
1SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Application Report
SBAA288A–July 2018–Revised January 2019

TM4C1294 interface to ADS7142 software library

Peggy Liska and William Santos .. Precision Analog-to-Digital Converters

ABSTRACT
This application report describes how to communicate with the ADS7142 using the TM4C1294NCPDT as
the host device. The communication is performed via inter-integrated circuit (I2C) protocol and the
ADS7142 is enabled to operate in each of its functional modes. The accompanying software contains a
function library allowing quick prototyping of ADS7142 setup and control. This framework is designed with
the intention of minimal function modification required to operate the ADS7142 as a sensor monitor. The
functional modes of the ADS7142 include manual mode, autonomous mode, and high precision mode.
Additional features of the ADS7142 include sampling speed control, oscillator selection, and selection of
input channel type (single-ended or pseudo-differential).

Contents
1 Introduction ... 3
2 Hardware ... 3
3 Software .. 5
4 Using the Software ... 18
5 Main Routines and Test Data .. 22
6 References .. 58

List of Figures

1 TM4C1294 Connected LaunchPad ... 3
2 ADS7142 BoosterPack™ ... 4
3 ADS7142 BoosterPack™ Connection to TM4C1294 LaunchPad™ .. 4
4 TM4C1294NCPDT Multi-Byte Transmit Flowchart ... 8
5 Writing a Single Register in the ADS7142 Over I2C .. 9
6 Setting Register Address for a Single Register Read From the ADS7142 ... 11
7 TM4C1294NCPDT Single-Byte Receive Flowchart ... 12
8 ADS7142 Single Register Read.. 13
9 TM4C1294NCPDT Multi-Byte Receive Flowchart ... 15
10 Reading ADS7142 Conversion Data in Manual Mode .. 16
11 Project Explorer .. 20
12 Including a File in the Project Build .. 21
13 Excluding a File From the Project Build ... 22
14 Manual Mode Dual Channel Sampling Test Data ... 25
15 Pre Alert Data for Dual-Channel Configuration... 26
16 Autonomous Mode Pre-Alert Dual Channel Sampling Test Data 1 ... 29
17 Autonomous Mode Pre-Alert Dual Channel Sampling Test Data 2 ... 30
18 Autonomous Mode Pre-Alert Dual Channel Sampling Test Data 3 ... 31
19 Autonomous Mode Pre-Alert Dual Channel Sampling Test Data 4 ... 32
20 Post Alert Data for Dual-Channel Configuration ... 33
21 Autonomous Mode Post Alert Dual-Channel Sampling Test Data 1 .. 36
22 Autonomous Mode Post Alert Dual-Channel Sampling Test Data 2 .. 37

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A
http://www.ti.com/product/ads7142

www.ti.com

2 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

23 Autonomous Mode Post Alert Dual Channel Sampling Test Data 3 .. 38
24 Autonomous Mode Post Alert Dual-Channel Sampling Test Data 4 .. 39
25 Start Burst With Dual-Channel Configuration... 40
26 Autonomous Mode Start Burst Dual-Channel Sampling Test Data 1 ... 43
27 Autonomous Mode Start Burst Dual-Channel Sampling Test Data 2 ... 44
28 Autonomous Mode Start Burst Dual-Channel Sampling Test Data 3 ... 45
29 Stop Burst With Dual-Channel Configuration... 46
30 Autonomous Mode Stop Burst Dual-Channel Sampling Test Data 1 ... 49
31 Autonomous Mode Stop Burst Dual-Channel Sampling Test Data 2 ... 50
32 Autonomous Mode Stop Burst Dual-Channel Sampling Test Data 3 ... 51
33 High Precision Mode With Dual-Channel Configurations ... 52
34 High Precision Mode Dual-Channel Sampling Test Data 1 .. 55
35 High Precision Mode Dual-Channel Sampling Test Data 2 .. 56
36 High Precision Mode Dual-Channel Sampling Test Data 3 .. 57
37 High Precision Mode Dual-Channel Sampling Test Data 4... 58

List of Tables

1 Hardware Definition Files ... 5
2 Driver Library Files .. 5
3 ADS7142 Device Functional Modes Main Routines ... 6
4 Functions Used in Main .. 7

Trademarks
LaunchPad, BoosterPack are trademarks of Texas Instruments.
ARM, Cortex are registered trademarks of Arm Limited.
All other trademarks are the property of their respective owners.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

www.ti.com Introduction

3SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

1 Introduction
Sensor monitoring technology is an integral piece of systems that seek to gather copious amounts of data
and process that data in a meaningful way. Because of the differences in sensor monitoring techniques,
the system designer must choose the best sensor monitor for a given application. In this application report
the ADS7142 SAR ADC is paired with a TM4C1294NCPDT microcontroller (MCU) to provide accurate
sampling data after the device is configured to operate in one of its functional modes.

2 Hardware
The TM4C1294NCPDT is a high performance MCU solution that combines complex integration with a
suite of features. The device contains eight UART interfaces and ten I2C modules with several clocking
options. The ARM® Cortex®-M4F-Based MCU TM4C1294 Connected LaunchPad™ Evaluation Kit breaks
out two of the MCU I2C modules for use with standardized BoosterPack boards. Figure 1 shows a
TM4C1294 LaunchPad™ development kit with connectors already in place.

Figure 1. TM4C1294 Connected LaunchPad

The ADS7142 nanopower, dual-channel, programmable sensor monitor BoosterPack™ plug-in module
(see Figure 2) hosts features specific to sensor monitoring. This module is ideally suited for a sensor node
system architecture where one or two sensor outputs can be monitored as part of a central gateway, with
the host MCU being the router to the cloud in an internet of things (IoT) application. The code examples
provided in this application report can be used for software development on MCUs or digital processors
other than the TM4C1294, allowing the designer maximum flexibility in choosing the best digital host for
the application.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A
http://www.ti.com/product/TM4C1294NCPDT
http://www.ti.com/tool/ek-tm4c1294xl
http://www.ti.com/tool/boostxl-ads7142

Hardware www.ti.com

4 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Figure 2. ADS7142 BoosterPack™

As shown in Figure 3, the ADS7142 BoosterPack™ connects to the TM4C1294 connected LaunchPad™.

Figure 3. ADS7142 BoosterPack™ Connection to TM4C1294 LaunchPad™

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

www.ti.com Software

5SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

3 Software

3.1 Header Files
To aid in interfacing the ADS7142 device, TI has produced a source code library that eliminates the need
to write low-level interface functions that configure the core of the TM4C1294NCPDT. This library provides
a boost in the development of a TM4C/ADS7142-based product, saving time and quickly progressing an
applications project. This library is designed to be used with any TM4C device after appropriate software
changes. An I2C master can be implemented using one of ten modules within the TM4C1294. The library
provides a number of header files that define digital masks to access each piece of hardware on the
device.

The library has been implemented so that digital masks are interchangeable. If a piece of hardware must
be accessed, simply find the correct global variable name for that mask and place that name as an
argument in the desired function calls. The software designer must then be thorough in replacing all
instances of these masks to reflect the desired access to a certain piece of hardware. There are header
files specific to each of the hardware components.

Table 1 describes the hardware definition header files.

Table 1. Hardware Definition Files

Filename Description

hw_i2c.h This file contains macros used specifically to access the TM4C master and slave hardware,
including register locations and commonly used masks for use with these registers.

hw_memmap.h
This file contains definitions specific to the TM4C device. Primarily, the port and pin masks used
to access all of the device peripherals. Definitions for UART0-UART7, I2C0-I2C9, TIMER, and
GPIO are included among others.

hw_types.h
This file contains helper macros for determining silicon revisions for TM4C devices. These macros
are used by the driver library at run-time to create necessary conditional blocks that allow a single
version of the Driverlib binary code to support multiple (all) Tiva silicon revisions.

hw_ints.h This file contains the interrupt assignments on TIVA C series devices. Class interrupts and fault
interrupts are included for user enable in firmware.

hw_gpio.h This file contains the definitions and macros for the GPIO hardware. A set of register offset masks
define the GPIO capabilities and features.

ADS7142RegisterMap.h
This file contains all of the register masks and value masks to interface and configure the
ADS7142 using the host MCU. This file contains all of the command opcodes and function
declarations used to develop the device functional modes main routines.

Hardware definition files are important for defining hardware attributes and mapping them to callable
system variables in software. In order to enable communication with the target MCU, driver files must be
implemented. Table 2 describes the driver library files to be used for communication with the TM4C1294.

Table 2. Driver Library Files

Filename Description
gpio.h This file contains values that can be passed to application programming interfaces (APIs) that

configure the GPIO modules.
i2c.h This file contains important I2C Master Command masks used to perform I2C transmission and

receive. It also contains macros and APIs for advanced I2C module features on the host MCU.
pin_map.h This driver file contains the mapping of peripherals to pins for all the TIVA C series parts.
sysctl.h This file contains system control directives for selection of clocks/pll and crystal frequencies as

well as values to be used with control APIs. API prototypes for system control are also included in
this file.

i2c.c Driver file for the I2C block. Contains low-level functions that allow the user to configure the I2C
modules on the core of the host device.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Software www.ti.com

6 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

3.2 ADS7142 Device Functional Modes Overview
The ADS7142 contains three primary modes: manual mode, autonomous mode, and high precision mode.
Each mode requires a set of register configurations before the device can operate in that mode. Table 3
describes the main code routines that place the device in each of its functional modes.

Table 3. ADS7142 Device Functional Modes Main Routines

Filename Description

TM4C_ADS7142_Functions.c

Uses the low-level functions in i2c.c to configure the
host TM4C MCU and develop the ADS7142 register
configuration functions. The function prototypes in
the ADS7142RegisterMap.h file are explicitly
declared in this file.

ADS7142_ManualMode_CH0Scan.c These routines configure the ADS7142 into Manual
Mode (I2C command mode) in both single channel
and dual-channel configuration. In manual mode, 12-
bit conversions are clocked out continuously.

ADS7142_ManualMode_CH1Scan.c
ADS7142_ManualMode_AutoSequencing_CH0_CH1_Scan.c

ADS7142_AutonomousMode_PreAlert_CH0Scan.c These routines configure the ADS7142 into
autonomous pre-alert mode in both single channel
and dual-channel configuration. In pre-alert mode,
the ADS7142 stores the sixteen conversions prior to
the activation of the alert in a data buffer.

ADS7142_AutonomousMode_PreAlert_CH1Scan.c
ADS7142_AutonomousMode_AutoSequencing_PreAlert_CH0_CH1Scan.c

ADS7142_AutonomousMode_PostAlert_CH0Scan.c These routines configure the ADS7142 into
autonomous post-alert mode in both single-channel
and dual-channel configuration. In post-alert mode,
the ADS7142 stores the next 16 conversions after
the alert is active.

ADS7142_AutonomousMode_PostAlert_CH1Scan.c
ADS7142_AutonomousMode_AutoSequencing_PostAlert_CH0_CH1Scan.c

ADS7142_AutonomousMode_StartBurst_CH0Scan.c These routines configure the ADS7142 into
autonomous start burst mode in both single channel
and dual-channel configuration. In start burst mode,
the device starts filling the data buffer upon starting
channel sequencing: conversions stop once the data
buffer is filled.

ADS7142_AutonomousMode_StartBurst_CH1Scan.c
ADS7142_AutonomousMode_AutoSequencing_StartBurst_CH0_CH1Scan.c

ADS7142_AutonomousMode_StopBurst_CH0Scan.c These routines configure the ADS7142 into
autonomous stop burst mode in both single-channel
and dual-channel configuration. In stop burst mode,
the device continues to fill the data buffer until the
channel sequencing is aborted. Data buffer entries
are continually overwritten until the sequence is
aborted.

ADS7142_AutonomousMode_StopBurst_CH1Scan.c
ADS7142_AutonomousMode_AutoSequencing_StopBurst_CH0_CH1Scan.c

ADS7142_HighPrecisionMode_CH0Scan.c These routines configure the ADS7142 into high
precision mode in both single-channel and dual-
channel configuration. In high precision mode, 16
12-bit conversions are stored in an accumulator.
When the accumulator is filled, the 12-bit
conversions are added to form one 16-bit reading.

