
Application Report
MSP430FRBoot – Main Memory Bootloader and
Over-the-Air Updates for MSP430™ FRAM Large
Memory Model Devices

Ryan Brown, Katie Pier, and Gary Gao MSP430 Apps
ABSTRACT

This application report is an extension to MSPBoot – Main Memory Bootloader for MSP430 Microcontrollers and
describes the implementation of a main-memory resident bootloader for MSP430™ FRAM microcontrollers using
either universal asynchronous receiver/transmitter (UART) communication or a serial peripheral interface (SPI)
bus and CC110x RF transceivers to accomplish over-the-air downloads (OAD). While still being highly flexible
and modular, this bootloader maintains a small footprint, making it a very cost-effective solution, and supports
the large memory model (devices with a memory footprint greater than 16 KB).

A software package with examples and source code for both master and slave devices is available from http://
software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSP430FRBoot/latest/index_FDS.html. Section 5
provides step-by-step procedures that explain how to run the examples.

This bootloader is not to be confused with the MSP430 bootloader (BSL), which resides in protected memory
(ROM) in MSP430 FRAM microcontrollers. For more information on the BSL, see the MSP430™ FRAM Devices
Bootloader (BSL) User's Guide. The project collateral that is described in this application report can be
downloaded from http://www.ti.com/lit/zip/SLAA721.

Table of Contents
Trademarks...2
1 Introduction...3

1.1 Glossary... 4
1.2 Conventions... 4

2 Implementation... 5
2.1 Main..6
2.2 Application Manager.. 6
2.3 Memory Interface (MI).. 11
2.4 Communication Interface (CI)...11

3 Customization of MSP430FRBoot...16
3.1 Predefined Customizations.. 16

4 Building MSPBoot...17
4.1 LaunchPad™ Development Kit Hardware... 17
4.2 CC110x Hardware..18
4.3 Software... 18

5 Demo Using FRAM LaunchPad Development Kit as Host..22
5.1 Hardware..22
5.2 Building the Host Project..22
5.3 Running the Demo... 23

6 Porting the target side example projects to other MSP430FR devices... 25
7 References.. 29
8 Revision History... 29

www.ti.com Table of Contents

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

1

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SLAA600
http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSP430FRBoot/latest/index_FDS.html
http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSP430FRBoot/latest/index_FDS.html
http://www.ti.com/lit/pdf/SLAU550
http://www.ti.com/lit/pdf/SLAU550
http://www.ti.com/lit/zip/SLAA721
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

Trademarks
MSP430™, Code Composer Studio™, and are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

Trademarks www.ti.com

2 MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

1 Introduction
Expanding on the original theory behind MSPBoot – Main Memory Bootloader for MSP430™ Microcontrollers,
many FRAM applications require a solution that allows for easy field upgrades. MSP430FRBoot has been
designed to accomplish this task with any custom communication peripheral and entry sequence as defined by
the user. Two different examples have been included to further demonstrate these capabilities. One example
uses the UART protocol to create a simple two-wire communication link between devices, while the other
example incorporates SPI buses and two CC110x devices to accomplish wireless over-the-air downloads. Above
all, these solutions can maintain high performance, high integration, and ultra-low power in a cost-effective
design.

MSP430 FRAM devices are equipped with the very useful UART Bootloader (BSL) which allows for a simple
way to do field upgrades. Most MSP430 FRAM devices have a ROM-resident BSL that supports UART and
cannot be modified to support I2C or other interfaces. The MSP430FRxxxx1 devices implement an I2C BSL
solution instead of UART. Furthermore, the BSL cannot include custom entry sequences that might be required
for application. For more information on the BSL, see the MSP430™ FRAM Devices Bootloader (BSL) User's
Guide.

Given these limitations, it might be necessary to create a bootloader that resides in main memory and still allows
for an easy implementation of the application. This application report describes the implementation of the
MSP430FRBoot bootloader with the following characteristics:

• Small footprint (less than 4KB in size required)
• 20-bit incorporation for large memory models
• Supports the eUSCI peripherals offered on FRAM devices
• UART communication offers the most simple wired interface using a small memory space.
• SPI bus offers over-the-air downloads (using the CC110x) at a slightly larger footprint.
• Different options that allow for customizable levels of robustness
• Optional dual image support in case of communication interruption
• Allows for use of all interrupts in application
• Application can reuse the low-level drivers from the bootloader or implement its own drivers.
• Configurable entry sequence
• Optional validation of application using CRC-CCITT
• Source code available, allowing for additional customizations

Source code for the bootloader with different sample configurations, application examples, and host examples
are included to allow for easy testing, customization, and implementation. Knowledge of UART and SPI
specifications as well as sub-1 GHz RF communication protocol is assumed.

www.ti.com Introduction

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

3

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SLAA600
http://www.ti.com/lit/pdf/SLAU550
http://www.ti.com/lit/pdf/SLAU550
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

1.1 Glossary
BOR Brownout reset
BSL MSP430 Bootloader
CI MSPBoot Communication Interface
CRC Cyclic Redundancy Check
eUSCI Enhanced Universal Serial Communication Interface
MCU Microcontroller
MI MSPBoot Memory Interface
MSPBoot The bootloader described by MSPBoot – Main Memory Bootloader for MSP430™ Microcontrollers

MSP430FRBoot The bootloader described by this application report
OSI Open Systems Interconnection
OAD Over-the-Air Download
SPI Serial Peripheral Interface
ROM Read-Only Memory
UART Universal Asynchronous Receiver/Transmitter

1.2 Conventions
This document contains some UART transfer examples that use the following form:

 Host→Target St: Start
 Target→Host Sp: Stop

SPI transfer examples use the following form:

 Master→Slave X: Don’t care
 Slave→Master

Introduction www.ti.com

4 MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SLAA600
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

2 Implementation
A modular approach is used to allow for an easy migration between MSP430 devices and allow for
customization of each layer. Figure 2-1 shows the software layers.

Figure 2-1. MSPBoot Software Architecture

Each module is described in more detail in the following sections.

www.ti.com Implementation

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

5

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

2.1 Main
The main routine has the following purpose:

• Initialize basic functionality of the MSP430 MCU
• Initialize the other MSP430FRBoot layers
• Implement the main loop which polls the communication interface and processes commands

Figure 2-2 shows the state diagram of the main routine.

Main

HW Init

Clock Init

Application Validation

App or Boot? Jump to App

Comm Init

Packet Received?

Comm Poll

Jump to App

command?

Process Command

App

Boot

YN Y

N

Figure 2-2. Flow Diagram of Main

2.2 Application Manager
The main functions of the Application Manager are:

• Detecting when the device should be in bootloader mode versus application mode
• Validating the application
• Redirecting interrupt vectors
• Jumping from bootloader to application
• Recovering a valid image when in dual-image mode

Implementation www.ti.com

6 MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

2.2.1 Bootloader and Application Detection

The Application Manager detects if the bootloader or the application should be executed by applying the
following rules:

• Application is executed if
– The application is valid (see Section 2.2.1.2)

AND

– The bootloader is not forced by an external event or by application (see Section 2.2.1.1)

• Bootloader is executed if
– It is forced by an external event or by the application

OR
– The application is invalid

Figure 2-3 shows the implementation of this decision process.

Figure 2-3. Application Validation by App Manager

www.ti.com Implementation

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

7

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

2.2.1.1 Forcing Bootloader Mode

Even with a valid application, the bootloader mode can be forced by the following:

• Option1: An external event such as the state of a GPIO after reset.

By default, the software checks if the following GPIOs are low after reset to force bootloader mode:
– P1.1 in MSP430FR5969 (S2 button on MSP-EXP430FR5969)
– P5.5 in MSP430FR5994 (S2 button on MSP-EXP430FR5994)
– P2.7 in MSP430FR2433 (S2 button on MSP-EXP430FR2433)

This event can be modified as needed in TI_MSPBoot_AppMgr_BootisForced().
• Option2: An application calls for the execution of bootloader mode.

The variables StatCtrl and PassWd are reserved and shared between application and bootloader. To force
bootloader mode, the application sets these variables to:

 PassWd = 0xC0DE
 StatCtrl.BIT0 = 1

Implementation www.ti.com

8 MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

2.2.1.2 Application Validation

The application validation mechanism allows the bootloader to validate the application before executing it. Three
methods are implemented to allow for different levels of code footprint and security:

• Single image mode (new application will download directly into the application area)

– Two options can be used in this mode (Defined in TI_MSPBoot_Config.h):

• Level_1: Checks if the reset vector is empty (0xFFFF)
• Level_2: Does CRC in the application area and uses the CRC result to compare with the CRC

signature that is located at the start of the application memory
• Dual image mode (new application will download into a dedicated area and copy into the application area

after the CRC check)

Figure 2-4 shows the implementation of the validation process in dual image mode.

Application Validation

Image in AppArea

valid

Image in

DownloadArea

valid

Copy Image from

DownloadArea to

AppArea

Image in AppArea

valid

Erase DownloadArea

Application Valid

Application Invalid

YN

N

Y

N

Y

Figure 2-4. Dual Image Application Validation

The validation methods can prevent executing corrupted applications but they do not ensure the integrity and
functionality of the application, which is the user’s responsibility. If the application does not have the intended
functionality, the MSP430 can still be recovered using a hardware entry sequence.

When an application download process is completed, MSPBoot performs the following steps before jumping to
the new application:

1. Validate the new image in the Download area.

a. If invalid, exit. A reset forces the bootloader again and executes the application only if the original image is
valid.

b. Continue otherwise.

www.ti.com Implementation

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

9

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

2. Replace Application area with Download area.
3. Validate image in Application area.

a. If valid, erase Download area. A reset will execute the application, because the image in the Application
area is valid.

b. Exit otherwise. This is an unexpected state, but a reset will validate both images again.

2.2.1.3 Jumping to Application

MSPBoot forces a reset when the Communication Protocol detects that the download is complete and the device
should jump to the application.

FRAM devices use a software BOR to force reset, which provides an efficient method to restore the MSP430
MCU to a default state. Declaration HW_RESET_BOR is enabled by default.

2.2.2 Memory Assignment

MSPBoot cannot erase or reprogram the bootloader area. This limitation provides a more secure
implementation, because the bootloader is always accessible, and the MSP430 MCU can be recovered by
forcing bootloader mode.

The reset vector is an integral part of the bootloader, because it forces the MSP430 MCU to always jump to the
bootloader entry sequence and, thus, should not be erased. Because the reset vector resides in the top of 16-bit
FRAM space (0xFFFE), the bootloader code is placed in the contiguous locations (see Figure 2-5).

Figure 2-5. Memory Assignment

The interrupt vector table is also in the protected boot area. Because the value of the interrupt tables is expected
to change based on the application, this means that special considerations must be followed to allow for
application interrupts. Additional 20-bit space is available for the application (0x10000 and above).

Implementation www.ti.com

10 MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

2.2.3 Interrupt Vectors in FRAM Devices

FRAM does not have the limitation of a minimum erase size, so all interrupts can be reprogrammed in FRAM
devices without risking erasure of the reset vector. By default, MSP430FRBoot enables protection of the
bootloader area using MPU, but this feature is disabled while reprogramming interrupt vectors.

Some MSP430 MCUs support redirecting vectors to RAM in hardware (SYSRIVECT), which could be a good
alternative especially for devices with sufficient RAM. This also allows for full protection of the bootloader using
the MPU module.

2.3 Memory Interface (MI)
To protect the bootloader area, the MSP430 MCU is logically partitioned in two sections:

• Application area: Writable section with user application and redirected vector table
• Bootloader area: Nonwritable section with bootloader and vector table
• Download area: Writable section with bootloader and vector table (Dual image mode only)

The size of each section is defined in the project linker file. Examples showing different memory sizes are
available in the example projects for the Code Composer Studio™ IDE (CCS).

The memory interface provides an API that is used to program and erase the application memory area and
protect the bootloader area. This memory protection is implemented as follows for FRAM devices:

• FRAM does not require erasing, but the application memory is written with 0xFF when an erase is performed
to calculate a valid CRC.

• The address being erased or programmed is validated to avoid accidental corruption of the bootloader area.
• The MPU protects the bootloader area. The user can modify the MPU settings according to the application,

but TI recommends always protecting the bootloader area.
• MPU protection is disabled only when updating interrupt vectors as discussed in Section 2.2.3.

Note

MSPBoot does not allow write or erase access to the bootloader area when executing updates, but it
cannot protect against accidental erase when executing an application. The bootloader area is
hardware-protected using the MPU.

2.3.1 Dual Image Support

When Dual Image support is enabled, the Memory Interface module partitions the MSP430 application area in
two subsections, resulting in the following logical memory map:

• Nonboot area:
– Download area: Section used as temporary buffer to store a new application image. Physical addresses in

this area are inaccessible to the host, but this area is written when the host attempts to download to logical
addresses in the application area.

– Application area: Section used to execute the current application image. Logical addresses in this area
are available to the host, but the host cannot write to the physical addresses. The bootloader updates this
area when a new image in Download area is validated. This procedure is explained in Section 2.2.1.2.

• Boot Area: Read-only section with bootloader and vector table.

The size of each sector is defined in the project linker file. Examples showing different memory sizes are
available in the example projects for CCS.

2.4 Communication Interface (CI)
The purpose of the CI is to:

• Receive data from and send data to a host
• Implement a communication protocol
• Parse the data, validate a packet, and execute the appropriate command

www.ti.com Implementation

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

11

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

• Based on the output of the function, generate a response

Following the Open Systems Interconnection (OSI) model, the CI is divided into two modules:

• Physical-DataLink (PHY-DL)
• Network-Application (NWK-APP)

2.4.1 Physical-DataLink (PHY-DL)

The PHY-DL layer provides a hardware abstraction layer (HAL) to simplify the migration process to a different
MSP430 derivative or peripheral. The PHY-DL layer provides a stable channel for sending data to and receiving
raw data from the host. The current bootloader was implemented using UART or SPI and it supports the eUSCI,
but other options could be included if desired. The PHY-DL layer is initialized by providing a pointer to a structure
with the callback functions in Table 2-1.

Table 2-1. PHY-DL Callback Structure
t_CI_Callback Structure type definition

 .RxCallback Called when a new byte is received

 .TxCallback Called when a byte needs to be transmitted

 .ErrorCallback(1) Called when an error is detected in PHY-DL (for example, a time-out)

(1) Callback is optional. The protocol or CI may not require a callback.

A higher level layer (NWK-APP) uses the callback functions to implement the communication protocol.
Depending on the protocol, some callbacks are not required and can be disabled in the PHY-DL layer to reduce
the footprint. NWK-APP layer is described in Section 2.4.2.

2.4.1.1 UART

The UART interface is implemented using 8-N-1 format (8 data bits, no parity bit, and 1 stop bit) (see Figure
2-6).

ST

1

D0 to D7

8 1

SP

Figure 2-6. UART 8-N-1 Format

The default baud rate is defined as CONFIG_CI_PHYDL_UART_BAUDRATE = 57600.

2.4.1.2 SPI

The SPI interface, used for CC110x communication, is implemented using the following configuration (also see
Figure 2-7):

• 8-bit data
• MSB first
• Clock polarity = 0 (inactive state is low)
• Clock phase = 1 (data captured on first clock edge, changed on following edge)
• 3-pin configuration with STE implemented using GPIO

Implementation www.ti.com

12 MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

Figure 2-7. SPI Format

2.4.1.3 CC110x

The CC110x devices send data using a packet structure shown in Table 2-2.

Table 2-2. CC110x Data Packet Structure
Header Length(1) Command Address(2) Data(2) Checksum
0x80 N 1 byte 3 bytes N-6 bytes 2 bytes

(1) The maximum packet length is 24 bytes; therefore, the most data bytes (N) allowed per packet is 16.
(2) If the length is equal to one (command only), these sections are not included in the packet.

The configuration for the CC110x in MSP430FRBoot is as follows:

• 250-kbps data speeds
• Carrier frequency of 902750 Hz

The data speed can be set to either 1.2 or 38.4 kbps through the variable sent by the radio_init function inside of
TI_MSPBoot_CI_PHYDL_CC1101.c. Radio frequency can be altered in TI_MSPBoot_Config.h. Changes must
be made to both the target and host firmware projects. See the CC1101 Low-Power Sub-1 GHz RF Transceiver
data sheet for more information regarding common CC110x command and other communication details.

This packet structure is identical to the BSL-based protocol, therefore it can be directly transferred from the PHY-
DL to the NWK-APP layer with the expected formatting. This is also referred to in Section 2.4.2.1.2.

2.4.1.4 Comm Sharing

The user application can use the communication interface as desired (UART, GPIO, or other purpose), because
the resources are released when the microcontroller jumps to the application. Optionally, the CI PHY-DL can be
shared with the application, allowing it to use the same communication interface and reducing the application
footprint. When this feature is enabled, the bootloader shares the function pointers from Table 2-3.

Table 2-3. Boot2App_Vector_Table Definition
Function Pointer Description

Boot2App_Vector_Table Table with addresses of shared CI PHY-DL functions

TI_MSPBoot_CI_PHYDL_Init Function used to initialize PHY-DL passing a pointer to an application t_CI_Callback

TI_MSPBoot_CI_PHYDL_Poll Function checks all relevant flags and calls corresponding callbacks when required.

TI_MSPBoot_CI_PHYDL_TxByte Function used to write the TX Buffer

The application must declare its own callbacks, which are passed during initialization of CI PHY-DL and called
when the corresponding event is detected. The PHY-DL layer is designed with low footprint being a top priority.
The application can always implement its own drivers if the PHY-DL implementation is inadequate. Application
examples showing how to share CI PHY-DL are included in the software package.

www.ti.com Implementation

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

13

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SWRS061
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

2.4.2 NWK-APP

The CI Network-Application layer implements the communication protocol, interpreting the raw data from PHY-
DL, and validates such data before executing the appropriate commands. For means of simplicity,
MSP430FRBoot only uses the BSL-based protocol.

2.4.2.1 BSL-Based Protocol

The MSP430 BSL is the standard bootloader included in MSP430 MCUs. The BSL is described in detail in
MSP430 FRAM Devices Bootloader (BSL) User's Guide.

The BSL-based protocol implemented in MSP430FRBoot maintains robustness but does not implement all the
commands and exactly the same format as the BSL protocol to reduce its footprint. The protocol is packet-based
and has the format shown in Table 2-4.

Table 2-4. BSL-Based Protocol Command Format
Header Length Payload Checksum[L] Checksum[H]

0x80 1 to PAYLOAD_MAX_SIZE(1) 1 to PAYLOAD_MAX_SIZE bytes 1 byte 1 byte

(1) PAYLOAD_MAX_SIZE is set to 20 by default (1 CMD + 3 Addr + 16 Data).

Header: Fixed to 0x80.

Length: 1 byte with the length of the payload. Valid values are 1 to PAYLOAD_MAX_SIZE.

Payload: 1 to PAYLOAD_MAX_SIZE bytes containing the command, address, and data (optional depending on
the command type).

Checksum: 16-bit CRC-CCITT of the payload.

The commands in Table 2-5 are implemented as a payload.

Table 2-5. BSL-Based Protocol Commands
Command CMD Byte1 Byte2 Byte3 Byte4 … Bytelength–1

ERASE_SEGMENT 0x12 ADDR[L] ADDR[M] ADDR[H] X X X

ERASE_APP 0x15 X X X X X X

RX_DATA_BLOCK 0x10 ADDR[L] ADDR[M] ADDR[H] DATA0 X DATAn

TX_VERSION 0x19 X X X X X X

JUMP2APP 0x1C X X X X X X

ERASE_SEGMENT: Erases the memory segment (512B in FRAM) addressed by ADDR.

ERASE_APP: Erases the application area.

RX_DATA_BLOCK: Programs n bytes of data starting at address ADDR.

TX_VERSION: Requests the MSPBoot version from the target.

JUMP2APP: Instructs the target to jump to the application image (after validation).

Each response from the target is always a single byte. Table 2-6 lists the valid values.

Table 2-6. BSL-Based Protocol Slave Response
Response Value Description

OK 0x00 Previous command executed correctly

HEADER_ERROR 0x51 Frame had incorrect header

CHECKSUM_ERROR 0x52 Frame checksum incorrect

PACKETZERO_ERROR 0x53 Length of packet = 0

PACKETSIZE_ERROR 0x54 Length of packet > MAX_LEN

UNKNOWN_ERROR 0x55 Error in protocol

Implementation www.ti.com

14 MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SLAU550
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

Table 2-6. BSL-Based Protocol Slave Response (continued)
Response Value Description

INVALID_PARAMS 0xC5 Parameters received for command are incorrect

INCORRECT_COMMAND 0xC6 Received command is not valid

MSPBOOT_VERSION 0 to 0xFF Sent as response for TX_VERSION command (default is 0xA0)

2.4.2.1.1 Security

The contents of each packet are validated with a 16-bit CRC that provides additional robustness to the
bootloader. The host can check the result of each command and retry if the previous command was
unsuccessful.

The ERASE_SEGMENT and RX_DATA_BLOCK commands can erase and write any area within the 16-bit
memory map, thus potentially corrupting the bootloader. To avoid this possibility, TI recommends including the
CONFIG_MI_MEMORY_RANGE_CHECK MI definition to validate the address before a program or erase
operation. The application area can be corrupted if the process is interrupted, so TI recommends using one of
the application validation methods described in Section 2.2.1.2 or use the dual-image approach.

2.4.2.1.2 BSL-Based Protocol Using CC110x

The CC110x implementation of this protocol follows the same guidelines used for UART, but it includes slight
changes since the information is received in complete packets instead of bytes. Because the incoming CC110x
packet outlined in Table 2-2 is the same as the expected BSL-based protocol in Table 2-4, data from the PHY-DL
layer can be directly transferred to the NWK-APP without the need for conversion.

2.4.2.1.3 Examples Using UART or CC110x

The following considerations apply when using UART with BSL-based protocol:

• Address is not required, because communication is expected to be point-to-point.
• All bytes in UART are in 8-N-1 format as described in Section 2.4.1.1.
• The target responds with the command result when ready and not when requested by the host.
• The host should wait for the response from the target after sending a command, preferably with a time-out.
• Different commands have different processing times.
• Example: Host erases the microcontroller application area.

0x80 0x01 0x15 0x64 0xA3

Header Length ERASE_APP Checksum_L Checksum_H

The target device processes the command and responds with the result when ready.

0x00

OK

The same considerations apply when using a CC110x with BSL-based protocol. The exception to this is Section
2.4.2.1.2 where it is stated that all bytes received in packets from the CC110x are in the same format expected
for BSL-based protocol; therefore, they can be directly transferred from the PHY-DL to the NWK-APP. Although
processing times are the same, over-the-air communication can be expected to be slightly slower than UART,
and host wait times should be lengthened to compensate.

www.ti.com Implementation

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

15

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

3 Customization of MSP430FRBoot
MSPBoot was designed with low cost and low footprint being top priorities; however, some applications require
or can benefit from having a higher level of security and robustness. Based on the application requirements,
different levels of customizations have been added to the MSP430FRBoot code and they can be adjusted to
particular needs. These options are selected either by adding the appropriate files or by enabling or disabling
preprocessor definitions. Table 3-1 list the options that can be configured in TI_MSPBoot_Config.h.

Table 3-1. Optional Configurations
Value Description

NDEBUG
Defined ASSERT_H functions are ignored. Watchdog is enabled.

Undefined Used during debugging. ASSERT_H functions are checked. Watchdog is disabled.
CONFIG_MI_MEMORY_RANGE_CHECK

Defined The address being erased or programmed is validated to be within the Application area.

Undefined Address being erased or programmed is not validated. Host must send correct address.
CONFIG_APPMGR_APP_VALIDATE

1 Application is validated by checking its reset vector.

2 Application is validated by checking its CRC_CCITT.
CONFIG_CI_PHYDL_COMM_SHARED

Defined Communication Interface PHY-DL layer is shared with application.

Undefined CI PHY-DL is not shared with application.
CONFIG_CI_PHYDL_TIMEOUT

Defined Detect time-out in CI PHY-DL.

Undefined CI PHY-DL does not detect time-out.
CONFIG_CI_PHYDL_ERROR_CALLBACK

Defined A callback function is called when a time-out error is detected.

Undefined A callback function is not called when a time-out is detected.

Other customizations are selected by adding and using the appropriate files in the project. Table 3-2 lists the files
that are interchangeable in the project.

Table 3-2. Customization Files
File Comments

CI PHY-DL
TI_MSPBoot_CI_PHYDL_USCI_UART.c Use eUSCI as UART

TI_MSPBoot_CI_PHYDL_CC1101.c Use CC110x

MI
TI_MSPBoot_MI_FRAM.c API used to program application FRAM

TI_MSPBoot_MI_FRAMDualImg.c API implementing dual image in FRAM

App Manager
TI_MSPBoot_AppMgr.c Standard App Manager

TI_MSPBoot_AppMgrDualImg.c App Manager that supports dual image

3.1 Predefined Customizations
The software package includes projects for Code Composer Studio and IAR IDEs that support three devices
(MSP430FR5969, MSP430FR5994, and MSP430FR2433) with two communication interfaces (UART or SPI with
CC110x) and two predefined configurations (single image, dual image) per device. In the provided CCS
examples, devices and communication interfaces are separated by project selection, and the predefined
configurations can be chosen under Project → Build Configurations → Set Active.

Customization of MSP430FRBoot www.ti.com

16 MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

4 Building MSPBoot
This section provides a step-by-step guide that explains how to build the bootloader and demo applications for a
target device. Section 5 explains how to build and use the host applications to run a demo.

4.1 LaunchPad™ Development Kit Hardware
This software package includes examples for the MSP430FR5969, MSP430FR5994, and MSP430FR2433 on
their LaunchPad™ development kits (MSP-EXP430FR5969, MSP-EXP430FR5994, and MSP-EXP430FR2433,
respectively) (see Figure 4-1).

Figure 4-1. MSP-EXP430FR5969, MSP-EXP430FR5994, and MSP-EXP430FR2433

The bootloader and demo applications use the same LED (LED1 and LED2) and push button (S1 and S2)
notations across all variants of the LaunchPad development kits. The pin assignments that correspond to these
I/O peripherals are different for each board derivative. For ease of use, the examples have been designed so
that the host and target LaunchPad development kits should be the same derivative, although this can be
modified for different configurations if desired.

www.ti.com Building MSPBoot

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

17

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

4.2 CC110x Hardware
Two hardware options are available for using CC110x communication with the MSP430FRBoot examples. The
first is a combination of the CC1101EMK868-915 and BOOST-CCEMADAPTER, but the simplest solution is with
a 430BOOST-CC110L. Figure 4-2 shows both options.

Figure 4-2. CC1101EMK868-915, BOOST-CCEMADAPTER, and 430BOOST-CC110L

Two units of either option are required, one for the host device and the other for the target. Both solutions are
compatible across all LaunchPad development kits and are directly connected such that no other hardware is
required to run the provided examples. More information about the ecosystem for the LaunchPad development
kits and BoosterPack plug-in modules can be found on the TI LaunchPad tools page.

4.3 Software
The software package includes the following folders:

• Target: Target bootloader and demo applications.
– FR5969_UART, FR5969_CC1101, FR5994_UART, FR5994_CC1101, FR2433_UART, FR2433_CC1101:

Projects that support the appropriate FRAM derivative with the communication specified.
• CCS: CCS project files.

– MSPBoot: CCS project files for the bootloader.
• Config: CCS Linker files for the bootloader.

– App1_MSPBoot: CCS project files for Application Example 1.
• Config: CCS Linker files for App1.

– App2_MSPBoot: CCS project files for Application Example 2.
• Config: CCS Linker files for App2.

• Src: Source code.
– MSPBoot: Source code for the bootloader.

• AppMgr: App Manager source code files.
• Comm: CI source code files.
• MI: MI source code files.

– App1: Source code for Application Example 1.
– App2: Source code for Application Example 2.

• Host: Host demo application.
– MSP-EXP430FR5969, MSP-EXP430FR5994, MSP-EXP430FR2433: Host project that supports the

corresponding LaunchPad development kits (see Section 4.3.2).
• CCS: CCS project files.
• Src: Source code.

– TargetApps: Converted target application examples.
• 430txt_converter: Scripts and applications used to convert CCS output files to host TargetApps. See Section

4.3.2 for details.

Building MSPBoot www.ti.com

18 MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com/launchpad
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

• linkerGen: Creates custom command linker file for the specific device derivative. See Section 4.3.3 for
details.

4.3.1 Building the Target Software

1. Select a target processor: MSP430FR5969, MSP430FR5994, or MSP430FR2433.
2. Open CCS and select or create a workspace.
3. Import the MSPBoot CCS projects into the workspace. The projects are located in

MSP430FRBoot_<version>\Target_CCS\<target>\CCS\

Figure 4-3. Import MSPBoot CCS Projects
4. Build the bootloader.

a. Select the MSPBoot project.
b. Select the proper target configuration based on Section 3.1.

www.ti.com Building MSPBoot

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

19

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

Figure 4-4. Select Target Configuration

c. Build and Download . Only the target LaunchPad development kit should be connected to the
PC.

5. Build both applications.
a. Select the App1_MSPBoot project and select the same configuration as the bootloader:

Figure 4-5. Select App1_MSPBoot Project

b. Click the Build project. The output is generated after this step, but the output will be converted and
downloaded through the Host processor. Section 4.3.2 explains how to convert the image, and Section 5
explains how to download it using a host demo.

c. Repeat Step 5 for App2_MSPBoot.

Building MSPBoot www.ti.com

20 MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

4.3.2 Convert Application Output Images

Find the .txt image in the App1 or App2 project.

This .txt file does not include CRC, and it needs to be converted to a format usable by the Host project. To make
this easier, the software package includes 430txt2C, a Python script used to convert an MSP430 .txt file to a C
array:

• Find the convert tool in the folder: "MSP430FRBoot_<version>\Utilities\430txt_converter".
• Readme.txt - Shows how to use the convert tool
• demo_test.bat - Needs to be modified by your use case and call 430txt2c.py
• 430txt2c.py - Converts .txt file to .c file based on the command in demo_test.bat

Note

Install Python 3 before using this tool.

4.3.3 Generating Linker Files

Linker files for CCS and IAR are included for all target configurations, and they can be used as a starting point
for other devices or custom projects. MSP430FRBoot includes a linker generator script that can also help with
this process.

• Find the convert tool in the folder "MSP430FRBoot_<version>\Utilities\linkerGen"
• Readme.txt - Shows how to use the convert tool
• demo_link.bat - Needs to be modified by your use case and call "MSPFRBOOT_Linkergen_v2.py"
• MSPFRBOOT_Linkergen_v2.py - Generates the linker files based on the command in demo_link.bat

Note
Install Python 3 before using this tool.

www.ti.com Building MSPBoot

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

21

Copyright © 2020 Texas Instruments Incorporated

https://www.python.org/downloads/
https://www.python.org/downloads/
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

5 Demo Using FRAM LaunchPad Development Kit as Host
This software package includes projects and source code for a host device running on MSP-EXP430FR5969,
MSP-EXP430FR5994, and MSP-EXP430FR2433 LaunchPad development kits. Each supports its own
MSPBoot protocol with all target derivatives. As an example, the MSP-EXP430FR5969 supports
MSP430FR5969 MSPBoot targets for either UART or CC110x communication for both single-image or dual-
image modes, and so forth. This can be tailored such that any LaunchPad development kit host can be used to
program any target MSP derivative with the proper MSP430FRBoot firmware.

5.1 Hardware
From the options described earlier, this demo uses FRAM LaunchPad development kits to connect to a target of
the same derivative. For UART communication, the eUSCI TXD and RXD lines need to be connected in addition
to ground. Make sure that the host TXD line is connected to the target RXD line, and the host RXD line is
connected to the target TXD line.

No wiring is required between the target and host devices when using CC110x communication. Simply connect
the CC1101EMK868-915 with BOOST-CCEMADAPTER or the 430BOOST-CC110L to the corresponding
LaunchPad development kit or device pins to complete the setup. Make sure that the BoosterPack plug-in
modules are correctly oriented on the LaunchPad development kit boards.

Table 5-1 lists the specific eUSCI peripheral used for each MSP device and communication type.

Table 5-1. eUSCI Peripheral Connections

CI Pin
MSP Derivative

MSP430FR5969 MSP430FR5994 MSP430FR2433

UART

RXD P2.6/UCA1RXD P6.1/UCA3RXD P1.5/UCA0RXD

TXD P2.5/UCA1TXD P6.0/UCA3TXD P1.4/UCA0TXD

GND

SPI (CC110x)

MISO P1.7/UCB0SOMI P5.1/UCB1SOMI P2.5/UCA1SOMI

MOSI P1.6/UCB0SIMO P5.0/UCB1SIMO P2.6/UCA1SIMO

CLK P2.2/UCB0CLK P5.2/UCB1CLK P2.4/UCA1CLK

SS P3.0 P4.4 P2.2

5.2 Building the Host Project
The host project can be built following the next steps:

1. Import the project to CCS. The project files are located in MSPBoot\Host\ <host>\CCS, where <host> is the
variant of the LaunchPad development kit (MSP-EXP430FR5969, MSP-EXP430FR5994, or MSP-
EXP430FR2433).

2. Select the target derivative. This can be selected using the different target configurations in CCS (see Figure
5-1).

Demo Using FRAM LaunchPad Development Kit as Host www.ti.com

22 MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

Figure 5-1. Target Selection for Host Project in CCS
3. Build and download the application. Only the host LaunchPad development kit should be connected to the

PC at this time to avoid FET target confusion in CCS.

Prebuilt images are included, but target Applications can be replaced or updated by following the procedure
described in Section 4.3.1 and Section 4.3.2.

5.3 Running the Demo
The host LaunchPad development kit project sends two different images to the target device, using a push
button for user interaction. USB connection to a computer is not required on either LaunchPad development kit
to run the demo; however, each kit should be powered either by a USB connection through the eZ-FET or with a
steady 3.3-V external power supply to the VCC and GND pins (ensure that the eZ-FET is disconnected in this
instance). Because both the host and target LaunchPad development kits are of the same derivative, it might be
helpful to label each board accordingly to avoid confusion. The demo is run using these steps, regardless of
communication type or image mode used:

1. Build and download MSPBoot as described in Section 4.3.1, and build App1 and App2.
2. Convert App1 and App2 according to Section 4.3.2.

Note

Batch file PrepareCCSOutput_[FR derivative].bat shows how to convert to C and copy the output
files. In this host implementation, the MSP430 MCU holds the target image without CRC, so it
calculates the CRC value assuming that unimplemented locations are 0xFF.

3. Build and download the host application as described in Section 5.2.
4. Connect the boards according to the desired communication type (UART as described in Section 5.1 or one

of the CC110x solutions described in Section 4.2).
5. Reset and execute code in both devices.
6. To enter the target bootloader mode (indicated by both LED1 and LED2 remaining on):

a. If the target does not have a valid application (default), the target stays in bootloader mode.
b. Bootloader mode can be forced in hardware by pressing and holding the S2 button on the target device

while pressing and releasing the reset button.

www.ti.com Demo Using FRAM LaunchPad Development Kit as Host

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

23

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

c. If running an application:
i. APP1 jumps to bootloader mode when the S2 button is pressed on the target device.
ii. APP2 jumps to bootloader mode when it receives the Force Boot command (supported only if CI PHY-

DL is shared).
7. Press the S1 button on the host board. The host device performs the following sequence of commands:

a. Toggles LED1 twice.
b. Sends “Force Boot” command (0xAA).

i. If the target device is already in bootloader mode, it discards the packet, because the CRC is incorrect.
ii. If the target is running APP2, the target device enters bootloader mode.

c. Requests the bootloader version (sends the TX_VERSION command).
i. If the target response is 0xA0 (expected from BSL protocol), the host continues.
ii. If the target response is any other value, the host aborts transaction.

d. Erases the target application area (sends the ERASE_APP command).
e. Sends APP1 (uses the RX_DATA_BLOCK commands).
f. Programs CRC of APP1 (uses the RX_DATA_BLOCK command).
g. Forces the target application to run (sends the JUMP2APP command).
h. Toggles LED1 twice to indicate successful transfer, and keeps LED1 on to show that the host is now ready

to send APP2.
8. Target starts running APP1 upon completion of transfer.

a. The target device blinks LED1.
b. LED1 blinks at a periodic interval using the timer.
c. Press the S2 button on the target board to enter bootloader mode.

9. With the target in bootloader mode, press S2 button on the host board to send APP2. When finished and
done toggling, LED1 of the host board stays off to indicate that APP1 is now ready to be sent.

10.Target starts running APP2 upon completion of transfer.
a. The target device blinks LED2.
b. Press the S2 button on the target board to toggle LED2.
c. Because the CI is initialized, the host can send a Force Boot command to force bootloader mode in the

target device at the start of a new transfer sequence.
11.Press the S1 button on the host to start a new sequence sending APP1 again.

Dual-image mode contains a brief pause from the host after the transfer is complete while it validates the
download area, transfers the memory into the application space, and erases the download area after the
application area is validated by a CRC-CCITT check.

Note

Due to a pin conflict on the MSP-EXP430FR2433, disconnet LED2 from P1.1 by removing the jumper
and physically wire to P1.2, instead.

Demo Using FRAM LaunchPad Development Kit as Host www.ti.com

24 MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

6 Porting the target side example projects to other MSP430FR devices
This section lists an example of steps to porting the target side example projects to other MSP430FR devices.
Take the MSP430FR2355 in IAR and use UART single image mode as an example.

1. Choose FR2433_UART_Single target demo projects as the template. The demo project is located at
"MSP430FRBoot_<version>\Target_IAR\MSP430FR2433_TARGET\FR2433_UART_Single".

2. Copy the "FR2344_UART_Single" project and the linker folder named "FR2433_Linker_files" into another
folder, as shown in Figure 6-1. For MSP430fr2xx4xx family devices, choose the MSP430FR2433 target demo
projects as a template. For MSP430FR5xx6xx family devices, choose the MSP430FR5969 target demo
projects.

Figure 6-1. Copy UART single project and the linker folder to other folder
3. Open FR2344_UART_Single project folder. Change the workspace name from

"MSP430FR2433_UART_Single" to "MSP430FR2355_UART_Single" (based on your device).

Figure 6-2. Change the workspace name
4. Open the workspace and the three included projects.

a. "App1_UART_Single" uses a button to jump from application to boot code.
b. "App2_UART_Single" uses UART to receive a jump command, then jump from application to boot code.
c. "Boot_UART_Single" is the boot side code.

Figure 6-3. Projects in the workspace
5. Modify the projects based on your application case, like different PGIOs or UART interfaces.

a. Choose boot project "Boot_UART_Single" and search "//Need to change" in the whole project to find the
files that need to be modified, as shown below.

www.ti.com Porting the target side example projects to other MSP430FR devices

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

25

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

Figure 6-4. Find results in the boot project
b. Open the files that need to be changed.
c. Search "//Simple change" in each file to find the area that needs to be modified, based on your

application. Figure 6-5 shows a search in "main.c". You need to change the registers and GPIOs based on
your application. (For more details about how to make the change, you can compare the differences
between MSP430FR2433, MSP430FR5969, and MSP430FR5994)

Figure 6-5. Find the result of the simple change to change the GPIO
d. Make the same modification in the "App1_UART_Single" or "App2_UART_Single" projects with the boot

project as steps 5.a to 5.c.
6. Open the folder "Utilities\linkerGen" and read the file "Readme.txt" to know how to generate the linker files

based on your device.

Figure 6-6. Generate the linker file successfully MSP430FR2355
7. Delete the linker files for MSP430FR2433 in the linker folder "FR2433_Linker_files" and copy the newly

generated linker files into this folder.

Figure 6-7. Move the linker file to the folder

Porting the target side example projects to other MSP430FR devices www.ti.com

26 MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

8. Open the boot project "Boot_UART_Single" options.

a. Change the device to MSP430FR2355 (based on your device).
b. Change the definition of "__MSP430FR2433__" to "__MSP430FR2355__".
c. Change the newly genreated linker file's name.
d. Do steps 8.a through 8.c with the application's project.

Figure 6-8. Configure the project option
9. Build the application project to generate the .txt file.
10.Convert the .txt file into a .c file by using the tools in folder "Utilities\430txt_converter". This makes the image

file easy for the host project to use.

www.ti.com Porting the target side example projects to other MSP430FR devices

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

27

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

Figure 6-9. Generate the .txt file and convert it to a .c file
11.Copy the .c files generated by the converter into the host project folder "MSP430FR2433_Host\TargetApps"
12.Open the host project named "UART_Single".

a. Change the .c file's name used in step 10, as shown in Figure 6-10

Figure 6-10. Change the image name in the host
b. Change the start address of the CRC_Addr to 0x8000, which is the start FRAM address of

MSP430FR2355, and the App_StartAddress to 0x8002. (For CCS projects, App_StartAddress should be
change to 0x8003.)

Figure 6-11. Change the address information
c. If you only have App1 and don't have App2, you can comment the code "sentBSLFlipFlop = !

sentBSLFlipFop;" to make the host download App1 only.
13.Test the code in hardware. If you want to debug your application code, you can use the normal linker file first

(maybe some variable undefined error, just comment them). After debugging, change it back to the linker file
generated by the Python scripter.

Porting the target side example projects to other MSP430FR devices www.ti.com

28 MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

7 References
1. MSPBoot – Main Memory Bootloader for MSP430 Microcontrollers
2. MSP430™ FRAM Devices Bootloader (BSL) User's Guide
3. MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's Guide
4. MSP430FR4xx and MSP430FR2xx Family User's Guide
5. CC1101 Low-Power Sub-1 GHz RF Transceiver

8 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from March 31, 2020 to July 21, 2020 Page
• Updated list of IDEs and number of devices in Section 3.1 ...16
• Changed "Perl script" to "Python script" in Section 4.3.2 ...21
• Updated a list of start addresses.. 25
• Updated Section 6 ... 25

www.ti.com References

SLAA721E – OCTOBER 2016 – REVISED MARCH 2020
Submit Document Feedback

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

29

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SLAA600
http://www.ti.com/lit/pdf/SLAU550
http://www.ti.com/lit/pdf/SLAU367
http://www.ti.com/lit/pdf/SLAU445
http://www.ti.com/lit/pdf/SWRS061
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA721E&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	1.1 Glossary
	1.2 Conventions

	2 Implementation
	2.1 Main
	2.2 Application Manager
	2.2.1 Bootloader and Application Detection
	2.2.1.1 Forcing Bootloader Mode
	2.2.1.2 Application Validation
	2.2.1.3 Jumping to Application

	2.2.2 Memory Assignment
	2.2.3 Interrupt Vectors in FRAM Devices

	2.3 Memory Interface (MI)
	2.3.1 Dual Image Support

	2.4 Communication Interface (CI)
	2.4.1 Physical-DataLink (PHY-DL)
	2.4.1.1 UART
	2.4.1.2 SPI
	2.4.1.3 CC110x
	2.4.1.4 Comm Sharing

	2.4.2 NWK-APP
	2.4.2.1 BSL-Based Protocol
	2.4.2.1.1 Security
	2.4.2.1.2 BSL-Based Protocol Using CC110x
	2.4.2.1.3 Examples Using UART or CC110x

	3 Customization of MSP430FRBoot
	3.1 Predefined Customizations

	4 Building MSPBoot
	4.1 LaunchPad™ Development Kit Hardware
	4.2 CC110x Hardware
	4.3 Software
	4.3.1 Building the Target Software
	4.3.2 Convert Application Output Images
	4.3.3 Generating Linker Files

	5 Demo Using FRAM LaunchPad Development Kit as Host
	5.1 Hardware
	5.2 Building the Host Project
	5.3 Running the Demo

	6 Porting the target side example projects to other MSP430FR devices
	7 References
	8 Revision History

