Estimating Leakage Currents of Power MOSFETs

John Wallace

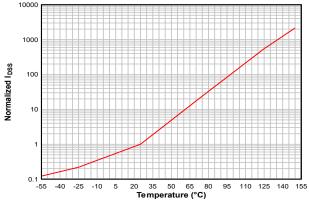
Abstract

Many electronic systems utilize power MOSFETs to turn off subsystems to reduce power consumption when not in use. Load switching is commonly employed in battery powered systems to maximize battery runtime. Estimating the leakage current of MOSFETs is key to reducing the overall discharge current of the battery in low-power or standby modes of operation.

Introduction

Leakage currents flow between the MOSFET terminals and are specified in the FET datasheet. Gate to source leakage current, $I_{\rm GSS}$, flows between gate and source. Drain to source leakage current, $I_{\rm DSS}$, flows between drain and source. As shown in Table 1, the datasheets for TI's FETs specify the maximum value of the $I_{\rm GSS}$ at the absolute maximum of $V_{\rm GS}$ and $V_{\rm DS}$ = 0V, and a maximum value of the $I_{\rm DSS}$ at 80% of the drain to source breakdown voltage, $BV_{\rm DSS}$ and $V_{\rm GS}$ = 0V. Both parameters are specified at an ambient temperature of $T_{\rm A}$ = 25°C. Always check the datasheet of the MOSFET, as other FET vendors can specify leakage currents for conditions differently than TI.

Table 1. Leakage Specifications from the Electrical Characteristics Table in the Datasheet


(T_A = 25°C unless otherwise stated)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
STATIC CHARACTERISTICS						
BV _{DSS}	Drain to Source Voltage	V _{GS} = 0V, I _D = 250μA	30			V
I _{DSS}	Drain to Source Leakage Current	V _{GS} = 0V, V _{DS} = 24V			1	μA
I _{GSS}	Gate to Source Leakage Current	V _{DS} = 0V, V _{GS} = 20V			100	nA
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.1	1.4	1.8	V
R _{DS(on)}	Drain to Source On Resistance	V _{GS} = 4.5V, I _D = 25A		2.4	2.9	mΩ
		V _{GS} = 10V, I _D = 25A		1.7	2.0	mΩ
g _{fs}	Transconductance	V _{DS} = 3V, I _D = 25A		120		S

Voltage and Temperature Effects

Two earlier technical articles, *What's Not in the Power MOSFET Datasheet, Part 1: Temperature Dependency* and *What's Not in the Power MOSFET Datasheet Part 2: Voltage-dependent Leakage Currents*, detail how FET leakage currents vary with temperature and voltage. I_{GSS} and I_{DSS} have positive temperature and voltage coefficients. This document shows how to use the normalized graphs from the previous articles to estimate leakage at conditions not included in the datasheets. Figure 1 and Figure 2 are plots of normalized I_{DSS} and I_{GSS} versus the temperature for a 30V TI FET without gate ESD protection.

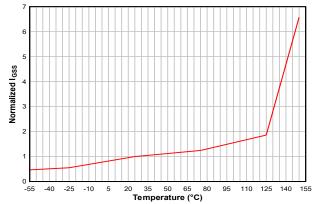
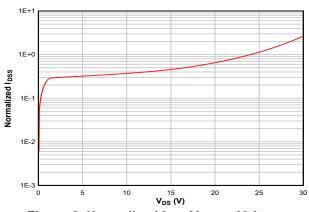



Figure 1. Normalized I_{DSS} Versus Temperature

Figure 2. Normalized I_{GSS} Versus Temperature

Figure 3 and Figure 4 are plots of normalized I_{DSS} and I_{GSS} versus V_{DS} and V_{GS} for a 30V TI FET without gate ESD protection, respectively.

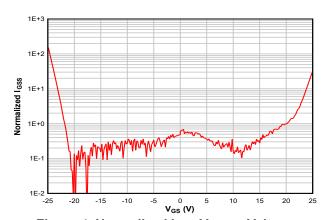


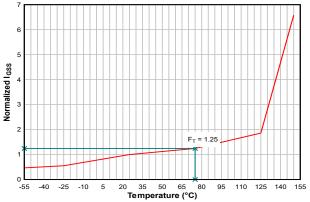
Figure 3. Normalized I_{DSS} Versus Voltage

Figure 4. Normalized I_{GSS} Versus Voltage

Using Normalized Plots to Estimate I_{GSS}

The following example demonstrates how these plots can be used to estimate leakage currents for conditions not included in the datasheet.