ADS7142_HighPrecisionMode_CH1Scan.c
ADS7142_HighPrecisionMode_AutoSequencing_CH0_CH1_Scan.c

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

www.ti.com Software

7SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

3.3 Software Functions
The main routines that place the ADS7142 into one of its functional modes call a set of functions that
configure the registers of the device. Each function excluding TM4C1294Init() , ADS7142Calibrate(),
ADS7142Reset(), and ADS7142HighSpeedEnable() is developed from pseudocode software flows in the
TM4C1294 datasheet. Table 4 provides a brief description of these functions.

Table 4. Functions Used in Main

Function Name Description

int TM4C1294Init (uint8_t bFast)

Configures the TM4C1294 as the target device for the compiler,
sets the clocking of the device, and enables peripherals to be
used in this application. The bFast variable sets the I2C
frequency (100kHz or 400kHz).

int ADS7142SingleRegisterWrite(uint8_t RegisterAddress,
uint8_RegisterData)

WritesRegisterData to RegisterAddress in order to configure the
ADS7142. The ADS7142 slave address is set by hardware on
the BoosterPack™ and is defined in ADS7142RegisterMap.h.

int ADS7142SingleRegisterRead(uint8_t RegisterAddress,
uint32_t *read)

Reads the data at RegisterAddress and places this data into the
read variable for local use.

void TM4C1294_ArbitrationLost_ErrorService(void)

This function performs an I2C SDA bus clear in the case that the
host MCU loses arbitration. Arbitration loss in a single-master
system is usually due to the slave device holding the bus at
some undesirable state while the host attempts to perform some
I2C function. This function configures SCL as a GPIO and
toggles SCL nine times, after which the slave releases the bus

int ADS7142Calibrate(void)
This function is called right after TM4C1294Init() to abort the
present conversion sequence and calibrate any offset error out
of the device.

int ADS7142Reset(void)

This function gives the user the option of a software reset of the
ADS7142. This function is not called in the functional modes
firmware because the device calibrates its own offset and I2C
address upon power-up.

int ADS7142HighSpeedEnable(uint8_t HighSpeedMask)
This function enables the host MCU and ADS7142 to
communicate at high speed I2C frequencies (1.7 MHz to 3.4
MHz).

int ADS7142DataRead_count(uint64_t SampleCount)

This function takes a sample count as a user input: the
ADS7142 only samples this specified number of samples from
the desired input channels. This function is used in high
precision mode and autonomous mode to count 16 12-bit
conversions before placing them in either the data buffer or
channel accumulators.

int ADS7142DataRead_infinite(void)

Similar to ADS7142DataRead_count() , this function samples
data from the ADS7142 input channels. However, this function
infinitely provides sample data as opposed to a specified
number of data samples.

int ADS7142DataRead_autonomous(void)

This sampling function is specific to the pre-alert and post-alert
autonomous modes of the ADS7142. Upon sampling, this
function compares the digitized value of the sample to the digital
window comparator settings for the high and low threshold
alerts.

The development of the functions ADS7142SingleRegisterWrite(), ADS7142SingleRegisterRead(),
TM4C1294_ArbitrationLost_ErrorService, and ADS7142DataRead_infinite() are crucial to effectively
placing the ADS7142 in the user's desired functional mode. ADS7142SingleDataRead_count() and
ADS7142DataRead_autonomous() are derivatives of ADS7142DataRead_infinite(). Within each I2C
module of the master TM4C1294 there is an I2CMasterSlaveAddress (I2CMSA) register that contains the
slave address of the device that the host must communicate with over I2C. A low-level function named
MasterSlaveAddrSet() in i2c.c is called to configure this address. When the slave address is properly
configured, the first data byte can be put into the I2CMasterDataRegister (I2CMDR) via a call of the
function MasterDataPut(). The I2CMasterDataRegister can be used to either write to or read from the
slave device. A master command is then provided to the I2CMasterControlStatus (I2CMCS) register via
function call I2CMasterControl() to send the data byte. A specific master command is used for multi-byte
transmission.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Software www.ti.com

8 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

The TM4C1294NCPDT datasheet provides a software flow that is used to develop the function
ADS7142SingleRegisterWrite(). Figure 4 shows this flow.

Figure 4. TM4C1294NCPDT Multi-Byte Transmit Flowchart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A
http://www.ti.com/product/TM4C1294NCPDT

Device Address (7 Bits)
Write Register or Set Bit or Clear Bit

Opcode (8 Bits)
A Register Address (8 Bits) Register Data (8 Bits)W A A P/Sr

Data from Host to Device

Data from Device to Host

S A

www.ti.com Software

9SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Figure 5 shows that to write to a single register in the ADS7142 device, the I2C master (TM4C1294) must
transmit four bytes over I2C.

Figure 5. Writing a Single Register in the ADS7142 Over I2C

The ADS7142SingleRegisterWrite() function code is the following:
int
ADS7142SingleRegisterWrite (uint8_t RegisterAddress, uint8_t RegisterData)
{

//
//ADS7142SingleRegisterWrite writes data to an ADS7142 register address
//ADS7142registermap.h contains all the device datasheet register map
//register addresses and register values for configuration.

//

//
// Tell the master module what address it will place on the bus when
// communicating with the slave. Set the address to ADS7142_I2C_ADDRESS
// (as set in the slave module). The receive parameter is set to false
// which indicates the I2C Master is initiating a write to the slave. If
// the receive parameter is true, that would indicate that the I2C Master
// is initiating reads from the slave.

//

I2CMasterSlaveAddrSet(I2C8_BASE, ADS7142_I2C_ADDRESS, false);

//Place the first byte to be transmitted into the I2CMDR Register of the TM4C1294
//The first byte to be transmitted following the SLAVE Address is the Single Register Write

opcode
I2CMasterDataPut(I2C8_BASE, SINGLE_REG_WRITE);

//Check the I2C Bus to ensure it is not busy (Read I2CMCS)
//while(I2CMasterBusBusy(I2C8_BASE));

//I2C Master Command for the Start BURST Send of 3 bytes
I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_SEND_START);

//Implement delay
SysCtlDelay(100);

//Read I2CMCS
//Wait for the I2CMaster to finish transmitting before moving to next byte
while(I2CMasterBusy(I2C8_BASE));

//Check for errors in the I2C8 Module
while (I2CMasterErr(I2C8_BASE))

//Error branching
{

//Check for I2C Bus arbitration loss error condition
if(I2CMasterErr(I2C8_BASE) == I2C_MASTER_ERR_ARB_LOST)

{

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Software www.ti.com

10 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

//Error Service
TM4C1294_ArbitrationLost_ErrorService();

//Return the error status
return -1;

}

//Write I2C Master Command for error stop if the error
//is not due to i2c bus arbitration loss
else I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_SEND_ERROR_STOP);

}

//Place the next byte into I2CMDR, which is the ADS7142 register address for the desired data
write

I2CMasterDataPut(I2C8_BASE, RegisterAddress);

//I2C Master Command for continued BURST send of the next byte
I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_SEND_CONT);

//Implement Delay
SysCtlDelay(100);

//Read I2CMCS
//Wait for the I2CMaster to finish transmitting before moving to next byte
while(I2CMasterBusy(I2C8_BASE));

//Check for errors in the I2C8 Module
while (I2CMasterErr(I2C8_BASE))

//Error branching
{

//Check for I2C Bus arbitration loss error condition
if(I2CMasterErr(I2C8_BASE) == I2C_MASTER_ERR_ARB_LOST)

{

//Error Service for loss of bus arbitration
TM4C1294_ArbitrationLost_ErrorService();

//Return the error status
return -1;

}

//Write I2C Master Command for receive error stop if the error
//is not due to i2c bus arbitration loss
else I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_SEND_ERROR_STOP);

}

//Place the final byte into I2CMDR, which is the register data to be placed in the desired
register address

I2CMasterDataPut(I2C8_BASE, RegisterData);

//I2C Master Command for the finished BURST send of the data
I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_SEND_FINISH);

//Implement delay
SysCtlDelay(100);

//Read I2CMCS (I2C Master Control/Status)
//Wait for the I2C Master to finish transmitting
while(I2CMasterBusy(I2C8_BASE));

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Device Address (7 Bits)
Register Read or Block Read

Opcode (8 Bits)
A Register Address (8 Bits)W A A P/Sr

Data from Host to Device

Data from Device to Host

S

www.ti.com Software

11SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

//Check the error flag in the I2C8 Module
while (I2CMasterErr(I2C8_BASE));

//Return no errors
return 0;

}

To read a single register from the ADS7142, the desired register address must first be set through a
series of I2C writes. The ADS7142SingleRegisterRead() function first performs the multi-byte transmit
software flow in Figure 4 to set the register that will be read from the ADS7142. Figure 6 shows the
required I2C writes prior to register read.

Figure 6. Setting Register Address for a Single Register Read From the ADS7142

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Software www.ti.com

12 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

When the required write operations are complete, the host MCU can read the register data. This operation
is outlined as a master single byte receive software flow in the TM4C1294NCPDT datasheet. Figure 7
shows the TM4C1294NCPDT single byte receive software flow.

Figure 7. TM4C1294NCPDT Single-Byte Receive Flowchart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Device Address (7 Bits) Register Data (8 Bits)AR A P/Sr

Data from Host to Device

Data from Device to Host

S

www.ti.com Software

13SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

As Figure 8 shows, this software flow is also represented using I2C frames.

Figure 8. ADS7142 Single Register Read

The function code for the operations required to perform a single register read is the following:
int
ADS7142SingleRegisterRead(uint8_t RegisterAddress, uint32_t *read)
{

//
//ADS7142SingleRegisterRead reads data from a single register
//in the ADS7142.

//

//
// Tell the master module what address it will place on the bus when
// communicating with the slave. Set the address to ADS7142_I2C_ADDRESS
// (as set in the slave module). The receive parameter is set to false
// which indicates the I2C Master is initiating a write to the slave.
// To perform a register read, the Master must first transmit the desired I2C address for

communication.
// Following the I2C address transmission, the single register read opcode will be

transmitted.
// The receive parameter is then set to true for read of register contents.

//

I2CMasterSlaveAddrSet(I2C8_BASE, ADS7142_I2C_ADDRESS, false);

//Place the Single Register Read opcode into the I2CMDR Register
I2CMasterDataPut(I2C8_BASE, SINGLE_REG_READ);

//Initiate the BURST Send of two data bytes
I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_SEND_START);

//Implement Delay
SysCtlDelay(100);

//Wait for the I2C Master to finish transmitting
while(I2CMasterBusy(I2C8_BASE));

//Check for errors in the I2C8 Module
while (I2CMasterErr(I2C8_BASE))

//Error branching
{

//Check for I2C Bus arbitration loss error condition
if(I2CMasterErr(I2C8_BASE) == I2C_MASTER_ERR_ARB_LOST)

{

//Error service for loss of bus arbitration

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Software www.ti.com

14 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

TM4C1294_ArbitrationLost_ErrorService();

//Return the error status
return -1;

}

//Write I2C Master Command for receive error stop if the error
//is not due to i2c bus arbitration loss
else I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_SEND_ERROR_STOP);

}

//Place the Register Address to be communicated with into the I2CMDR Register
I2CMasterDataPut(I2C8_BASE,RegisterAddress);

//I2C Master Command for finished Burst Send of the two bytes required for register read
I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_SEND_FINISH);

//Implement Delay
SysCtlDelay(100);

//Wait for the I2C Master to finish transmitting the data
while(I2CMasterBusy(I2C8_BASE));

//Check the error flag in the I2C8 Module
while(I2CMasterErr(I2C8_BASE))

{
//Error service for address ACK or data ACK
}

//Set the receive parameter to true in order to receive data from the desired register address
I2CMasterSlaveAddrSet(I2C8_BASE, ADS7142_I2C_ADDRESS, true);

//Check the I2C Bus to ensure it is not busy
while(I2CMasterBusBusy(I2C8_BASE));

//I2C Master Command for the Single Byte Receive from the register address
I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_SINGLE_RECEIVE);

//Implement Delay
SysCtlDelay(100);

//Wait for the I2C Master to finish transmitting the data
while(I2CMasterBusy(I2C8_BASE));

//Check the error flag in the I2C8 Module
while(I2CMasterErr(I2C8_BASE))

{
//Error service for address ACK or data ACK
}

//Get the data placed into the I2CMDR Register from the ADS7142
//Place data into the read flag that contains the data for local use
read[0] = I2CMasterDataGet(I2C8_BASE);

//Return no errors
return 0;

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

www.ti.com Software

15SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

In order for conversion data to be read continuously from the ADS7142, the TM4C1294 must perform a
multi-byte receive operation over I2C. This software flow is the basis for the functions
ADS7142DataRead_infinite(), ADS7142DataRead_count(), and ADS7142DataRead_autonomous().
Figure 9 shows the pseudocode flow.

Figure 9. TM4C1294NCPDT Multi-Byte Receive Flowchart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

S A6SDA A5 A4 A3 A2 A1 A0 R ACK

1 2 3 4 5 6 7 8 9SCL 1 2 3 4 5 6 7 8 9

D11 D10 D9 D8 D7 D6 D5 D4
ACK

10 11 12 13 14 15 16 17 18

D3 D2 D1 D0 0 0 0 0 ACK

1 2 17 18

D11 D10 0
NA
CK

Device in Acquisition
Optional

Clock
Stretch

Device in Acquisition

Optional
Clock

Stretch

Device in Acquisition

Device I2C Address from Host ADC Data for Sample A ADC Data for Sample A ADC Data for Sample A+1

Sample A Sample A+1 Sample A+2

Data from Host to Device

Data from Device to Host

Software www.ti.com

16 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Let's take a look at the development of ADS7142DataRead_continuous(). This function is only used in
manual mode because in this mode, the ADS7142 is continuously outputting sample data from the desired
input channels. Figure 10 shows the continuous read of sample bytes.

Figure 10. Reading ADS7142 Conversion Data in Manual Mode

The ADS7142DataRead_continuous() function code is the following:
int
ADS7142DataRead_continuous(void)
{

//
//ADS7142DataRead_continuous() continuously clocks out the data sampled by the ADS7142
//once it is placed in manual mode. The function provides
//continuous SCL to clock out the data

//

//Provide Device Address and Read Bit to Start Conversions
I2CMasterSlaveAddrSet(I2C8_BASE, ADS7142_I2C_ADDRESS, true);

//Check the I2C Bus to ensure it is not busy
//while(I2CMasterBusBusy(I2C8_BASE));

//Write the Burst receive I2C Master Command to I2CMCS
I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_RECEIVE_START);

//Implement Delay
SysCtlDelay(100);

//Allow the Master to finish receiving the first byte
while(I2CMasterBusy(I2C8_BASE));

//Check for errors in the I2C8 Module
while (I2CMasterErr(I2C8_BASE))

//Error branching
{

//Check for I2C Bus arbitration loss error condition
if (I2CMasterErr(I2C8_BASE) == I2C_MASTER_ERR_ARB_LOST)

{

//Error service for loss of bus arbitration
TM4C1294_ArbitrationLost_ErrorService();

//Return the error status
return -1;

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

www.ti.com Software

17SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

//Write I2C Master Command for receive error stop if the error
//is not due to i2c bus arbitration loss
else
{

I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_RECEIVE_ERROR_STOP);

{
//Error service for address ACK or data ACK
}

}

}

//Read data from I2CMDR
I2CMasterDataGet(I2C8_BASE);

//Provide Continuous SCL

while(1)

{

//Continue receiving the burst data
I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_RECEIVE_CONT);

//Implement Delay
SysCtlDelay(100);

//Allow the Master to finish receiving each byte
while(I2CMasterBusy(I2C8_BASE));

//Check for errors in the I2C8 Module
while (I2CMasterErr(I2C8_BASE))

//Error branching
{

//Check for I2C Bus arbitration loss error condition
if(I2CMasterErr(I2C8_BASE) == I2C_MASTER_ERR_ARB_LOST)

{

//Error service for loss of bus arbitration
TM4C1294_ArbitrationLost_ErrorService();

//Return the error status
return -1;

}

//Write I2C Master Command for receive error stop if the error
//is not due to i2c bus arbitration loss
else
{

I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_SEND_ERROR_STOP);

{
//Error Service for address ACK or data ACK
}

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Using the Software www.ti.com

18 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

}

//Receive data in I2CMDR
I2CMasterDataGet(I2C8_BASE);

}

//Return no errors
return 0;

}

The ADS7142DataRead_count() and ADS7142DataRead_autonomous() functions are discussed and
presented in Section 5 for sake of coherence to the functional modes they are used in.

4 Using the Software

4.1 Prerequisites
To successfully compile the project, download and run the software described in this document, the
following hardware and software is required:
• ARM Cortex-M4F-based MCU TM4C1294 connected LaunchPad™ evaluation kit
• ADS7142 nanopower, dual-channel, programmable sensor monitor BoosterPack™ plug-in module
• Code composer studio (CCS) integrated development environment (IDE) (version 7.4.0.00015)
• TivaWare (version 2.1.4.178)

4.2 Getting Started
Follow these steps to get the ADS7142 device functional modes firmware up and running:

1. Install Code Composer Studio version 7.4.0.00015.
2. In order to reach TivaWare, go to the MSP430Ware page and click on the Start Development button to

download the MSP430Ware-cloud tool and the TI Resource Explorer will open in your browser.
3. On the left hand side of the screen under Software click on TM4C ARM Cortex-M4F MCU -

v:2.1.3.156.
4. Under Libraries click on Driver Library.
5. Click on the Download all button on the right hand side of the screen to download both the user's guide

and driverlib files.
6. After the driver files have been downloaded, move them to the workspace folder. This folder should be

located in C://Users/workspacev7.
7. Download the ADS7142 device functional modes firmware from ti.com, located under Software. Unzip

the files into your working Code Composer Studio Directory. Your working directory is normally located
under C://Users/workspacev7.

8. Open Code Composer Studio and start a new project by clicking on File → New → CCS Project.
a. Name the project as desired. At the top of this window, ensure that the Target device is selected to

be the Tiva TM4C1294NCPDT.
b. Right click on the project in the project explorer and click on Add Files.
c. Select all of the files that were downloaded into the workspace from ti.com and click Open.

9. Right click the project name in the workspace window and click on Properties. A window should
appear.
a. Under General options, select the TIVA TM4C1294NCPDT. In the Connection drop down menu

select the Stellaris In-Circuit Debug Interface.
b. Under Tool-Chain select the appropriate device endianness little for the TM4C1294NCPDT. In the

Linker command file field browse your directory for the .cmd file for your device. In this case, this
file is tm4c1294ncpdt.cmd.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A
http://www.ti.com/tool/EK-TM4C1294XL
http://www.ti.com/tool/BOOSTXL-ADS7142?keyMatch=ads7142&tisearch=Search-EN-Everything
http://www.ti.com/tool/CCSTUDIO
http://www.ti.com/tool/sw-tm4c
http://www.ti.com/tool/MSPWARE
http://www.ti.com/product/ADS7142/toolssoftware

www.ti.com Using the Software

19SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

c. On the left hand side there is a side menu. Click on the expansion arrow next to Build. Click on
ARM Compiler.
i. Under Include Options click on the paper icon with a green plus to add an include directory.

Add the directory in which the TivaWare_C_Series-2.1.4.178 folder is located.
ii. Under Predefined Symbols click on the paper icon with a green plus to add the appropriate

predefined NAMEs for your target device. Add TARGET_IS_TM4C129_RA0 and
PART_TM4C1294NCPDT exactly as shown.

d. Click on File Search Path. Add a library that points to the driverlib.lib file within the
TivaWare_C_Series - 2.1.4.178 folder. This path should be
C://Users/workspacev7/TivaWare_C_Series-2.1.4.178/driverlib/ccs/Debug/driverlib.lib.

10. Click OK to close the Project Properties window.
11. Select Project → Build Project.
12. Delete the main.c file that was created when the project was created.
13. Choose one device functional mode C file you would like to build. There should be three C files

included in the project build: TM4C1294_ADS7142_Functions.c, tm4c1294ncpdt_startup_ccs.c, and
your desired ADS7142 functional mode C file. The ADS7142RegisterMap.h file should also be included
in the project build. Select all undesired functional mode C files and once highlighted, right click then
click on Exclude from build.

14. Rebuild the project and only warnings should appear.
15. As illustrated in Figure 3, connect the ADS7142BoosterPack to the TM4C1294 target board.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Ensure that only one of the functional
mode main routine files is included in

the project. Exclude all other
functional modes from the build

Using the Software www.ti.com

20 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

4.3 Using the Library
The project explorer in the Code Composer Studio should look like Figure 11 when the software is
downloaded. There should be numerous main routine files that are not included in the current build. This
directory appearance is normal, as only one routine should run at a given time.

Figure 11. Project Explorer

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

To include a selected file in the build, right click
on it and the drop down menu will appear as

shown. Uncheck ³Exclude from Build´�to have
the file included in the build configuration.

www.ti.com Using the Software

21SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Figure 12 shows how to change the current functional mode routine. The selected functional mode must
be included in the current build before excluding the current one.

Figure 12. Including a File in the Project Build

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

To exclude a functional mode from
the build, right-click on the file name

and the drop-down menu will
appear as shown

Click on ³Exclude from Build´�to have the
selected file excluded from the current

build configuration

Main Routines and Test Data www.ti.com

22 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Figure 13 shows how to exclude and swap a file for the desired one.

Figure 13. Excluding a File From the Project Build

When including the desired files for compilation, the user can build and run the project.

5 Main Routines and Test Data
When developing this firmware framework, Texas Instruments used a National Instruments VirtualBench
to set two DC inputs to the ADS7142 for testing of dual-channel sampling capability. One input was set
slightly above the middle of the ADS7142 full-scale range, and the other set one volt above this level. The
reference on the ADS7142BoosterPack™ is set to 3.3 V so voltage inputs to the ADS7142 channels are
limited to a maximum of 3.3 V. The output code equation in decimal for a SAR ADC is:

(1)

For convenient conversion of decimal output codes to hexadecimal output codes TI recommends using
the Analog Engineer's Calculator. The calculator contains an ADC Code to Voltage converter under the
Data Converters calculator. The logic analyzer used to decode the I2C data provides outputs in
hexadecimal form.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A
http://www.ti.com/tool/ANALOG-ENGINEER-CALC

www.ti.com Main Routines and Test Data

23SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

5.1 Manual Mode
At power up, the ADS7142 goes into manual mode. In this mode, the device uses the high frequency
oscillator for conversions. This mode allows the external host processor to directly request and control
when the data is sampled. The resolution is set to 12 bits and samples are clocked out by providing
continuous SCL when the desired channels are selected.

If the device scans both channels in AUTO sequence, the first data (sample A) is from CH0 and second
data (sample A+1) is from CH1. The main routine for manual mode operation with AutoSequencing of
both channels is as follows:
#include "ADS7142RegisterMap.h"

/*
ADS7142_ManualMode_AutoSequencing_CH0_CH1_Scan.c
*/

int main(void)
{

//Initialize the master MCU (0 = 100 kHz SCL, 1 = 400 kHz SCL)
TM4C1294Init(0);

//Calibrate out the offset of the ADS7142
ADS7142Calibrate();

//Let's put the ADS7142 into Manual Mode with both Channels enabled in Single-
Ended Configuration for AUTO Sequencing

//Select the channel input configuration
ADS7142SingleRegisterWrite(ADS7142_REG_CHANNEL_INPUT_CFG,
ADS7142_VAL_CHANNEL_INPUT_CFG_2_CHANNEL_SINGLE_ENDED);

//Confirm the input channel configuration
uint32_t channelconfig;
ADS7142SingleRegisterRead(ADS7142_REG_CHANNEL_INPUT_CFG, &channelconfig);

//Select the operation mode of the device
ADS7142SingleRegisterWrite(ADS7142_REG_OPMODE_SEL,
ADS7142_VAL_OPMODE_SEL_I2C_CMD_MODE_W_AUTO_SEQ_EN);

//Confirm the operation mode selection
uint32_t opmodeselconfig;
ADS7142SingleRegisterRead(ADS7142_REG_OPMODE_SEL, &opmodeselconfig);

//Set the I2C Mode to High Speed (optional)
//ADS7142HighSpeedEnable(ADS7142_VAL_OPMODE_I2CMODE_HS_1);

//Check the I2C Mode Status
uint32_t opmodei2cconfig;
ADS7142SingleRegisterRead(ADS7142_REG_OPMODE_I2CMODE_STATUS, &opmodei2cconfig);

//Configure Auto Sequencing for both channels
ADS7142SingleRegisterWrite(ADS7142_REG_AUTO_SEQ_CHEN, ADS7142_VAL_AUTO_SEQ_CHENAUTO_SEQ_CH0_CH1);

//Confirm Auto Sequencing Register Configuration
uint32_t autoseqchenconfig;
ADS7142SingleRegisterRead(ADS7142_REG_AUTO_SEQ_CHEN, &autoseqchenconfig);

//Set SEQ_START Bit to start the sampling Sequence
ADS7142SingleRegisterWrite(ADS7142_REG_START_SEQUENCE, ADS7142_VAL_START_SEQUENCE);

//Begin manual mode operation with AUTO Sequencing

//Start Sampling Ch0 and Ch1
while (ADS7142DataRead_continuous() < 0);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Main Routines and Test Data www.ti.com

24 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

//Return no errors
return(0);

}

The I2C address of the ADS7142 is a 7-bit address followed by a read/write bit indicating the direction of
data transfer. The I2C address of the ADS7142 is set to 0x18 (001 1000 R/W) by the hardware
configuration of the ADS7142BoosterPack™. The analyzer sees an 8-bit address with the R/W bit as part
of the address, and therefore reports the I2C address as 0x30 (0011 0000) for a write operation and 0x31
(0011 0001) for a read operation. Figure 14 illustrates the test data from the salae logic analyzer.

Masks that contain the letters REG refer to ADS7142 register masks, and masks that contain the letters
VAL refer to ADS7142 value masks.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

CH0 Data

CH0 Data

CH1 Data

CH1 Data
CH0 Data

CH0 Data

CH1 Data

CH1 Data

ADS7142_REG_OFFSET_CAL

ADS7142_VAL_TRIG_OFFCAL

Single Register Write

ADS7142_REG_CHANNEL_INPUT_CFG

ADS7142_VAL_CHANNEL_INPUT_CFG_2_CHANNEL_SINGLE_ENDED

Single Register Read

ADS7142_VAL_CHANNEL_INPUT_CFG_2_CHANNEL_SINGLE_ENDED

ADS7142_REG_CHANNEL_INPUT_CFG

Single Register Write

ADS7142_REG_OPMODE_SEL

ADS7142_VAL_OPMODE_SEL_I2C_CMD_MODE_W_AUTO_SEQ_EN

Single Register Read

ADS7142_REG_OPMODE_SEL

ADS7142_VAL_OPMODE_SEL_I2C_CMD_MODE_W_AUTO_SEQ_EN

Single Register Read

ADS7142_REG_OPMODE_I2CMODE_STATUS

Single Register Write

ADS7142_REG_AUTO_SEQ_CHEN

ADS7142_VAL_AUTO_SEQ_CHENAUTO_SEQ_CH0_CH1

Single Register Write

ADS7142_REG_ABORT_SEQUENCE

ADS7142_VAL_ABORT_SEQUENCE

Single Register Write

Device is operating in Manual Mode

After the device is configured for Manual Mode

Dual Channel Sampling, continuous clocks are

provided to reveal the conversion data for each

channel

Each channel sample is a 2-byte frame (16-

bits). In 12-bit resolution mode, the

device will report 0000 for the last 4 bits of

the second byte frame. The first sample

output code is 0x8100 from Channel 0

followed by 0xCC60 from Channel 1.

www.ti.com Main Routines and Test Data

25SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Figure 14. Manual Mode Dual Channel Sampling Test Data

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

High ThresholdSets the Output of the
Comparator

Conversion [0] for CHx

Conversion [N+ 15] for CHy

Conversion [N] for CHx

Conversion [N] for CHx
Data Buffer

SEQ_START bit is set
by user

BUSY/RDY

Time

tCC

A
D

C
 C

on
ve

rs
io

n
R

es
ul

t

Device stops conversions and
stops storing data in the buffer

after the count is reached

Conversion [1] for CHy

Conversion [N+1] for CHy

Conversion [N + 1] for CHy

Conversion [N + 15] for CHy
Conversion [N + 14] for CHx

CHy is the channel which first triggered the ALERT

Main Routines and Test Data www.ti.com

26 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

5.2 Autonomous Mode With Pre-Alert
In autonomous mode with pre alert data, the ADS7142 automatically scans the input voltage on the input
channels and generates a signal when the programmable high or low threshold values are crossed. The
device stores the 16 conversion results prior to the activation of the alert. When the alert is activated,
conversion stops and the data buffer is no longer filled. Figure 15 shows the filling of the data buffer in
autonomous mode with pre alert data.

Figure 15. Pre Alert Data for Dual-Channel Configuration

The example main routine for this mode is the following:
#include "ADS7142RegisterMap.h"

/*
ADS7142_AutonomousMode_PreAlert_AutoSequencing_CH0_CH1_Scan.c
*/

int main(void)
{

//Initialize the master MCU (0 = 100 kHz SCL, 1 = 400 kHz SCL)
TM4C1294Init(0);

//Calibrate out the offset from the ADS7142
ADS7142Calibrate();

//Let's put the ADS7142 into Autonomous Mode with both Channels enabled in Single-
Ended Configuration

//Select the channel input configuration

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

www.ti.com Main Routines and Test Data

27SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

ADS7142SingleRegisterWrite(ADS7142_REG_CHANNEL_INPUT_CFG,
ADS7142_VAL_CHANNEL_INPUT_CFG_2_CHANNEL_SINGLE_ENDED);

//Confirm the input channel configuration
uint32_t channelconfig;
ADS7142SingleRegisterRead(ADS7142_REG_CHANNEL_INPUT_CFG, &channelconfig);

//Select the operation mode of the device
ADS7142SingleRegisterWrite(ADS7142_REG_OPMODE_SEL,
ADS7142_VAL_OPMODE_SEL_AUTONOMOUS_MONITORING_MODE);

//Confirm the operation mode selection
uint32_t opmodeselconfig;
ADS7142SingleRegisterRead(ADS7142_REG_OPMODE_SEL, &opmodeselconfig);

//Set the I2C Mode to High Speed (optional)
//ADS7142HighSpeedEnable(ADS7142_VAL_OPMODE_I2CMODE_HS_1);

//Check the I2C Mode Status
uint32_t opmodei2cconfig;
ADS7142SingleRegisterRead(ADS7142_REG_OPMODE_I2CMODE_STATUS, &opmodei2cconfig);

//Select both channels for AUTO Sequencing
ADS7142SingleRegisterWrite(ADS7142_REG_AUTO_SEQ_CHEN, ADS7142_VAL_AUTO_SEQ_CHENAUTO_SEQ_CH0_CH1);

//Confirm Auto Sequencing is enabled
uint32_t autoseqchenconfig;
ADS7142SingleRegisterRead(ADS7142_REG_AUTO_SEQ_CHEN, &autoseqchenconfig);

//Select the Low Power or High Speed Oscillator
ADS7142SingleRegisterWrite(ADS7142_REG_OSC_SEL, ADS7142_VAL_OSC_SEL_HSZ_HSO);

//Confirm the oscillator selection
uint32_t oscconfig;
ADS7142SingleRegisterRead(ADS7142_REG_OSC_SEL, &oscconfig);

//Set the minimum nCLK value for one conversion to maximize sampling speed
ADS7142SingleRegisterWrite(ADS7142_REG_nCLK_SEL, 21);

//Confirm the nCLK selection
uint32_t nCLKconfig;
ADS7142SingleRegisterRead(ADS7142_REG_nCLK_SEL, &nCLKconfig);

//Select the Data Buffer output data Configuration
ADS7142SingleRegisterWrite(ADS7142_REG_DOUT_FORMAT_CFG, ADS7142_VAL_DOUT_FORMAT_CFG_DOUT_FORMAT2);

//Select the Data Buffer opmode for Pre-Alert mode
ADS7142SingleRegisterWrite(ADS7142_REG_DATA_BUFFER_OPMODE,
ADS7142_VAL_DATA_BUFFER_STARTSTOP_CNTRL_PREALERT);

//Configure CH0 High Threshold MSB
ADS7142SingleRegisterWrite(ADS7142_REG_DWC_HTH_CH0_MSB, 0x90);

//Configure CH0 High Threshold LSB
ADS7142SingleRegisterWrite(ADS7142_REG_DWC_HTH_CH0_LSB, 0x00);

//Configure CH0 Low Threshold MSB
ADS7142SingleRegisterWrite(ADS7142_REG_DWC_LTH_CH0_MSB, 0x00);

//Configure CH0 Low Threshold LSB
ADS7142SingleRegisterWrite(ADS7142_REG_DWC_LTH_CH0_LSB, 0x00);

//Set the Hysteresis for CH0
ADS7142SingleRegisterWrite(ADS7142_REG_DWC_HYS_CH0, 0x00);

//Configure CH1 High Threshold MSB

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Main Routines and Test Data www.ti.com

28 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

ADS7142SingleRegisterWrite(ADS7142_REG_DWC_HTH_CH1_MSB, 0xE0);

//Configure CH1 High Threshold LSB
ADS7142SingleRegisterWrite(ADS7142_REG_DWC_HTH_CH1_LSB, 0x00);

//Configure CH1 Low Threshold MSB
ADS7142SingleRegisterWrite(ADS7142_REG_DWC_LTH_CH1_MSB, 0x00);

//Configure CH1 Low Threshold LSB
ADS7142SingleRegisterWrite(ADS7142_REG_DWC_LTH_CH1_LSB, 0x00);

//Set the Hysteresis for CH1
ADS7142SingleRegisterWrite(ADS7142_REG_DWC_HYS_CH1, 0x00);

//Set the Pre-Alert Event Counter
ADS7142SingleRegisterWrite(ADS7142_REG_PRE_ALERT_EVENT_COUNT, ADS7142_VAL_PRE_ALERT_EVENT_COUNT4);

//Confirm the Pre-Alert Event Counter setting
uint32_t eventcount;
ADS7142SingleRegisterRead(ADS7142_REG_PRE_ALERT_EVENT_COUNT, &eventcount);

//Enable Alerts
ADS7142SingleRegisterWrite(ADS7142_REG_ALERT_CHEN, ADS7142_VAL_ALERT_EN_CH0_CH1);

//Enable the digital window comparator block
ADS7142SingleRegisterWrite(ADS7142_REG_ALERT_DWC_EN, ADS7142_VAL_ALERT_DWC_BLOCK_ENABLE);

//Set the SEQ_START Bit to begin the sampling sequence
ADS7142SingleRegisterWrite(ADS7142_REG_START_SEQUENCE, ADS7142_VAL_START_SEQUENCE);

//Begin Autonomous Mode Pre-Alert operation and Scan both channels 0 and 1

while (1)

{

//Start Scanning CH0 and CH1
//If Alert is set, device stops conversions and filling the data buffer
//Read the latched flags of the Digital Window Comparator

while (ADS7142DataRead_autonomous() < 0);

//Reset the alert flags
ADS7142SingleRegisterWrite(ADS7142_REG_ALERT_HIGH_FLAGS, 0x03);
ADS7142SingleRegisterWrite(ADS7142_REG_ALERT_LOW_FLAGS, 0x03);

//Read the Data Buffer Status
uint32_t databufferstatus;
ADS7142SingleRegisterRead(ADS7142_REG_DATA_BUFFER_STATUS, &databufferstatus);

//Read the Data Buffer
while (ADS7142DataRead_count(16) < 0);

//Restart the sequence
ADS7142SingleRegisterWrite(ADS7142_REG_START_SEQUENCE, ADS7142_VAL_START_SEQUENCE);

}
//Return no errors
return 0;

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Single Register Read

ADS7142_REG_OPMODE_I2CMODE_STATUS

ADS7142_VAL_OPMODE_SEL_AUTONOMOUS_MONITORING_MODE

Single Register Write

ADS7142_REG_AUTO_SEQ_CHEN

ADS7142_VAL_AUTO_SEQ_CHENAUTO_SEQ_CH0_CH1

Single Register Read

ADS7142_REG_AUTO_SEQ_CHEN

ADS7142_VAL_AUTO_SEQ_CHENAUTO_SEQ_CH0_CH1

Single Register Write

ADS7142_REG_OSC_SEL

ADS7142_VAL_OSC_SEL_HSZ_HSO

Single Register Read

ADS7142_REG_OSC_SEL

ADS7142_VAL_OSC_SEL_HSZ_HSO

Single Register Write

ADS7142_REG_nCLK_SEL

The ADS7142 is to set 21 clock cycles for one conversion

Single Register Write

ADS7142_REG_OPMODE_SEL

Device is to operate in Autonomous Monitoring Mode with AUTO Sequencing enabled

Single Register Read

ADS7142_REG_OPMODE_SEL

ADS7142_VAL_OPMODE_SEL_AUTONOMOUS_MONITORING_MODE

Single Register Write

ADS7142_REG_CHANNEL_INPUT_CFG

ADS7142_VAL_CHANNEL_INPUT_CFG_2_CHANNEL_SINGLE_ENDED

Single Register Read

ADS7142_REG_CHANNEL_INPUT_CFG

ADS7142_VAL_CHANNEL_INPUT_CFG_2_CHANNEL_SINGLE_ENDED

Single Register Write

ADS7142_REG_OFFSET_CAL

ADS7142_VAL_TRIG_OFFCAL

Single Register Write

ADS7142_REG_ABORT_SEQUENCE

ADS7142_VAL_ABORT_SEQUENCE

www.ti.com Main Routines and Test Data

29SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

The data output seen from the logic analyzer corresponds to what is written in main. Figure 16 shows the
ADS7142 configuration.

Figure 16. Autonomous Mode Pre-Alert Dual Channel Sampling Test Data 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Single Register Read

ADS7142_REG_nCLK_SEL

The ADS7142 has set the number of clock cycles required for one conversion to 21

Single Register Write

ADS7142_REG_DOUT_FORMAT_CFG

ADS7142_VAL_DOUT_FORMAT_CFG_DOUT_FORMAT2

Single Register Write

ADS7142_REG_DATA_BUFFER_OPMODE

ADS7142_VAL_DATA_BUFFER_STARTSTOP_CNTRL_PREALERT

Single Register Write

ADS7142_REG_DWC_HTH_CH0_MSB

Set the MSB upper limit of the CH0 Alert output code to 0x90

Single Register Write

ADS7142_REG_DWC_LTH_CH0_MSB

Set the LSB upper limit of the CH0 Alert output code to 0x00

Single Register Write

ADS7142_REG_DWC_HTH_CH1_MSB

Set the MSB upper limit of the CH1 Alert output code to 0x90

Single Register Write

ADS7142_REG_DWC_HTH_CH1_LSB

Set the LSB upper limit of the CH1 Alert output code to 0x00

Single Register Write

ADS7142_REG_DWC_HYS_CH0

Set the hysteresis (boundary around) the CH0 alert to 0x00

Single Register Write

ADS7142_REG_DWC_HTH_CH1_MSB

Set the MSB upper limit of the CH1 Alert output code to 0xE0

Single Register Write

ADS7142_REG_DWC_HTH_CH1_LSB

Set the LSB upper limit of the CH1 Alert output code to 0x00

Single Register Write

ADS7142_REG_DWC_LTH_CH1_MSB

Set the MSB lower limit of the CH1 Alert output code to 0x00

Main Routines and Test Data www.ti.com

30 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

The data in Figure 17 show further configuration and settings of the thresholds.

Figure 17. Autonomous Mode Pre-Alert Dual Channel Sampling Test Data 2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Single Register Write

ADS7142_REG_DWC_LTH_CH1_LSB
Set the LSB of the lower limit alert output code for CH1 to 0x00

Single Register Write

ADS7142_REG_DWC_HYS_CH1

Set the hysteresis (boundary around) the CH1 alert to 0x00

Single Register Write

ADS7142_REG_PRE_ALERT_EVENT_COUNT

ADS7142_VAL_PRE_ALERT_EVENT_COUNT4

Single Register Read

ADS7142_REG_PRE_ALERT_EVENT_COUNT

The Pre-Alert Event Count is set to 4

Single Register Write

ADS7142_REG_ALERT_CHEN

ADS7142_VAL_ALERT_EN_CH0_CH1

Single Register Write

ADS7142_REG_ALERT_DWC_EN

ADS7142_VAL_ALERT_DWC_BLOCK_ENABLE

Single Register Write

ADS7142_REG_START_SEQUENCE

ADS7142_VAL_START_SEQUENCE

Single Register Read

ADS7142_REG_ALERT_HIGH_FLAGS

The high side alert flag has been tripped

Single Register Read

ADS7142_REG_ALERT_LOW_FLAGS

The low side alert flag has not been tripped

Single Register Write

ADS7142_REG_ALERT_HIGH_FLAGS

Reset the high side alert flag

The ADS7142 performs a conversion

prior to reading the alert flags

www.ti.com Main Routines and Test Data

31SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

The data in Figure 18 shows how the alerts are enabled and the start of the conversion sequence.

Figure 18. Autonomous Mode Pre-Alert Dual Channel Sampling Test Data 3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Single Register Write

ADS7142_REG_ALERT_LOW_FLAGS

Reset the low side alert flag

Single Register Read

ADS7142_REG_DATA_BUFFER_STATUS

Six conversions have been placed in the data buffer

Single Register Write

ADS7142_REG_START_SEQUENCE

ADS7142_VAL_START_SEQUENCE

Upon activation of Alert, conversion stops and the data

buffer is no longer filled. The device then requires the

appropriate number of clocks to provide the data output.

The data output format is configured to be a 12-bit

conversion result followed by 3-bit Channel ID (000b for

CH0, 001b for CH1) followed by DATA_VALID bit

Main Routines and Test Data www.ti.com

32 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Figure 19 shows the contents of the data buffer after triggering an alert.

Figure 19. Autonomous Mode Pre-Alert Dual Channel Sampling Test Data 4

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

High Threshold
Sets the Output of the

Comparator

Device Starts storing data in
buffer and sets the Latched flag

and alert pin after the count is
reached

Conversion [0] for CHx

Conversion [N+ 14] for CHx

Conversion [N] for CHx

Conversion [N + 15] for CHy

Conversion [N + 14] for CHx

Conversion [N] for CHx
Data Buffer

SEQ_START bit is set
by user

BUSY/RDY

Time

A
D

C
 C

on
ve

rs
io

n
R

es
ul

t

Device stops conversions and
stops storing data in the buffer

after the data buffer is filled

Conversion [1] for CHy

Conversion [N+1] for CHy

Conversion [N+ 15] for CHy

Conversion [N + 1] for CHy

tCC

CHx is the channel which first triggered the ALERT

www.ti.com Main Routines and Test Data

33SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

5.3 Autonomous Mode With Post-Alert
In autonomous mode with post alert data, the ADS7142 captures the 16 conversion results after the alert
is activated. Figure 20 shows the filling of the data buffer in autonomous mode with post alert data.

Figure 20. Post Alert Data for Dual-Channel Configuration

The main routine for this functional mode is the following:
#include "ADS7142RegisterMap.h"

/*
ADS7142_AutonomousMode_PostAlert_AutoSequencing_CH0_CH1_Scan.c
*/

int main(void)
{

//Initialize the master MCU (0 = 100 kHz SCL, 1 = 400 kHz SCL)
TM4C1294Init(0);

//Calibrate out the offset from the ADS7142
ADS7142Calibrate();

//Let's put the ADS7142 into Autonomous Mode with both Channels enabled in Single-
Ended Configuration

//Select the channel input configuration
ADS7142SingleRegisterWrite(ADS7142_REG_CHANNEL_INPUT_CFG,
ADS7142_VAL_CHANNEL_INPUT_CFG_2_CHANNEL_SINGLE_ENDED);

//Confirm the input channel configuration
uint32_t channelconfig;
ADS7142SingleRegisterRead(ADS7142_REG_CHANNEL_INPUT_CFG, &channelconfig);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Main Routines and Test Data www.ti.com

34 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

//Select the operation mode of the device
ADS7142SingleRegisterWrite(ADS7142_REG_OPMODE_SEL,
ADS7142_VAL_OPMODE_SEL_AUTONOMOUS_MONITORING_MODE);

//Confirm the operation mode selection
uint32_t opmodeselconfig;
ADS7142SingleRegisterRead(ADS7142_REG_OPMODE_SEL, &opmodeselconfig);

//Set the I2C Mode to High Speed (optional)
//ADS7142HighSpeedEnable(ADS7142_VAL_OPMODE_I2CMODE_HS_1);

//Check the I2C Mode Status
uint32_t opmodei2cconfig;
ADS7142SingleRegisterRead(ADS7142_REG_OPMODE_I2CMODE_STATUS, &opmodei2cconfig);

//Select both channels for AUTO Sequencing
ADS7142SingleRegisterWrite(ADS7142_REG_AUTO_SEQ_CHEN, ADS7142_VAL_AUTO_SEQ_CHENAUTO_SEQ_CH0_CH1);

//Confirm Auto Sequencing is enabled
uint32_t autoseqchenconfig;
ADS7142SingleRegisterRead(ADS7142_REG_AUTO_SEQ_CHEN, &autoseqchenconfig);

//Select the Low Power or High Speed Oscillator
ADS7142SingleRegisterWrite(ADS7142_REG_OSC_SEL, ADS7142_VAL_OSC_SEL_HSZ_HSO);

//Confirm the oscillator selection
uint32_t oscconfig;
ADS7142SingleRegisterRead(ADS7142_REG_OSC_SEL, &oscconfig);

//Set the minimum nCLK value for one conversion to maximize sampling speed
ADS7142SingleRegisterWrite(ADS7142_REG_nCLK_SEL, 21);

//Confirm the nCLK selection
uint32_t nCLKconfig;

ADS7142SingleRegisterRead(ADS7142_REG_nCLK_SEL, &nCLKconfig);

//Select the Data Buffer output data Configuration
ADS7142SingleRegisterWrite(ADS7142_REG_DOUT_FORMAT_CFG, ADS7142_VAL_DOUT_FORMAT_CFG_DOUT_FORMAT2);

//Select the Data Buffer opmode for Post-Alert mode
ADS7142SingleRegisterWrite(ADS7142_REG_DATA_BUFFER_OPMODE,
ADS7142_VAL_DATA_BUFFER_STARTSTOP_CNTRL_POSTALERT);

//Configure CH0 High Threshold MSB
ADS7142SingleRegisterWrite(ADS7142_REG_DWC_HTH_CH0_MSB, 0x90);

//Configure CH0 High Threshold LSB
ADS7142SingleRegisterWrite(ADS7142_REG_DWC_HTH_CH0_LSB, 0x00);

//Configure CH0 Low Threshold MSB
ADS7142SingleRegisterWrite(ADS7142_REG_DWC_LTH_CH0_MSB, 0x00);

//Configure CH0 Low Threshold LSB
ADS7142SingleRegisterWrite(ADS7142_REG_DWC_LTH_CH0_LSB, 0x00);

//Set the Hysteresis for CH0
ADS7142SingleRegisterWrite(ADS7142_REG_DWC_HYS_CH0, 0x00);

//Configure CH1 High Threshold MSB
ADS7142SingleRegisterWrite(ADS7142_REG_DWC_HTH_CH1_MSB, 0xE0);

//Configure CH1 High Threshold LSB
ADS7142SingleRegisterWrite(ADS7142_REG_DWC_HTH_CH1_LSB, 0x00);

//Configure CH1 Low Threshold MSB
ADS7142SingleRegisterWrite(ADS7142_REG_DWC_LTH_CH1_MSB, 0x00);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

www.ti.com Main Routines and Test Data

35SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

//Configure CH1 Low Threshold LSB
ADS7142SingleRegisterWrite(ADS7142_REG_DWC_LTH_CH1_LSB, 0x00);

//Set the Hysteresis for CH1
ADS7142SingleRegisterWrite(ADS7142_REG_DWC_HYS_CH1, 0x00);

//Enable Alerts
ADS7142SingleRegisterWrite(ADS7142_REG_ALERT_CHEN, ADS7142_VAL_ALERT_EN_CH0_CH1);

//Enable the digital window comparator block
ADS7142SingleRegisterWrite(ADS7142_REG_ALERT_DWC_EN, ADS7142_VAL_ALERT_DWC_BLOCK_ENABLE);

//Set the SEQ_START Bit to begin the sampling sequence
ADS7142SingleRegisterWrite(ADS7142_REG_START_SEQUENCE, ADS7142_VAL_START_SEQUENCE);

//Begin Autonomous Mode Post-Alert operation and Scan both channels 0 and 1

while (1)

{

//Start Scanning CH0 and CH1
//If Alert is set, device stops conversions and filling the data buffer
//Read the latched flags of the Digital Window Comparator
while (ADS7142DataRead_autonomous() < 0);

//Reset the alert flags
ADS7142SingleRegisterWrite(ADS7142_REG_ALERT_HIGH_FLAGS, 0x03);
ADS7142SingleRegisterWrite(ADS7142_REG_ALERT_LOW_FLAGS, 0x03);

//Read the Data Buffer Status uint32_t databufferstatus;
ADS7142SingleRegisterRead(ADS7142_REG_DATA_BUFFER_STATUS, &databufferstatus);

//Read the Data Buffer
while (ADS7142DataRead_count(16) < 0);

//Restart the sequence
ADS7142SingleRegisterWrite(ADS7142_REG_START_SEQUENCE, ADS7142_VAL_START_SEQUENCE);

}

//Return no errors
return 0;

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Single Register Write

ADS7142_REG_CHANNEL_INPUT_CFG

Single Register Write

Single Register Write

ADS7142_REG_ABORT_SEQUENCE

ADS7142_VAL_ABORT_SEQUENCE

ADS7142_REG_OFFSET_CAL

ADS7142_VAL_TRIG_OFFCAL

ADS7142_VAL_CHANNEL_INPUT_CFG_2_CHANNEL_SINGLE_ENDED

Single Register Read

ADS7142_REG_CHANNEL_INPUT_CFG

ADS7142_VAL_CHANNEL_INPUT_CFG_2_CHANNEL_SINGLE_ENDED

Single Register Write

ADS7142_REG_OPMODE_SEL

ADS7142_VAL_OPMODE_SEL_AUTONOMOUS_MONITORING_MODE

Single Register Read

ADS7142_REG_OPMODE_SEL

ADS7142_VAL_OPMODE_SEL_AUTONOMOUS_MONITORING_MODE

Single Register Read

ADS7142_REG_OPMODE_I2CMODE_STATUS

The ADS7142 is operating in Autonomous Mode

Single Register Write

ADS7142_REG_AUTO_SEQ_CHEN

ADS7142_VAL_AUTO_SEQ_CHENAUTO_SEQ_CH0_CH1

Single Register Read

ADS7142_REG_AUTO_SEQ_CHEN

ADS7142_VAL_AUTO_SEQ_CHENAUTO_SEQ_CH0_CH1

Single Register Write

ADS7142_REG_OSC_SEL

ADS7142_VAL_OSC_SEL_HSZ_HSO

Main Routines and Test Data www.ti.com

36 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Figure 21 shows the channel configuration and selection of the opmode for this ADS7142 functional
mode.

Figure 21. Autonomous Mode Post Alert Dual-Channel Sampling Test Data 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

ADS7142_REG_OSC_SEL

ADS7142_VAL_OSC_SEL_HSZ_HSO

Single Register Write

ADS7142_REG_nCLK_SEL

Set the clocks required to perform one conversion to 21

Single Register Read

ADS7142_REG_nCLK_SEL

The clocks required to perform one conversion is set to 21

Single Register Write

ADS7142_REG_DOUT_FORMAT_CFG

ADS7142_VAL_DOUT_FORMAT_CFG_DOUT_FORMAT2

Single Register Write

Single Register Write

ADS7142_REG_DATA_BUFFER_OPMODE

ADS7142_VAL_DATA_BUFFER_STARTSTOP_CNTRL_POSTALERT

ADS7142_REG_DWC_HTH_CH0_MSB

Set the MSB of the upper limit of the CH0 Alert output to 0x90

Single Register Read

Single Register Write

ADS7142_REG_DWC_HTH_CH0_LSB

Set the MSB of the upper limit of the CH0 Alert output to 0x00

Single Register Write

ADS7142_REG_DWC_HTH_CH1_MSB

Set the MSB of the upper limit of the CH1 Alert output to 0x00

Single Register Write

ADS7142_REG_DWC_HTH_CH1_LSB

Set the LSB of the upper limit of the CH1 Alert output to 0x00

Single Register Write

ADS7142_REG_DWC_HYS_CH0

Set the hysteresis (boundary around) the CH0 alert to 0x00

www.ti.com Main Routines and Test Data

37SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Figure 22 shows the conversion clock, data buffer configuration, output data format configuration, setting
of thresholds for channel 0, and setting of hysteresis for channel 0.

Figure 22. Autonomous Mode Post Alert Dual-Channel Sampling Test Data 2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Single Register Write

ADS7142_REG_DWC_HTH_CH1_MSB
Set the MSB of the upper limit of the CH1 Alert output to 0xE0

Single Register Write

ADS7142_REG_DWC_HTH_CH1_LSB

Set the LSB of the upper limit of the CH1 Alert output to 0x00

Single Register Write

ADS7142_REG_DWC_LTH_CH1_MSB

Set the MSB of the upper limit of the CH1 Alert output to 0x00

Single Register Write

ADS7142_REG_DWC_LTH_CH1_LSB

Set the LSB of the upper limit of the CH1 Alert output to 0x00

Single Register Write

ADS7142_REG_DWC_HYS_CH1

Set the hysteresis (boundary around) the CH1 Alert to 0x00

Single Register Write

ADS7142_REG_ALERT_CHEN

ADS7142_VAL_ALERT_EN_CH0_CH1

Single Register Write

ADS7142_REG_ALERT_DWC_EN

ADS7142_VAL_ALERT_DWC_BLOCK_ENABLE

Single Register Write

ADS7142_REG_START_SEQUENCE

ADS7142_VAL_START_SEQUENCE

Single Register Read

ADS7142_REG_ALERT_HIGH_FLAGS

The high side alert has been tripped for CH0 and CH1

Single Register Read

ADS7142_REG_ALERT_LOW_FLAGS

CH0 has not tripped the alert

The ADS7142 performs a data

conversion prior to reading the alert

flags

Main Routines and Test Data www.ti.com

38 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Figure 23 shows the setting of thresholds and hysteresis for channel 1, the enabling of alerts, and the start
of the conversion sequence.

Figure 23. Autonomous Mode Post Alert Dual Channel Sampling Test Data 3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Single Register Write

ADS7142_REG_ALERT_HIGH_FLAGS

Reset the high side alert flag

Single Register Write

ADS7142_REG_ALERT_LOW_FLAGS

Reset the low side alert flag

Single Register Read

ADS7142_REG_DATA_BUFFER_STATUS

16 conversions have been placed in the data buffer

Single Register Write

ADS7142_REG_START_SEQUENCE

ADS7142_VAL_START_SEQUENCE

In post alert mode, the device

captures the next sixteen

conversion results after the

Alert is active. Once these

sixteen conversions are stored

in the data buffer, all conversion

stops.

www.ti.com Main Routines and Test Data

39SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Figure 24 shows the data results for the alert flag resets, reading of the data buffer status, and clocking
out the data inside the data buffer after the alert is triggered.

Figure 24. Autonomous Mode Post Alert Dual-Channel Sampling Test Data 4

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Conversion [0] for CH0

Conversion [14] for CH0

Conversion [15] for CH1

Conversion [14] for CH0

Conversion [0] for CH0
Data Buffer

Device starts
conversions and starts

storing data in the buffer
on setting the

SEQ_START bit

BUSY/RDY

Time

A
D

C
 C

on
ve

rs
io

n
R

es
ul

t

Device stops conversions and
stops storing data after the data

buffer is filled

Conversion [1] for CH1

Conversion [1] for CH1

Conversion [15] for CH1

tCC

Main Routines and Test Data www.ti.com

40 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

5.4 Autonomous Mode With Start Burst Data
In autonomous mode with start burst data functional mode, the ADS7142 can be configured to start filling
the data buffer when starting the conversion sequence. After the data buffer is filled, conversion stops.
Figure 25 shows how this functional mode handles conversions.

Figure 25. Start Burst With Dual-Channel Configuration

The main routine is the following:
#include "ADS7142RegisterMap.h"
/* *ADS7142_AutonomousMode_StartBurst_AutoSequencing_CH0_CH1_Scan.c */

int main(void)
{

//Initialize the master MCU (0 = 100 kHz SCL, 1 = 400 kHz SCL)
TM4C1294Init(0);

//Calibrate out the offset from the ADS7142
ADS7142Calibrate();

//Let's put the ADS7142 into Autonomous Mode with both Channels enabled in Single-
Ended Configuration

//Select the channel input configuration
ADS7142SingleRegisterWrite(ADS7142_REG_CHANNEL_INPUT_CFG,
ADS7142_VAL_CHANNEL_INPUT_CFG_2_CHANNEL_SINGLE_ENDED);

//Confirm the input channel configuration
uint32_t channelconfig;
ADS7142SingleRegisterRead(ADS7142_REG_CHANNEL_INPUT_CFG, &channelconfig);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

www.ti.com Main Routines and Test Data

41SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

//Select the operation mode of the device
ADS7142SingleRegisterWrite(ADS7142_REG_OPMODE_SEL,
ADS7142_VAL_OPMODE_SEL_AUTONOMOUS_MONITORING_MODE);

//Confirm the operation mode selection
uint32_t opmodeselconfig;
ADS7142SingleRegisterRead(ADS7142_REG_OPMODE_SEL, &opmodeselconfig);

//Set the I2C Mode to High Speed (optional)
//ADS7142HighSpeedEnable(ADS7142_VAL_OPMODE_I2CMODE_HS_1);

//Check the I2C Mode Status
uint32_t opmodei2cconfig;
ADS7142SingleRegisterRead(ADS7142_REG_OPMODE_I2CMODE_STATUS, &opmodei2cconfig);

//Select both channels for AUTO Sequencing
ADS7142SingleRegisterWrite(ADS7142_REG_AUTO_SEQ_CHEN, ADS7142_VAL_AUTO_SEQ_CHENAUTO_SEQ_CH0_CH1);

//Confirm Auto Sequencing is enabled
uint32_t autoseqchenconfig;
ADS7142SingleRegisterRead(ADS7142_REG_AUTO_SEQ_CHEN, &autoseqchenconfig);

//Select the Low Power or High Speed Oscillator
ADS7142SingleRegisterWrite(ADS7142_REG_OSC_SEL, ADS7142_VAL_OSC_SEL_HSZ_HSO);

//Confirm the oscillator selection
uint32_t oscconfig;
ADS7142SingleRegisterRead(ADS7142_REG_OSC_SEL, &oscconfig);

//Set the minimum nCLK value for one conversion to maximize sampling speed
ADS7142SingleRegisterWrite(ADS7142_REG_nCLK_SEL, 21);

//Confirm the nCLK selection
uint32_t nCLKconfig;
ADS7142SingleRegisterRead(ADS7142_REG_nCLK_SEL, &nCLKconfig);

//Select the Data Buffer output data Configuration
ADS7142SingleRegisterWrite(ADS7142_REG_DOUT_FORMAT_CFG, ADS7142_VAL_DOUT_FORMAT_CFG_DOUT_FORMAT2);

//Select the Data Buffer opmode for Start Burst mode
ADS7142SingleRegisterWrite(ADS7142_REG_DATA_BUFFER_OPMODE,
ADS7142_VAL_DATA_BUFFER_STARTSTOP_CNTRL_STARTBURST);

//Set the SEQ_START Bit to begin the sampling sequence
ADS7142SingleRegisterWrite(ADS7142_REG_START_SEQUENCE, ADS7142_VAL_START_SEQUENCE);

//Begin Autonomous Mode StartBurst operation and scan both channels 0 and 1

while (1)

{

uint32_t databufferstatus;
uint32_t sequencestatus;

//Fill and read the data buffer

do

{

while (ADS7142DataRead_count(16) < 0);

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Main Routines and Test Data www.ti.com

42 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

//Ensure that the data buffer is not filled and the sequence is not aborted

while ((ADS7142SingleRegisterRead(ADS7142_REG_DATA_BUFFER_STATUS, &databufferstatus) < 0x10) \
&& (ADS7142SingleRegisterRead(ADS7142_REG_SEQUENCE_STATUS, &sequencestatus) == 0x02));

//Restart the sequence
ADS7142SingleRegisterWrite(ADS7142_REG_START_SEQUENCE, ADS7142_VAL_START_SEQUENCE);

}

//Return no errors
return 0;

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Single Register Write

ADS7142_REG_ABORT_SEQUENCE

ADS7142_VAL_ABORT_SEQUENCE

Single Register Write

ADS7142_REG_OFFSET_CAL

ADS7142_VAL_TRIG_OFFCAL

Single Register Write

ADS7142_REG_CHANNEL_INPUT_CFG

ADS7142_VAL_CHANNEL_INPUT_CFG_2_CHANNEL_SINGLE_ENDED

Single Register Read

ADS7142_REG_CHANNEL_INPUT_CFG

ADS7142_VAL_CHANNEL_INPUT_CFG_2_CHANNEL_SINGLE_ENDED

Single Register Write

ADS7142_REG_OPMODE_SEL

ADS7142_VAL_OPMODE_SEL_AUTONOMOUS_MONITORING_MODE

Single Register Read

ADS7142_REG_OPMODE_SEL

The device is operating in Autonomous Mode with AUTO Sequencing enabled

Single Register Read

ADS7142_REG_OPMODE_I2CMODE_STATUS

The device is operating in Autonomous Monitoring Mode

Single Register Write

ADS7142_REG_AUTO_SEQ_CHEN

ADS7142_VAL_AUTO_SEQ_CHENAUTO_SEQ_CH0_CH1

Single Register Read

ADS7142_REG_AUTO_SEQ_CHEN

ADS7142_VAL_AUTO_SEQ_CHENAUTO_SEQ_CH0_CH1

Single Register Write

ADS7142_REG_OSC_SEL

ADS7142_VAL_OSC_SEL_HSZ_HSO

Single Register Read

ADS7142_REG_OSC_SEL

ADS7142_VAL_OSC_SEL_HSZ_HSO

Single Register Write

ADS7142_REG_nCLK_SEL

The ADS7142 is to set 21 clock cycles for one conversion

www.ti.com Main Routines and Test Data

43SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Figure 26 shows the channel configuration and selection of the opmode for this autonomous mode.

Figure 26. Autonomous Mode Start Burst Dual-Channel Sampling Test Data 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Single Register Read

ADS7142_REG_nCLK_SEL

The clocks required to perform one conversion is set to 21

Single Register Write

ADS7142_REG_DOUT_FORMAT_CFG

ADS7142_VAL_DOUT_FORMAT_CFG_DOUT_FORMAT2

Single Register Write

ADS7142_REG_DATA_BUFFER_OPMODE

ADS7142_VAL_DATA_BUFFER_STARTSTOP_CNTRL_STARTBURST

Single Register Write

ADS7142_REG_START_SEQUENCE

ADS7142_VAL_START_SEQUENCE

In start burst mode, the device

stops converting data and

filling the data buffer after the

data buffer is filled with 16

conversions. There are 32 I2C

frames since there are 2

frames per sample.

Main Routines and Test Data www.ti.com

44 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Figure 27 shows the contents of the data buffer when filled.

Figure 27. Autonomous Mode Start Burst Dual-Channel Sampling Test Data 2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Single Register Read

ADS7142_REG_DATA_BUFFER_STATUS

0 conversions in the data buffer

Single Register Read

ADS7142_REG_SEQUENCE_STATUS

The sequence is aborted after reading the data buffer

Single Register Write

ADS7142_REG_START_SEQUENCE

ADS7142_VAL_START_SEQUENCE

Continued data buffer fill

www.ti.com Main Routines and Test Data

45SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

After the data buffer contents are clocked out, there are no remaining conversions within the buffer. The
conversion sequence must be restarted for the buffer to be filled again. Figure 28 shows this process.

Figure 28. Autonomous Mode Start Burst Dual-Channel Sampling Test Data 3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Conversion [0] for CH0

Conversion [N+ 14] for CH0

Conversion [N] for CH0

Conversion [N + 15] for CH1

Conversion [N + 14] for CH0

Conversion [N] for CH0
Data Buffer

SEQ_START bit is set
by user

BUSY/RDY

Time

tCC

A
D

C
 C

on
ve

rs
io

n
R

es
ul

t

Device stops conversions and
stops storing data on setting the

SEQ_ABORT bit

Conversion [1] for CH1

Conversion [N+1] for CH1

Conversion [N + 1] for CH1

Conversion [N+ 15] for CH1

Main Routines and Test Data www.ti.com

46 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

5.5 Autonomous Mode With Stop Burst Data
In autonomous mode with stop burst, the user is able to configure the ADS7142 to stop filling the data
buffer with conversion results by aborting the conversion sequence. If more than 16 conversions occur
between the start of the sequence and when the sequence is aborted, the entries first written in to the
data buffer are overwritten. Figure 29 shows the filling of the data buffer in autonomous mode with stop
burst data.

Figure 29. Stop Burst With Dual-Channel Configuration

The main routine is the following:
#include "ADS7142RegisterMap.h"

/*
ADS7142_AutonomousMode_StopBurst_AutoSequencing_CH0_CH1_Scan.c
*/

int main(void)
{

//Initialize the master MCU (0 = 100 kHz SCL, 1 = 400 kHz SCL)
TM4C1294Init(0);

//Calibrate out the offset from the ADS7142
ADS7142Calibrate();

//Let's put the ADS7142 into Autonomous Mode with both Channels enabled in Single-
Ended Configuration
//Select the channel input configuration
ADS7142SingleRegisterWrite(ADS7142_REG_CHANNEL_INPUT_CFG,

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

www.ti.com Main Routines and Test Data

47SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

ADS7142_VAL_CHANNEL_INPUT_CFG_2_CHANNEL_SINGLE_ENDED);

//Confirm the input channel configuration
uint32_t channelconfig;
ADS7142SingleRegisterRead(ADS7142_REG_CHANNEL_INPUT_CFG, &channelconfig);

//Select the operation mode of the device
ADS7142SingleRegisterWrite(ADS7142_REG_OPMODE_SEL,
ADS7142_VAL_OPMODE_SEL_AUTONOMOUS_MONITORING_MODE);

//Confirm the operation mode selection
uint32_t opmodeselconfig;
ADS7142SingleRegisterRead(ADS7142_REG_OPMODE_SEL, &opmodeselconfig);

//Set the I2C Mode to High Speed (optional)
//ADS7142HighSpeedEnable(ADS7142_VAL_OPMODE_I2CMODE_HS_1);

//Check the I2C Mode Status
uint32_t opmodei2cconfig;
ADS7142SingleRegisterRead(ADS7142_REG_OPMODE_I2CMODE_STATUS, &opmodei2cconfig);

//Select both channels for AUTO Sequencing
ADS7142SingleRegisterWrite(ADS7142_REG_AUTO_SEQ_CHEN, ADS7142_VAL_AUTO_SEQ_CHENAUTO_SEQ_CH0_CH1);

//Confirm Auto Sequencing is enabled
uint32_t autoseqchenconfig;
ADS7142SingleRegisterRead(ADS7142_REG_AUTO_SEQ_CHEN, &autoseqchenconfig);

//Select the Low Power or High Speed Oscillator
ADS7142SingleRegisterWrite(ADS7142_REG_OSC_SEL, ADS7142_VAL_OSC_SEL_HSZ_HSO);

//Confirm the oscillator selection
uint32_t oscconfig;
ADS7142SingleRegisterRead(ADS7142_REG_OSC_SEL, &oscconfig);

//Set the minimum nCLK value for one conversion to maximize sampling speed
ADS7142SingleRegisterWrite(ADS7142_REG_nCLK_SEL, 21);

//Confirm the nCLK selection
uint32_t nCLKconfig;
ADS7142SingleRegisterRead(ADS7142_REG_nCLK_SEL, &nCLKconfig);

//Select the Data Buffer output data Configuration
ADS7142SingleRegisterWrite(ADS7142_REG_DOUT_FORMAT_CFG, ADS7142_VAL_DOUT_FORMAT_CFG_DOUT_FORMAT2);

//Select the Data Buffer opmode for Stop Burst mode
ADS7142SingleRegisterWrite(ADS7142_REG_DATA_BUFFER_OPMODE,
ADS7142_VAL_DATA_BUFFER_STARTSTOP_CNTRL_STOPBURST);

//Set the SEQ_START Bit to begin the sampling sequence
ADS7142SingleRegisterWrite(ADS7142_REG_START_SEQUENCE, ADS7142_VAL_START_SEQUENCE);

//Begin Autonomous Mode StopBurst operation and scan channels 0 and 1

while (1)
{

//Abort the sequence
ADS7142SingleRegisterWrite(ADS7142_REG_ABORT_SEQUENCE, ADS7142_VAL_ABORT_SEQUENCE);

//Read the databuffer status
uint32_t databufferstatus;
ADS7142SingleRegisterRead(ADS7142_REG_DATA_BUFFER_STATUS, &databufferstatus);

//Read the databuffer
while(ADS7142DataRead_count(16) < 0);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Main Routines and Test Data www.ti.com

48 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

//Restart the sequence
ADS7142SingleRegisterWrite(ADS7142_REG_START_SEQUENCE, ADS7142_VAL_START_SEQUENCE);

}

//Return no errors
return 0;

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Single Register Write

Single Register Write

ADS7142_REG_ABORT_SEQUENCE

ADS7142_VAL_ABORT_SEQUENCE

ADS7142_REG_OFFSET_CAL

ADS7142_VAL_TRIG_OFFCAL

Single Register Write

ADS7142_REG_CHANNEL_INPUT_CFG

ADS7142_VAL_CHANNEL_INPUT_CFG_2_CHANNEL_SINGLE_ENDED

Single Register Read

ADS7142_REG_CHANNEL_INPUT_CFG

ADS7142_VAL_CHANNEL_INPUT_CFG_2_CHANNEL_SINGLE_ENDED

Single Register Write

ADS7142_REG_OPMODE_SEL

ADS7142_VAL_OPMODE_SEL_AUTONOMOUS_MONITORING_MODE

Single Register Read

ADS7142_REG_OPMODE_SEL

ADS7142_VAL_OPMODE_SEL_AUTONOMOUS_MONITORING_MODE

Single Register Read

ADS7142_REG_OPMODE_I2CMODE_STATUS

Device is operating in Autonomous Monitoring Mode

Single Register Write

ADS7142_REG_AUTO_SEQ_CHEN

ADS7142_VAL_AUTO_SEQ_CHENAUTO_SEQ_CH0_CH1

Single Register Read

ADS7142_REG_AUTO_SEQ_CHEN

ADS7142_VAL_AUTO_SEQ_CHENAUTO_SEQ_CH0_CH1

Single Register Write

ADS7142_REG_OSC_SEL

ADS7142_VAL_OSC_SEL_HSZ_HSO

Single Register Read

ADS7142_REG_OSC_SEL

ADS7142_VAL_OSC_SEL_HSZ_HSO

www.ti.com Main Routines and Test Data

49SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Figure 30 shows the channel configuration, selection of the opmode, and selection of the oscillator for this
ADS7142 functional mode.

Figure 30. Autonomous Mode Stop Burst Dual-Channel Sampling Test Data 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Single Register Write

ADS7142_REG_nCLK_SEL

The ADS7142 is to set 21 clock cycles for one conversion

Single Register Read

Single Register Write

Single Register Write

Single Register Write

Single Register Write

Single Register Read

The ADS7142 has set 21 clock cycles for one conversion

ADS7142_REG_nCLK_SEL

ADS7142_REG_DOUT_FORMAT_CFG

ADS7142_VAL_DOUT_FORMAT_CFG_DOUT_FORMAT2

ADS7142_REG_DATA_BUFFER_OPMODE

ADS7142_VAL_DATA_BUFFER_STARTSTOP_CNTRL_STOPBURST

ADS7142_REG_START_SEQUENCE

ADS7142_VAL_START_SEQUENCE

ADS7142_REG_ABORT_SEQUENCE

ADS7142_VAL_ABORT_SEQUENCE

ADS7142_REG_DATA_BUFFER_STATUS

The ADS7142 has placed 16 conversions inside the data buffer

In stop burst mode, the ADS7142 fills

the data buffer until the sequence is

aborted. If more than 16 conversions

occur between start of sequence and

abort of sequence, the entries first

written into the data buffer are over-

written.

Main Routines and Test Data www.ti.com

50 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Figure 31 shows the setting of the number of clock cycles required to perform a conversion, the data
output format, and the contents of the data buffer after the conversion sequence is aborted.

Figure 31. Autonomous Mode Stop Burst Dual-Channel Sampling Test Data 2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Single Register Write

ADS7142_REG_START_SEQUENCE

ADS7142_VAL_START_SEQUENCE

Single Register Write

ADS7142_REG_ABORT_SEQUENCE

ADS7142_VAL_ABORT_SEQUENCE

Single Register Read

ADS7142_REG_DATA_BUFFER_STATUS

The ADS7142 has placed another 16 conversions inside the data buffer

Continued data buffer results

www.ti.com Main Routines and Test Data

51SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Figure 32 shows the continued data buffer results and the conversion sequence restart.

Figure 32. Autonomous Mode Stop Burst Dual-Channel Sampling Test Data 3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Conversion [0]
for CH0

Device starts
accumulating on setting

the SEQ_START bit

Time

tCC

A
D

C
 C

on
ve

rs
io

n
R

es
ul

t

BUSY/RDY

Conversion [15] for CH0

Conversion [0] for CH1

Conversion [15] for CH1

Device stops after
accumulating 16

conversion results

Accumulated in
Accumulator for CH1

Accumulated in
Accumulator for CH0

¦

16

1k

CHxfor Result[k]ConversionCHxfor DataPrecision High

Main Routines and Test Data www.ti.com

52 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

5.6 High Precision Mode
High precision mode increases the accuracy of the data measurement to 16-bit accuracy. In this mode, 16
12-bit conversions are placed into an accumulator that sums up the conversions in the accumulator.
Equation 2 calculates the high precision data for each channel.

(2)

Each channel has an accumulator. Figure 33 shows the high precision mode conversion dynamics.

Figure 33. High Precision Mode With Dual-Channel Configurations

The main routine is the following:
#include "ADS7142RegisterMap.h"

/*
ADS7142_HighPrecisionMode_AutoSequencing_CH0_CH1_Scan.c
*/

int
main(void)

{

//Initialize the master MCU (0 = 100 kHz SCL, 1 = 400 kHz SCL)
TM4C1294Init(0);

//Calibrate the offset out of ADS7142
ADS7142Calibrate();

//Let's put the ADS7142 into High Precision Mode with both channels enabled in Single-
Ended Configuration
//Select the channel input configuration
ADS7142SingleRegisterWrite(ADS7142_REG_CHANNEL_INPUT_CFG,
ADS7142_VAL_CHANNEL_INPUT_CFG_2_CHANNEL_SINGLE_ENDED);

//Confirm the input channel configuration
uint32_t channelconfig;
ADS7142SingleRegisterRead(ADS7142_REG_CHANNEL_INPUT_CFG, &channelconfig);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

www.ti.com Main Routines and Test Data

53SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

//Select the operation mode of the device
ADS7142SingleRegisterWrite(ADS7142_REG_OPMODE_SEL, ADS7142_VAL_OPMODE_SEL_HIGH_PRECISION_MODE);

//Confirm the operation mode selection
uint32_t opmodeselconfig;
ADS7142SingleRegisterRead(ADS7142_REG_OPMODE_SEL, &opmodeselconfig);

//Set the I2C Mode to High Speed (optional)
//ADS7142HighSpeedEnable(ADS7142_VAL_OPMODE_I2CMODE_HS_1);

//Check the I2C Mode Status
uint32_t opmodei2cconfig;
ADS7142SingleRegisterRead(ADS7142_REG_OPMODE_I2CMODE_STATUS, &opmodei2cconfig);

//Auto Sequence both channels 0 and 1
ADS7142SingleRegisterWrite(ADS7142_REG_AUTO_SEQ_CHEN, ADS7142_VAL_AUTO_SEQ_CHENAUTO_SEQ_CH0_CH1);

//Confirm Auto Sequencing is enabled
uint32_t autoseqchenconfig;
ADS7142SingleRegisterRead(ADS7142_REG_AUTO_SEQ_CHEN, &autoseqchenconfig);

//Select the Low Power Oscillator or high speed oscillator
ADS7142SingleRegisterWrite(ADS7142_REG_OSC_SEL, ADS7142_VAL_OSC_SEL_HSZ_HSO);

//Confirm the oscillator selection
uint32_t oscselconfig;
ADS7142SingleRegisterRead(ADS7142_REG_OSC_SEL, &oscselconfig);

//Set the minimum nCLK value for one conversion to maximize sampling speed
ADS7142SingleRegisterWrite(ADS7142_REG_nCLK_SEL, 21);

//Confirm the nCLK selection
uint32_t nCLKselconfig;
ADS7142SingleRegisterRead(ADS7142_REG_nCLK_SEL, &nCLKselconfig);

//Enable the accumulator
ADS7142SingleRegisterWrite(ADS7142_REG_ACC_EN, ADS7142_VAL_ACC_EN);

//Set SEQ_START Bit to start the sampling sequence
ADS7142SingleRegisterWrite(ADS7142_REG_START_SEQUENCE, ADS7142_VAL_START_SEQUENCE);

//Begin High Precision Mode Scanning Ch0 and Ch1 continuously

while(1)
{

//Sample 16 conversions from each channel
while (ADS7142DataRead_count(32) < 0);

//Check the Accumulator Status to count the number of conversions complete
uint32_t accstatus;
ADS7142SingleRegisterRead(ADS7142_REG_ACCUMULATOR_STATUS, &accstatus);

//Read the MSB of Ch0 Accumulated Data after 16 accumulations are complete
uint32_t accch0MSB;
ADS7142SingleRegisterRead(ADS7142_REG_ACC_CH0_MSB, &accch0MSB);

//Read the LSB of Ch0 Accumulated Data after 16 accumulations are complete
uint32_t accch0LSB;
ADS7142SingleRegisterRead(ADS7142_REG_ACC_CH0_LSB, &accch0LSB);

//Read the MSB of Ch1 Accumulated Data after 16 accumulations are complete
uint32_t accch1MSB;
ADS7142SingleRegisterRead(ADS7142_REG_ACC_CH1_MSB, &accch1MSB);

//Read the LSB of Ch1 Accumulated Data after 16 accumulations are complete

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Main Routines and Test Data www.ti.com

54 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

uint32_t accch1LSB;
ADS7142SingleRegisterRead(ADS7142_REG_ACC_CH1_LSB, &accch1LSB);

//Set the SEQ_START Bit again
ADS7142SingleRegisterWrite(ADS7142_REG_START_SEQUENCE, ADS7142_VAL_START_SEQUENCE);

}

//Return no errors
return 0;

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Single Register Read

ADS7142_REG_OPMODE_I2CMODE_STATUS

ADS7142 is operating in High Precision Mode

Single Register Write

ADS7142_REG_AUTO_SEQ_CHEN

ADS7142_VAL_AUTO_SEQ_CHENAUTO_SEQ_CH0_CH1

Single Register Read

ADS7142_REG_AUTO_SEQ_CHEN

ADS7142_VAL_AUTO_SEQ_CHENAUTO_SEQ_CH0_CH1

Single Register Write

ADS7142_REG_OSC_SEL

ADS7142_VAL_OSC_SEL_HSZ_HSO

Single Register Read

ADS7142_REG_OSC_SEL

ADS7142_VAL_OSC_SEL_HSZ_HSO

Single Register Write

ADS7142_REG_OPMODE_I2CMODE_STATUS

Device is to operate in High Precision Mode with AUTO Sequencing enabled

Single Register Read

ADS7142_REG_OPMODE_I2CMODE_STATUS

Device is operating in High Precision Mode with AUTO Sequencing enabled

Single Register Write

ADS7142_REG_OFFSET_CAL

ADS7142_VAL_TRIG_OFFCAL

Single Register Write

ADS7142_REG_CHANNEL_INPUT_CFG

ADS7142_VAL_CHANNEL_INPUT_CFG_2_CHANNEL_SINGLE_ENDED

Single Register Read

ADS7142_REG_CHANNEL_INPUT_CFG

ADS7142_VAL_CHANNEL_INPUT_CFG_2_CHANNEL_SINGLE_ENDED

Single Register Write

ADS7142_REG_ABORT_SEQUENCE

ADS7142_VAL_ABORT_SEQUENCE

www.ti.com Main Routines and Test Data

55SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Figure 34 shows the channel configuration and the selection of the opmode and oscillator for this
ADS7142 functional mode.

Figure 34. High Precision Mode Dual-Channel Sampling Test Data 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Single Register Write

Single Register Read

ADS7142_REG_nCLK_SEL

Set the minimum clock value to 21

ADS7142_REG_nCLK_SEL

The minimum clock value is set to 21

Single Register Write

ADS7142_REG_ACC_EN

ADS7142_VAL_ACC_EN

Single Register Write

ADS7142_REG_START_SEQUENCE

ADS7142_VAL_START_SEQUENCE

The series of 0x00

values corresponds to

the accumulator for

each channel being

filled with 12-bit sample

data. Since the

accumulator for each

channel holds 16

samples, there are 64

I2C frames prior to the

read of each

accumulator.

Main Routines and Test Data www.ti.com

56 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Figure 35 shows the setting of clock cycles required for a conversion, the enabling of accumulators, and
the start of the conversion sequence.

Figure 35. High Precision Mode Dual-Channel Sampling Test Data 2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Single Register Read

Single Register Read

ADS7142_REG_ACCUMULATOR_STATUS

16 accumulations have been completed

ADS7142_REG_ACC_CH0_MSB

Ch0 Accumulated MSB data

The series of 0x00

values corresponds to

the accumulator for

each channel being

filled with 12-bit sample

data. Since the

accumulator for each

channel holds 16

samples, there are 64

I2C frames prior to the

read of each

accumulator.

www.ti.com Main Routines and Test Data

57SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Figure 36 shows the number of conversions that fill the accumulator and the results of the high precision
accumulation.

Figure 36. High Precision Mode Dual-Channel Sampling Test Data 3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

Single Register Read

ADS7142_REG_ACC_CH0_LSB

Ch0 Accumulated LSB Data

Single Register Read

ADS7142_REG_ACC_CH1_MSB

Ch1 Accumulated MSB Data

Single Register Read

ADS7142_REG_ACC_CH1LSB

Ch1 Accumulated LSB Data

Single Register Write

ADS7142_REG_START_SEQUENCE

ADS7142_VAL_START_SEQUENCE

References www.ti.com

58 SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

TM4C1294 interface to ADS7142 software library

Figure 37 shows the accumulated results and restart of the conversion sequence.

Figure 37. High Precision Mode Dual-Channel Sampling Test Data 4

6 References
1. ADS7142 Nanopower, Dual-Channel, Programmable Sensor Monitor Data Sheet
2. ADS7142BoosterPack User's Guide
3. Tiva TM4C1294NCPDT Microcontroller Data Sheet
4. Tiva C Series TM4C1294 Connected LaunchPad Evaluation Kit User’s Guide
5. Tiva C Series TM4C129x Microcontrollers Silicon Revisions 1, 2, and 3 Silicon Errata
6. TI I2C Tips
7. TivaWare Peripheral Driver Library , SW-TM4C-DRL-UG-2.1.3.156
8. Building a gateway to the Internet of Things
9. TI Precision Labs
10. Salae Logic Analyzer Landing Page)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A
http://www.ti.com/lit/pdf/SBAS773
http://www.ti.com/lit/pdf/SBAU292
http://www.ti.com/lit/pdf/SPMS433
http://www.ti.com/lit/pdf/SPMU365
http://www.ti.com/lit/pdf/SPMZ850
http://www.ti.com/lit/pdf/http://processors.wiki.ti.com/index.php/I2C_Tips
http://www.ti.com/lit/pdf/http://dev.ti.com/tirex/content/TivaWare_C_Series-2.1.3.156/docs/SW-TM4C-DRL-UG-2.1.3.156.pdf
http://www.ti.com/lit/pdf/SPMY013
https://training.ti.com/ti-precision-labs-overview
https://www.saleae.com/?gclid=EAIaIQobChMI4Pu73rOf2wIVwR2BCh2O0QWDEAAYASAAEgI1-vD_BwE

www.ti.com Revision History

59SBAA288A–July 2018–Revised January 2019
Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (July 2018) to A Revision ... Page

• Added author names to document .. 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA288A

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	TM4C1294 interface to ADS7142 software library
	1  Introduction
	2 Hardware
	3 Software
	3.1 Header Files
	3.2 ADS7142 Device Functional Modes Overview
	3.3 Software Functions

	4 Using the Software
	4.1 Prerequisites
	4.2 Getting Started
	4.3 Using the Library

	5 Main Routines and Test Data
	5.1 Manual Mode
	5.2 Autonomous Mode With Pre-Alert
	5.3 Autonomous Mode With Post-Alert
	5.4 Autonomous Mode With Start Burst Data
	5.5 Autonomous Mode With Stop Burst Data
	5.6 High Precision Mode

	6 References

	Revision History
	Important Notice

