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Design Goals

Voltage Source AMC1300B Input 
Voltage

AMC1300B Output 
Voltage (1.44VCM)

Power Supplies

VMAX VMIN VIN DIFF, MAX VIN DIFF, MIN VOUT DIFF, 
MAX

VOUT DIFF, 
MIN

VDD1 VDD2

+240V –240V +250mV –250mV +2.05V –2.05V 3.0V–5.5V 3.0V–5.5V

Design Description I

This circuit performs a high-voltage, differential measurement using a voltage divider and a ±250-mV differential 
input, differential output, AMC1300B isolated amplifier. Because it is a low-input impedance device, the 
AMC1300B is better suited for current sensing applications. The interaction of the input impedance of the 
isolated amplifier and the input voltage divider introduces a gain error. Additionally, bias current passing out 
of the low-impedance inputs and through the voltage sense resistor causes a significant offset error. We will 
first design without compensating for these errors. Then, we will observe their effects and describe them 
mathematically. Finally, we will redesign to limit their effects and observe the improved results.

The voltage-divider circuit reduces the input voltage from ±240V to ±250mV so as to match the input range of 
the isolation amplifier. The AMC1300B requires both high- and low-side power supplies. The high-side supply 
will often be generated using a floating supply or from the low side using an isolated transformer or isolated 
DC/DC converter. The AMC1300B can measure differential signals of ±250mV with a fixed gain of 8.2V/V and 
output an isolated differential output voltage of ±2.05V with an output common-mode voltage of 1.44V. The 
differential output voltage can be scaled as necessary using an additional operational amplifier, as shown in 
Interfacing a Differential-Output (Isolated) Amplifier to a Single-Ended Input ADC Tech Note with the TLV6001 
device, to interface with an ADC.
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Design Notes I

1. Verify that the isolation amplifier will remain in its linear region of operation for the desired input signal range. 
This can be achieved using a DC sweep simulation as demonstrated in the DC Transfer Characteristics I 
section.

2. Ensure the resistors used in the resistor divider circuit (R1–R3) are capable of dissipating the power supplied 
from the voltage source.

3. Check that the input voltage applied to the device will remain within the range specified by the data sheet. 
Should the input range be violated, ensure that the input current remains below 10 mA to avoid damaging 
the part. If the system is susceptible to transient events, consider adding TVS diodes to the inputs.

Design Steps I

1. Calculate the required voltage divider attenuation based on the ratio of the input voltage source (Vsource) to 
the full-scale input voltage of the AMC1300B (VIN_AMC_FSR).GaIn = VIN_AMC_FSRVsource = 250mV240V = 1960V/V

2. Select a resistance for the top portion of the voltage divider (R1 and R2). Note that power consumption 
is equal to I2R and by Ohm's law, current and resistivity are inversely proportional. A linear increase in 
resistivity will lead to a linear decrease in power. For this reason, choosing large resistance values will 
minimize overall power consumption. These components dominate the power consumption of the voltage 
divider. So, select the value of Rtop to meet a peak power specification for the voltage divider.Rtop = R1 + R2Ppeak   ≤   15mW

P = I2R = V2R ,   Ppeak = Vpeak2R
Rtop ≥ Vpeak2Ppeak = 240 20 . 015 = 3 . 86MΩ
Rtop = 4MΩ

3. Split the Rtop resistance value into multiple resistors to minimize the power rating required of each resistor.R1 = R2 = 2MΩ
4. Next, assume the input resistance of the isolation amplifier is large. The input voltage seen by the part from 

the voltage source will be determined by the voltage divider effect created by Rtop with R3. Solve for R3.VIn = Vsource R3R3 + RtopVInVsource = R3R3 + RtopR3VIn+ RtopVIn = R3VsourceRtopVIn = R3 Vsource− VIn
R3 = VInRtopVsource− VIn = 250mV 4MΩ240V− 250mV ≈ 4 . 17kΩ
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DC Transfer Characteristics I

The following graphs show the simulated output for a ±240V source. The source is swept from –300V to +300V 
and the input and output voltages of the amplifier are observed. The desired linear ranges are ±250mV at the 
input of the amplifier and ±2.05V at the output of the amplifier. At the input of the amplifier, we expect to see an 
offset error of 0 and a gain of about 1.042mV/V due to the voltage division of the voltage divider. At the output of 
the amplifier, we again expect to see an offset error of 0 and a gain of 8.542mV/V due to the attenuation of the 
voltage source of the voltage divider followed by the fixed 8.2V/V gain of the AMC1300B.