Example 1 What is the maximum I_{GSS} for a 30V TI N-channel FET without gate ESD protection at V_{GS} = 5V and T = 75°C?


Estimation With the I_{GSS} versus temperature plot (Figure 5):

1 Draw a vertical line from 75°C on the X-axis temperature.

- 1. Draw a vertical line from 75°C on the X-axis to where the line intercepts the curve.
- 2. Draw a horizontal line from where the X-axis met the curve to the Y-axis intercept.

This is the normalized temperature factor, F_T = 1.25, for I_{GSS} at 75°C. Using the same methodology on the I_{GSS} versus V_{GS} graph, the normalized factor of I_{GSS} at V_{GS} = 5V is F_V = 0.35. This is shown in Figure 5 and Figure 6.

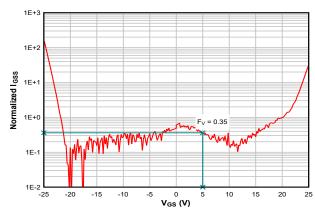


Figure 5. Normalized I_{GSS} Versus Temperature

Figure 6. Normalized I_{GSS} Versus Voltage

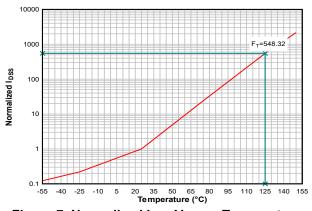
The estimated max I_{GSS} is then calculated at V_{GS} = 5V and T = 75°C, as shown in Equation 1 and Equation 2:

$$MaxI_{GSS}(5V, 75^{\circ}C) = I_{GSS(max)} \times F_{V} \times F_{T}$$
(1)

$$MaxI_{GSS}(5V, 75^{\circ}C) = 100nA \times 0.35 \times 1.25 = 44nA$$
 (2)

Using Normalized Plots to Estimate I_{DSS}

The following example demonstrates how these plots can be used to estimate leakage currents for conditions not included in the datasheet.


Example 2 What is I_{DSS} at $V_{DS} = 12V$ and T = 125°C?

Estimation

With the normalized I_{DSS} versus temperature plot (Figure 7):

- Instructions
- 1. Draw a vertical line from 125°C on the X-axis to where the line intercepts the curve.
- Draw a horizontal line from where the X-axis met the curve to the Y-axis intercept.

The same methodology can be used to determine the temperature and voltage factors, as shown in Figure 7 and Figure 8.

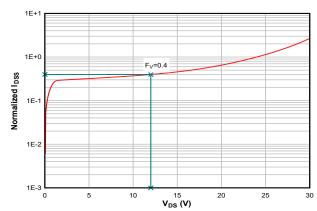


Figure 7. Normalized I_{DSS} Versus Temperature

Figure 8. Normalized I_{DSS} Versus Voltage

From Figure 7, F_T = 548 and from Figure 8, F_V = 0.4. The estimated max I_{DSS} is then calculated as follows:

$$MaxI_{DSS}(12V, 125^{\circ}C) = I_{DSS(max)} \times F_{V} \times F_{T}$$
(3)

$$MaxI_{DSS}(12V, 125^{\circ}C) = 1\mu A \times 0.4 \times 548 = 219\mu A \tag{4}$$

Trademarks INSTRUMENTS

www.ti.com

Summary

Estimating leakage currents of power MOSFETs is useful when the FET is operating at conditions not included in the datasheet. A method for estimating these currents was demonstrated in this article by using normalized I_{GSS} and I_{DSS} graphs. Future work in this area includes the development and release of a new FET selection tool to make this process easier for the designer.

References

- 1. Texas Instruments, MOSFET Support and Training Tools, application note.
- 2. Texas Instruments, What's Not in the Power MOSFET Datasheet, Part 1: Temperature Dependency, technical article.
- 3. Texas Instruments, What's Not in the Power MOSFET Datasheet Part 2: Voltage-dependent Leakage Currents, technical article.

Trademarks

All trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025