
1

®

©1997 Burr-Brown Corporation AB-122 Printed in U.S.A. September, 1997

INTERFACING THE ADS7822 TO THE SYNCHRONOUS
SERIAL PORT OF THE 80x51 MICROCONTROLLER

By Gebhard Haug and Bonnie C. Baker

Analog-to-digital converters can be controlled by a normal
I/O port or with the synchronous serial port of the 80x51
microcontrollers. The synchronous serial port is more effi-
cient, however, there are some pitfalls to be aware of when
configuring the 8-pin A/D converters (ADS1286, ADS7816,
ADS7817 and ADS7822) from Burr-Brown. This applica-
tion bulletin describes how to get around these pitfalls and
get the best performance out of this combination.

The ADS1286, ADS7816, ADS7817, and ADS7822 are all
12-bit converters that are available in a variety of 8-pin
packages. These devices are classical successive approxi-

mation register (SAR) A/D converters. Their architecture is
based on capacitive redistribution, which inherently in-
cludes a sample/hold function. All four of these converters
have three digital communication lines in their interface.
These communication lines are CS/SHDN, DOUT and
DCLOCK. The CS/SHDN pin provides a chip select func-
tion when LOW. When this pin is pulled HIGH, the A/D
converter goes into its shutdown mode. The basic timing
diagram for these A/D converters is shown in Figure 1. The
timing specifications for the individual A/D converters are
called out in Table 1.

SYMBOL DESCRIPTION ADS1286 ADS7816 ADS7817 ADS7822 UNITS

tSMPL Analog Input Sample Time 1.5 (typ) 1.5 (min) 1.5 (min) 1.5 (min) Clk Cycles
2.0 (max) 2.0 (max) 2.0 (max)

tCONV Conversion Time 12 12 12 12 Clk Cycles

tCYC Throughput Rate 20 (max) 200 (max) 200 (max) 75 (max) kHz

tCSD CS Falling to DCLOCK LOW 0 (max) 0 (max) 0 (max) 0 (max) ns

tSUCS CS Falling to DCLOCK Rising 30 (min) 30 (min) 30 (min) 30 (min) ns

thDO DCLOCK Falling to Current DOUT not Valid 15 (min) 15 (min) 15 (min) 15 (min) ns

tdDO DCLOCK Falling to Next DOUT Valid 150 (max) 150 (max) 150 (max) 200 (max) ns

TABLE I. Timing Specifications for the ADS1286, ADS7816, ADS7817, and ADS7822.

CS/SHDN

DOUT

DCLOCK

tDATA

tSUCS

tCSD

tCYC

tCONV

POWER

DOWN

tSMPL

Note: (1) After completing the data transfer, if further clocks are applied with CS

LOW, the ADC will output LSB-First data then followed with zeroes indefinitely.

B11

(MSB)

B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0(1)

NULL

BIT HI-ZHI-Z

B11 B10 B9 B8

NULL

BIT

CS/SHDN

DOUT

DCLOCK

tCONV tDATA

tSUCS

tCYC

POWER DOWN

tSMPL

Note: (2) After completing the data transfer, if further clocks are applied with CS

LOW, the ADC will output zeroes indefinitely.

tDATA: During this time, the bias current and the comparator power down and the reference input

becomes a high impedance node, leaving the CLK running to clock out LSB-First data or zeroes.

B11

(MSB)

B10 B9 B8 B7 B6 B5 B4 B4B3 B3B2 B2B1 B1B0

NULL

BITHI-Z HI-Z

B5 B6 B7 B8 B9 B10 B11

(2)

tCSD

FIGURE 1. Timing Diagram for the ADS1286, ADS7816, ADS7817, and ADS7822.

SBAA018

2

As shown in Figure 1, a falling CS signal initiates the
conversion and data transfer. In addition, any conversion
data from previous conversions is erased with the falling
edge of CS. The first 1.5 to 2.0 clock periods of the
conversion cycle are used to sample the input signal. After
the second falling DCLOCK edge, DOUT is enabled and will
output a LOW value for one clock period. For the next 12
DCLOCK periods, DOUT will output the conversion result,
most significant bit (MSB) first. After the least significant
bit (B0) has been transmitted, subsequent clocks will repeat
the output data but in a least significant bit (LSB) first
format.

The suggested circuit for these A/D converters and the
80x51 is shown in Figure 2. The serial port of the 80x51 is
configured in the normal mode (or mode 0). In this mode,
the serial data enters and exits through RxD. Eight bits are
transmitted or received (LSB first) through RxD. In this
circuit, the RxD/P1.2 port is used exclusively in the serial
port interface mode and configured to receive serial data
from the A/D converter. TxD outputs the shift clock of the
microcontroller. The baud rate of TxD is fixed at 1/12 the
oscillator frequency. For this circuit, TxD/P1.3 is used in the
serial port interface mode as well as the I/O mode providing
the DCLOCK signal that is required by the A/D converter
during the conversion process. Finally, the P1.1 pin of the
80x51 microcontroller is chosen to drive the chip select (CS)
pin of the A/D converter. The selection of this microcontroller
pin is arbitrary.

The serial port timing diagram for the 80x51 type
microcontroller is shown in Figure 3. Note that the serial port
clock that is generated by the 80x51 device normally idles
HIGH. This produces a potential problem with these A/D

converters as the CS/SHDN signal is pulled LOW to start a
conversion. In some instances, a conversion will occur with
this timing arrangement by requiring an additional clock
cycle in order to complete the data transfer. In other cases, a
conversion will not occur unless the DCLOCK is LOW at the
time the CS/SHDN goes LOW.

Clock Issues

There are two possible solutions to these problems: 1. Use
an external inverter to invert the controller’s clock (the clock
will idle LOW) or 2. Implement a software modification
with the 80x51 controller.

With the first solution, timing becomes critical. The 80x51
must latch the data into its internal shift register with the
same clock edge that the A/D converter uses to advance its
serial output stream. The relationship of the 80x51 timing
and the A/D converter timing is illustrated in Figure 4. There
are two timing issues that make this possible. The first is the
time delay of the inverter that has been placed between RxD
and DCLOCK or the A/D converter. The second is the hold
time of the A/D converter. The set-up and hold times of this
series of converters are shown in Figure 5.

A better approach is to modify the software and not include
additional inverters in the clock line. In this second solu-
tion, the controller’s CLK, in this case P1.3, is brought
LOW before setting CS/SHDN LOW. As the next instruc-
tion, P1.3 is brought HIGH again to allow the serial port to
operate normally. All future clock signals needed for the
conversion are done internally by the controller’s serial port
(TxD/P1.3). Figure 6 gives the code for this algorithm.

D0

S5P2

D1 D2 D3 D4 D5 D6 D7

Receive

Write to SCON (Clear RI)

RI

Receive

Shift

RxD (Data In)

TxD (Shift Clock)

FIGURE 3. Serial Port Timing Diagram for the 80x51 Type Microcontroller.

FIGURE 2. Circuit Diagram for the ADS7816, ADS7817, or ADS7822 and a Generic 80x51 Microcontroller.

ADS1286

ADS7816

ADS7817

ADS7822

80x51

DOUT

DCLOCK

CS/SHDN

TxD/P1.3

RxD/P1.2

P1.1

3

D0

S5P2

D1 D2 D3

B11 B10 B9 B8 B7 B6

D4 D5 D6 D7

Receive

80x51

Controller

Write to SCON (Clear RI)

RI

Receive

Shift

RxD (Data In)

TxD (Shift Clock)

Inverted TxD (DCLOCK)

CS/SHDN

RxD (DOUT) Hi-Z State

Burr-Brown's

ADS78xx

Interface

clr ads_clk ; make sure dclock is low (P1.3) when cs falls

clr ads_cs ; P1.1

setb ads_clk ; set bit (P1.3) to enable serial port

setb –REN ; enable serial port to receive data

clr –RI ; clear receive register
; to start transfer

GetAD10:

Jnb _RI, Get AD10 ; wait until done

FIGURE 6. Code Required to Implement the Software Solution for Clock Conflict (shown in Figure 4) Between the
80x51 Type Microcontroller and Burr-Brown’s 8-Pin A/D Converter.

FIGURE 4. Timing Diagram for the ADS7816, ADS7817, or ADS7822 and a Generic 80x51 Microcontroller. This Timing
Operation Requires that the TxD Output be Inverted with an External Gate.

tdDO

thDO

DOUT

DCLOCK

VOH

VOL

VIL

DOUT

Test Point

tdis Waveform 2, ten

tdis Waveform 1100pF

CLOAD

3kΩ
VCC

FIGURE 5. Set-up (tdDO) and Hold (thDO) Times of the ADS1286, ADS7816, ADS7817 and ADS7822. See Table I for
Timing Details.

4

Adjusting the Bit Order for the Controller

These SAR converters always output the MSB first when a
new sample is converted. On the other hand, the 80x51
devices expect data to be transferred to the serial port with
LSB first. If the first two bytes (one byte = 8 bits) are
transferred, the data bits must be re-ordered by the software
of the controller.

An alternative to this approach is to transfer a third byte
from the A/D converter to the controller. As mentioned
earlier in this Application Bulletin, the A/D converter
transfers the 12 bits of the conversion MSB first and then
follows it by the same 12 bits of the conversion LSB first.
This “third byte approach” timing between the microcontroller
and A/D converter is shown in Figure 7. (Refer to Figure
1 for the A/D converter’s timing diagram for these details.)

If one looks closely at the timing shown in Figure 7, they
will notice that bit 11 (MSB) is missing. This is due to the
fact that the LSB does not start at the byte or nibble
boundary. It appears as if the controller will still have to
perform bit shifting to finally capture the data of the con-
verter. On the contrary, the software can create one more
clock cycle at the beginning of the conversion process. In
this manner, the serial system will produce the desired
results as shown in Figure 8. The code for this enhancement
is given in Figure 9.

A short program in 80x51 assembly language is shown in
Figure 10. This program can also be downloaded from Burr-
Brown’s WEB site (http://www.burr-brown.com/). It is titled
“ADS78xx vs 80x51 Interface.” This short program demon-
strates how to interface the ADS7822 to the synchronous
serial port of the 80x51 devices.

FIGURE 7. Since the 80x51 Type Controller Requires LSB First, the A/D Converter Must Output Its First 12 Bits (MSB First)
and the 12 More Bits (LSB First). Notice that Bit 11 is Missing at the End of the Transfer.

clr ads_clk ; make sure dclock is low (P1.3) when cs falls

clr ads_cs ; P1.1

setb ads_clk ; send one additional dclock cycle (P1.3)

clr ads_clk

setb ads_clk ; set bit (P1.3) to enable serial port

setb _REN ; enable serial port to receive data

clr _RI ; clear receive register to start transfer

GetAD10:

FIGURE 8. A Minor Software Change Corrects the Problem Illustrated in Figure 7.

B11
MSB

Serial Byte 1
Port

I/O

CS/SHDN

DCLOCK

DOUT
Hi-Z

LSB
B10 B9 B8 B7 B5 B4 B3 B2 B1B6 B0 B1 B3 B4 B5 B6B2 B7 B8 B9 B10

Serial Byte 2 Serial Byte 3

FIGURE 9. This Code is Required to Implement the Software Solution that Provides the LSB First to the 80x51 Type
Microcontroller from Burr-Brown’s 8-Pin A/D Converters.

B11

MSB

CS/SHDN

DCLOCK

DOUT
Hi-Z

LSB MSB

B10 B9 B8 B7 B5 B4 B3 B2 B1B6 B0 B1 B3 B4 B5 B6B2 B7 B8 B9 B10 B11

Serial Byte 1 Serial Byte 2 Serial Byte 3
Port

I/O

5

; 80x51.ASM
;
; [purpose]
; interfaces ADS7822 to DALLAS Microcontroller via the sync. serial port
;***
; serial port used

_SCON EQU 0c0h ; serial port config register
_SBUF EQU 0c1h ; serial port data buffer
_RI BIT _SCON.0
_TI BIT _SCON.1
_REN BIT _SCON.4

ads_cs bit p1.1 ; chip select bit
ads_dta bit p1.2
ads_clk bit p1.3 ; dclock bit

org 08100h
Reset:

mov sp, #07fh ; init stack pointer first
call Init ; do global init stuff

Loop:
call GetAD ; get a reading
call ADDisplay ; display it
call CRLF ; and goto the next line
jmp Loop

;**
Init:

mov _SCON, #00h ; init serial port for synchronous I/O
ret

;**
; [GetAD]
; Gets a reading from an ADS7822
; [Parameters]
; none
; [returns]
; Hibyte in 020h
; Lobyte in 021h
GetAD:

clr ads_clk ; make sure clk is low when cs falls
clr ads_cs
setb ads_clk ; one additional clock tick to make
clr ads_clk ; bit 0 as bit 3 in the second data byte
setb ads_clk
setb _REN ; enable serial port receive data
clr _RI ; clear receive register to start transfer

GetAD10:
jnb _RI, GetAD10 ; wait until done
clr _RI ; start another transfer

GetAD20:
jnb _RI, GetAD20 ; wait until done
mov a, _SBUF
clr _RI ; start last transfer
anl a, #0f0h ; mask unwanted bits
mov 021h, a ; save low byte

GetAD30:
jnb _RI, GetAD30
mov a, _SBUF ; get high byte
mo 020h, a ; save high byte
setb ads_cs ; done converting, reset CS
ret

FIGURE 10. This Program Will Interface the ADS7822 to the Synchronous Serial Port of the 80x51 Type Device.

6

;**
; [ADDisplay]
; sends contents of 020, 021h to the serial port
; [Parameters]
; none
; [returns]
; -
ADDisplay:

mov a, 020h ; high byte
call BinToHex ; high byte to hex digits
call WriteSerial
mov a, b
call WriteSerial
mov a, 021h
call BinToHex ; same with low byte
call WriteSerial
mov a, b
call WriteSerial
ret

;**
; [CRLF]
; sends a cr, lf sequence to the serial port
; [Parameters]
; none
; [returns]
; -
CRLF:

mov a, #0dh ; write CR
call WriteSerial
mov a, #0ah ; write LF
call WriteSerial
ret

;**
; [WriteSerial]
; sends the byte contained in a to the serial port
; [Parameters]
; Accu: byte to send
; [returns]
; -
WriteSerial:

clr TI ; clear transmit register
mov SBUF, A ; write data

WriteSerial10:
jnb TI, WriteSerial10 ; wait until done
ret

;**
; [WriteSerial]
; converts binary number to two hex digits
; [Parameters]
; Accu: byte to convert
; [returns]
; Accu: first hex digit
; B: second hex digit
BinToHex:

push dph
push dpl
mov dptr,#HexTable
push acc
anl a,#00fh

FIGURE 10 (Cont). This Program will Interface the ADS7822 to the Synchronous Serial Port of the 80x51 Type Device.

7

FIGURE 10 (Cont). This Program will Interface the ADS7822 to the Synchronous Serial Port of the 80x51 Type Device.

movc a,@a+dptr
mov b,a
pop acc
anl a,#0f0h
swap a
movc a,@a+dptr
pop dpl
pop dph
ret

HexTable:
db ‘0’,’1',’2',’3',’4',’5',’6',’7'
db ‘8’,’9',’A’,’B’,’C’,’D’,’E’,’F’
end

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  2000, Texas Instruments Incorporated