As can be seen in the following graphs , the simulated results do not match the desired, ideal output. At the input 
of the amplifier, an offset voltage error of 107mV is present. This is significant when compared to the ±250-mV 
input range of the part. This offset error is carried over to the output of the amplifier, where an 837-mV offset 
takes up a large portion of the ±2.05-V output range of the amplifier. The circuit also demonstrates a significant 
gain error. Despite expecting a gain of 1.042mV/V at the input from the voltage divider and 8.540mV/V at the 
output of the device, we instead observe gains of 0.853mV/V and 6.842mV/V, respectively, yielding large gain 
errors of approximately 18.1% and 19.9%. The following section will define better design practices.
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Design Description II

The previous method is appropriate for voltage sensing applications when using devices with large input 
resistances, such as 1MΩ or greater. The AMC1300B device has a differential input impedance of 22kΩ which 
leads to the offset and gain errors shown previously. Gain and offset errors when using a low-input impedance 
amp for voltage sensing in this circuit configuration can be estimated using the following formulas.

Gain   Error   %   =   R3Rind × 100
Offset   Error   V   =   Ibias × R3

The gain error is a result of a non-ideal voltage division by R3. Because the input resistance of the amplifier is 
comparable in size to R3, some of the current passing out of R1 and R2 will not pass through R3, but instead 
pass through the input of the amplifier. The result will be an unexpected voltage drop at the input of the amplifier. 
Consequently, the formula presented in Step 4 of the Design Steps I section will not be valid and a more 
complete formula that considers the input impedance of the amplifier being parallel to R3 must be considered. 
The offset error is the product of the bias current flowing out of the positive input pin of the isolated amplifier, 
through the shunt resistor, R3. This bias current across R3 can lead to significant offset voltages at the input that 
are then amplified and passed to the output.

Using the previous formulas allows one to estimate the errors of the circuit in the Design Steps I section. Using 
the typical data sheet values, the differential input resistance is 22kΩ and the input bias current is 30µA. Our 
designed value for R3 is 4.17kΩ and as a result one would expect to see a gain error of 18.7% and an offset 
error of 125mV at the input of the amplifier. In comparison, the simulated errors had a gain error of 19.9% at the 
output of the amplifier and 107mV of offset at the input. These error formulas serve as valuable tools to get a 
quick idea of the expected magnitude of the errors. Without needing to perform simulations, one can get an idea 
of whether or not the expected errors will be acceptable for the end use case.

As noted in the AMC1300 Precision, ±250-mV Input, Reinforced Isolated Amplifier Data Sheet, for voltage 
sensing applications the introduction of R3' in series with the inverting terminal of the amplifier can reduce the 
offset and gain errors. The bias current of the amplifier will generate a similar offset at the negative input pin 
as at the positive input pin. This will greatly reduce the magnitude of the overall offset voltage. Additionally, the 
effects of the input resistance of the amplifier and R3' will be taken into account when selecting the value of R3. 
This will provide a more ideal voltage division of the 240-V source and will improve the overall gain error.

Design Steps II - Consideration of R3'

As in Design Steps I, the Gain and Rtop resistance calculations are exactly the same, we are more interested in 
calculating R3 and R3' to provide the best circuit performance.

1. Note that the bottom portion of the resistor divider will set the input voltage range for the isolation amplifier. 
The ideal value for R3 is dependent on the gain, Rtop and Rind, where Rind is the differential input 
impedance of the amplifier. As a reminder, Rtop is the combination of R1 + R2.R3 = Gain × Rtop1− Gain− Gain × 2 × RtopRInd

R3   =   0 . 001042 × 4MΩ1− 0 . 001042− 0 . 001042 × 8MΩ22 . 22kΩ   =   6 . 67784   kΩ
2. The purpose of R3’ is to cancel out the gain error introduced by the bias current flowing through R3. The 

ideal R3’ would be the parallel combination of Rtop and R3. Use the following equation to calculate R3’.R3′ = Rtop × R3Rtop + R3
R3′ = 4MΩ × 6 . 67784kΩ4MΩ   +   6 . 67784kΩ   =   6 . 66671   kΩ
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This is the resulting ideal circuit configuration. Note that Rind, shown in red, is shown to represent the differential 
input resistance of the AMC1300B and should not be added to the schematic.
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DC Transfer Characteristics II

The following graphs show the simulated output for a ±240-V source using the new design. Recall that the 
desired linear ranges are ±250mV at the input of the amplifier and ±2.05V at the output of the amplifier.
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Clearly, the new design offers a dramatically improved offset error. The input offset voltage and gain error have 
been reduced to zero. The revised circuit also demonstrates better gain error performance due to the more 
accurate calculation used to find the desired value of R3 for the input voltage divider and the ideal value for R3’.

This positive outcome is a consequence of the addition of R3’ to cancel the offset voltage introduced in the 
original design by the bias current of the AMC1300B device through R3. The drawback is that the ideal values 
for R3 and R3’ are not commercially available, and in reality it would not be practical to use two different resistor 
values which are so close together.

Using the Analog Engineers Calculator, it is possible to find the nearest E189 series resistor values that are 
readily available. In both cases, the nearest 0.1% resistor value to the calculated ideal values for R3 and R3’ are 
6.65kΩ. The final circuit diagram follows.
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With readily available resistors used for R3 and R3', the circuit performance is still quite good as can be seen in 
the following graphs. The gain error on the input has been reduced from 18.2% to 0.3%. The gain error at the 
output has been reduced from 19.9% to 0.4%. The offset errors are also reduced to 195µV on the input and 2mV 
at the output.
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AC Transfer Characteristics II

An AC sweep validates the frequency range across which one can expect to see the desired output. From the 
following simulation plot, the simulated gain of –41.40 dB, or 8.51mV/V, matches the gain result from the DC 
output plot. This is relatively close to the desired output gain of –41.37dB, or 8.54mV/V, as discussed in the 
previous section. The simulated bandwidth of the design, 313.1kHz, slightly exceeds the expectation set by the 
typical bandwidth specification of 310kHz in the data sheet.
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Design Featured Isolated Op Amp

AMC1300B
VDD1 3.0V–5.5V

VDD2 3V–5.5V

Input Voltage range ±250mV

Nominal Gain 8.2

VOUT Differential ±2.05V on output common-mode of 1.44V

Input Resistance 19kΩ (typ, single-ended), 22kΩ (typ, differential)

Small Signal Bandwidth 310kHz

Input Offset Voltage and Drift ±0.2mV (max), ±3µV/°C (max)

Gain Error and Drift ±0.3% (max), ±15 ppm/°C (typ)

Nonlinearity and Drift ±0.03% (max), ±1 ppm/°C (typ)

Isolation Transient Overvoltage 7.071kVPEAK

Working Voltage 1.5kVRMS, 2.121kVDC

Common-mode transient immunity, CMTI 75 kV/µs (min), 140 kV/µs (typ)

AMC1300

Design Alternate Isolated Op Amp

AMC1200
VDD1 4.5V–5.5V

VDD2 2.7V–5.5V

Input Voltage range ±250mV

Nominal Gain 8

VOUT Differential ±2V, common-mode varies with supply range

Input Resistance 28kΩ (typ, differential)

Small Signal Bandwidth 100kHz

Input Offset Voltage and Drift ±1.5mV (max), ±10µV/°C (max)

Gain Error and Drift ±1% (max), ±56 ppm/°C (typ)

Nonlinearity and Drift ±0.1% (max), ±2.4 ppm/°C (typ)

Isolation Transient Overvoltage 4kVPEAK

Working Voltage 1.2kVpeak

Common-mode transient immunity, CMTI 10kV/µs (min), 15kV/µs (typ)

AMC1200
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