DPD Test Report: AFE77xxD With GTRB267008FC Power Amplifier (Short)

Neeraj Kumar Sharma, Simran Nanda

Introduction

This application brief presents digital predistortion (DPD) results of the AFE77xxD transceiver in conjunction with the GTRB267008FC power amplifier (PA). First, a high-level overview of the test setup and transceiver configuration for DPD is explained, followed by adjacent channel leakage ratio (ACLR) test results for three distinct use cases.

The AFE77xxD is a high-performance, multichannel transceiver, integrating that includes integration of:

- Four direct up-conversion transmitter chains
- · Four direct down-conversion receiver chains
- Two wideband RF-sampling digitizing auxiliary chains (feedback paths)
- Low-power digital predistortion (DPD) engine for PA linearization

The GTRB267008FC PA is a Gallium Nitride (GaN) device with broad applications in wireless infrastructure, communications equipment, and Macro cells.

Test Conditions and Setup

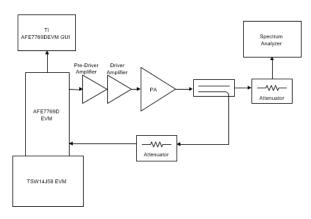


Figure 1. Block Diagram of Test Setup

Note

The measurements published in this report are from a single PA using Tl's test setup shown in Figure 1. There is a potential for slight DPD linearization differences due to part-to-part variations. PA vendors release other versions of the same EVM with enhanced efficiency and linearity performance. Depending on the DPD line up, customers use different components to further fit into end application usage. Evaluate component selection to establish reproducible results highlighted in this DPD report.

Table 1. Setup Details

Parameter	Detail
Gain of pre-driver amplifier and gain block	61dB
Instantaneous bandwidths (IBW) tested	20MHz, 100MHz, 160MHz

Table 2. Power Amplifier Details According to Data Sheet

Key Attribute	Value ⁽¹⁾	
Power amplifier	GTRB267008FC	
Operating frequency range	2496MHz – 2690MHz	
Rated output power	49.3dBm	
PA type	GaN	
Gain	14.7dB	
Efficiency	53%	
Supply voltage	48V _{DS}	

⁽¹⁾ MACOM Technology Solutions Inc, *Thermally-Enhanced High Power RF GaN on SiC Amplifier, 620W, 48V, 2496 – 2690MHz*, data sheet

Note

The AFE77xxD device is configured through TI's Latte software which facilitates system integration of the AFE into the system or end equipment for a customized setup of the transceiver. Customers have moderate control of AFE configuration, depending on a given use case based on multiple parameters such as PA type, frequency range, PA gain, and bandwidth. The flexible adjustment of such parameters is performed without changing the system hardware, which further simplifies the system integration process.

5G New Radio (NR) is the standard signal in wireless communications and is the signal used for the following tests in this report.

Test Case 1

Table 3. Case 1: Test Conditions

Parameter ⁽¹⁾	Value
TX interface rate	61.44MSPS
DPD rate	122.88MSPS

(1) 20-MHz signal with 2.595-GHz center frequency, 8-dB PAR, test signal TM3.1a FDD



Figure 2. Case 1: ACLR Plot Before (Orange) and After (Blue) DPD Is Enabled

Table 4. Case 1: ACLR Summary

Parameter	PA Output Power	Adjacent Power Lower	Adjacent Power Upper	Alternate Power Lower	Alternate Power Upper	PA Efficiency
Without DPD	49.3dBm	–25.7dBc	-27dBc	-43.4dBc	-46.8dBc	N/A
With DPD	49.3dBm	-55.4dBc	-55.6dBc	-59.5dBc	-60.8dBc	52.8%

Test Case 2

Table 5. Case 2: Test Conditions

Parameter ⁽¹⁾	Value				
TX interface rate	122.88MSPS				
DPD rate	368.64MSPS				

(1) 100MHz signal with 2.595GHz center frequency, 8dB PAR, test signal TM3.1a FDD



Figure 3. Case 2: ACLR Plot Before (Orange) and After (Blue) DPD Is Enabled

Table 6. Case 2: ACLR Summary

Parameter	Parameter PA Output Power		Adjacent Power Upper	PA Efficiency
Without DPD 49.3dBm		-23.9dBc	-28.8dBc	N/A
With DPD	49.3dBm	-50.8dBc	-51.9dBc	53%

Test Case 3

Table 7. Case 3: Test Conditions

Parameter ⁽¹⁾	Value
TX interface rate	245.76MSPS
DPD rate	737.28MSPS

(1) 2×80-MHz signal with 2.595GHz center frequency, 8dB PAR, test signal TM3.1a FDD.

Figure 4. Case 3: ACLR Plot Before (Orange) and After (Blue) DPD Is Enabled

www.ti.com Trademarks

Table 8. Case 3: ACLR Summary

Parameter	PA Output Power	Adjacent Power Lower	Adjacent Power Upper	Alternate Power Lower	Alternate Power Upper	PA Efficiency
Without DPD	49.3dBm	-23.8dBc	-24.5dBc	–31.7dBc	-35.5dBc	N/A
With DPD	49.3dBm	-48.2dBc	–48dBc	-49.8dBc	-50.2dBc	53%

Summary

The content in Table 9 summarizes test conditions and Table 10 summarizes case results.

Table 9. Summary of Test Cases

Test	Center Frequency	Signal Bandwidth	Power	PAR	V _{DS}
Case 1	2595MHz	20MHz	49.3dBm	8dB	48V
Case 2	2595MHz	100MHz	49.3dBm	8dB	48V
Case 3	2595MHz	2×80MHz	49.3dBm	8dB	48V

Table 10. Summary of DPD Performance

Test	PA Output Power	Adjacent Power Lower	Adjacent Power Upper	Alternate Power Lower	Alternate Power Upper	PA Efficiency
Case 1	49.3dBm	-55.4dBc	-55.6dBc	-59.5dBc	-60.8dBc	52.8%
Case 2	49.3dBm	-50.8dBc	–51.9dBc	N/A	N/A	53%
Case 3	49.3dBm	-48.2dBc	–48dBc	-49.8dBc	-50.2dBc	53%

In conclusion, the AFE77xxD demonstrates linearization capability on the GTRB267008FC PA through unique DPD algorithms, and at the same time reduces power consumption when compared to TX line-up designs without DPD capability. For the full report which includes additional test cases, please request access to the AFE77xxD OneRelease folder here.

Trademarks

All trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated