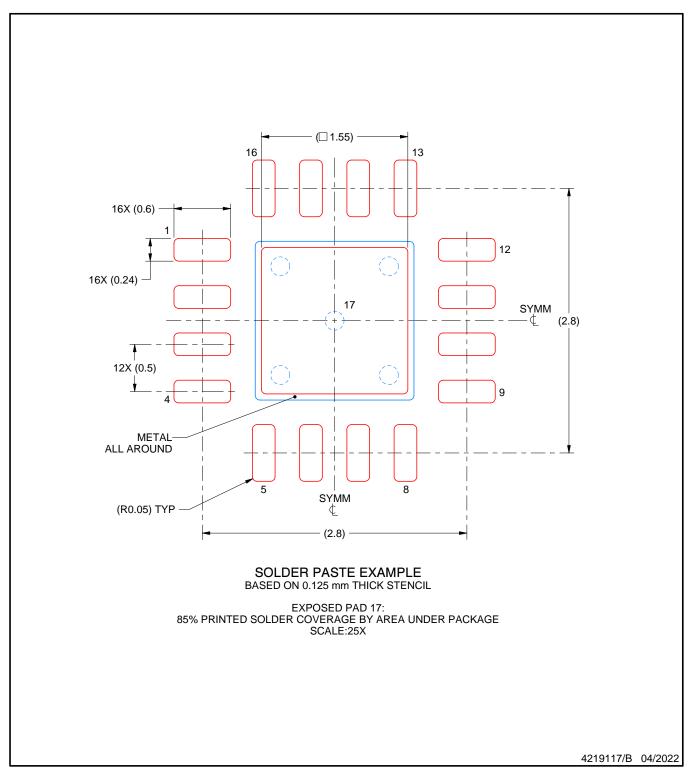
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated