

TXB0104-Q1 Automotive 4-Bit Bidirectional Voltage-Level Translator with Automatic Direction Sensing and ±15kV ESD Protection

1 Features

- Qualified for automotive applications
- AEC-Q100 qualified with the following results
 - Device temperature grade 1: –40°C to +125°C ambient operating temperature range
- 1.2V to 3.6V on A port and 1.65V to 5.5V on B port $(V_{CCA} \le V_{CCB})$
- V_{CC} isolation feature if either V_{CC} input is at GND, all outputs are in the high-impedance state
- OE input circuit referenced to V_{CCA}
- I_{off} supports partial-power-down mode operation
- Latch-up performance exceeds 100mA per JESD 78, class II
- ESD protection exceeds JESD 22
 - A port
 - ±2500V human-body model (A114-B)
 - ±1000V charged-device model (C101)
 - B port
 - ±15000V human-body model (A114-B)
 - ±1000V charged-device model (C101)

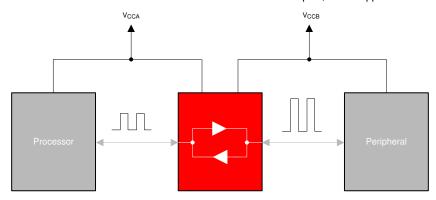
2 Applications

- Automotive infotainment
- Advanced driver assistance system (ADAS)
- **Telematics**

3 Description

Voltage-level translators address the challenges posed by simultaneous use of different supply-voltage levels on the same circuit board. This 4-bit noninverting translator uses two separate configurable power-supply rails. The A port is designed to track V_{CCA}. VCCA accepts any supply voltage from 1.2V to 3.6V. The B port is designed to track V_{CCB} . VCCB accepts any supply voltage from 1.65V to 5.5V. This allows for universal low-voltage bidirectional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V, 3.3V, and 5V voltage nodes. V_{CCA} should not exceed V_{CCB} .

When the output-enable (OE) input is low, all outputs are placed in the high-impedance state. To establish high-impedance state during power up or power down, OE should be tied to GND through a pulldown resistor: the minimum value of the resistor is determined by the current-sourcing capability of the


The TXB0104 is designed so that the OE input circuit is supplied by V_{CCA} .

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Package Information

PART NUMBER (1)	PACKAGE	PACKAGE SIZE ⁽²⁾		
	PW (TSSOP, 14)	5.00mm × 4.40mm		
TXB0104-Q1	RGY (VQFN, 14)	3.50mm × 3.50mm		
1780104-Q1	RUT (UQFN, 12)	2.00mm × 1.70mm		
	BQA (WQFN, 14)	3.00mm × 2.5mm		

- (1) For more information, see Section 11.
- The package size (length × width) is a nominal value and includes pins, where applicable.

Typical Application Block Diagram for TXB010X

Table of Contents

1 Features1	5.18 S
2 Applications1	(BQ
3 Description1	5.19 S
4 Pin Configuration and Functions3	(Oth
5 Specifications5	5.20 S
5.1 Absolute Maximum Ratings5	5.21 C
5.2 ESD Ratings 5	5.22 T
5.3 Recommended Operating Conditions5	6 Param
5.4 Thermal Information6	
5.5 Electrical Characteristics (BQA)6	7.1 Ov
5.6 Electrical Characteristics (Other Packages)7	
5.7 Timing Requirements: V _{CCA} = 1.2V8	
5.8 Timing Requirements: V _{CCA} = 1.5V ± 0.1V8	
5.9 Timing Requirements: V _{CCA} = 1.8V ± 0.15V8	
5.10 Timing Requirements: V _{CCA} = 2.5V ± 0.2V9	
5.11 Timing Requirements: $V_{CCA} = 3.3V \pm 0.3V9$	
5.12 Switching Characteristics: V _{CCA} = 1.2V (BQA)9	
5.13 Switching Characteristics: V _{CCA} = 1.2V (Other	8.4 La
Packages)9	9 Device
5.14 Switching Characteristics: V _{CCA} = 1.5V ± 0.1V	9.1 Re
(BQA)10	9.2 Su
5.15 Switching Characteristics: V _{CCA} = 1.5V ± 0.1V	9.3 Tra
(Other Packages)10	9.4 Ele
5.16 Switching Characteristics: V _{CCA} = 1.8V ± 0.15V	9.5 Gl
(BQA)10	10 Revis
5.17 Switching Characteristics: V _{CCA} = 1.8V ± 0.15V	11 Mech
(Other Packages)11	Inform

(BQA)	11
5.19 Switching Characteristics: V _{CCA} = 2.5V ± 0.2V	1 1
(Other Packages)	11
5.20 Switching Characteristics: V _{CCA} = 3.3V ± 0.3V	12
5.21 Operating Characteristics	
5.22 Typical Characteristics	
6 Parameter Measurement Information	
7 Detailed Description	15
7.1 Overview	
7.2 Functional Block Diagram	15
7.3 Feature Description	
7.4 Device Functional Modes	
8 Application and Implementation	
8.1 Application Information	18
8.2 Typical Application	
8.3 Power Supply Recommendations	
8.4 Layout	
9 Device and Documentation Support	
9.1 Receiving Notification of Documentation Updates.	
9.2 Support Resources	
9.3 Trademarks	
9.4 Electrostatic Discharge Caution	
9.5 Glossary	
10 Revision History	21
11 Mechanical, Packaging, and Orderable	
Information	22

4 Pin Configuration and Functions

Figure 4-1. PW, RGY, and RUT Package (Top View)

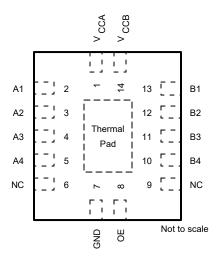


Figure 4-2. BQA Package, 14-Pin WQFN With Exposed Thermal Pad (Top View)

NC - No internal connection

For RGY, if the exposed center pad is used, it must be connected only to as a secondary ground or left electrically open.

Table 4-1. Pin Functions

Р	IN	I/O	DESCRIPTION
NO.	NAME	1/0	DESCRIPTION
1	VCCA	I	A-port supply voltage 1.2V \leq V _{CCA} \leq 3.6V and V _{CCA} \leq V _{CCB} .
2	A1	I/O	Input/output 1. Referenced to V _{CCA} .
3	A2	I/O	Input/output 2. Referenced to V _{CCA} .
4	A3	I/O	Input/output 3. Referenced to V _{CCA} .
5	A4	I/O	Input/output 4. Referenced to V _{CCA} .
6	NC	_	No connection. Not internally connected.
7	GND	_	Ground
8	OE	I	3-state output-mode enable. Pull OE low to place all outputs in 3-state mode. Referenced to V _{CCA} .
9	NC	_	No connection. Not internally connected.
10	B4	I/O	Input/output 4. Referenced to V _{CCB} .
11	В3	I/O	Input/output 3. Referenced to V _{CCB} .
12	B2	I/O	Input/output 2. Referenced to V _{CCB} .
13	B1	I/O	Input/output 1. Referenced to V _{CCB} .
14	VCCB	I	B-port supply voltage $1.65V \le V_{CCB} \le 5.5V$.

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT	
V _{CCA}	Supply voltage		-0.5	4.6	V	
V _{CCB}	Supply voltage		-0.5	6.5	\ \ \	
V	Input voltage	A port	-0.5	4.6	V	
V _I	input voitage	B port	-0.5	6.5	V	
V	Voltage applied to any output in the high-impedance or power-	A port	-0.5	4.6	V	
V _O	off state	B port	-0.5	6.5]	
· · · · · · · · · · · · · · · · · · ·	Valtage applied to any output in the high or law state(2)	A port	-0.5	V _{CCA} + 0.5	V	
Vo	Voltage applied to any output in the high or low state ⁽²⁾	B port	-0.5	V _{CCB} + 0.5	V	
I _{IK}	Input clamp current	V _I < 0		-50	mA	
I _{OK}	Output clamp current	V _O < 0		-50	mA	
Io	Continuous output current			±50	mA	
	Continuous current through V _{CCA} , V _{CCB} , or GND			±100	mA	
T _{stg}	Storage temperature		-65	150	°C	

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

5.2 ESD Ratings

				VALUE	UNIT
V _(ESD)		Human-body model (HBM), per AEC	A Port	±2500	
	Electrostatic discharge	Q100-002 ⁽¹⁾	B Port	±15000	
		Charged-device model (CDM), per AEC	A Port	±1000	V
		Q100-011	B Port	±1000	

⁽¹⁾ AEC Q100-002 indicates that HBM stressing must be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1) (2)

			V _{CCA}	V _{CCB}	MIN	MAX	UNIT
V _{CCA}	Supply voltage				1.2	3.6	V
V _{CCB}	Supply voltage				1.65	5.5	v
\/	High-level input voltage	Data inputs	1.2V to 3.6V	1.65V to 5.5V	$V_{CCI} \times 0.65^{(3)}$	V _{CCI}	V
V _{IH}	i ligii-level liiput voltage	OE	1.2V to 3.6V	1.65V to 5.5V	V _{CCA} × 0.65	5.5	V
V _{IL}	Low-level input voltage	Data inputs	1.2V to 5.5V	1.65V to 5.5V	0	$V_{\rm CCI} \times 0.35^{(3)}$	V
VIL.		OE	1.2V to 3.6V	1.65V to 5.5V	0	V _{CCA} × 0.35	v
	Voltage range applied to	A-port			0	3.6	
Vo	any output in the high-	B-port	1.2V to 3.6V	1.65V to 5.5V	0	5.5	V
		A-port inputs	1.2V to 3.6V	1.65V to 5.5V		40	
Δt/Δν	Input transition Rise or fall rate			1.65V to 3.6V		40	ns/V
		B-port inputs	1.2V to 3.6V	4.5V to 5.5V		30	

⁽²⁾ The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.

5.3 Recommended Operating Conditions (continued)

over operating free-air temperature range (unless otherwise noted)(1) (2)

		V _{CCA}	V _{CCB}	MIN	MAX	UNIT
T _A	Operating free-air temperature			-40	125	°C

- The A and B sides of an unused data I/O pair must be held in the same state, that is, both at V_{CCI} or both at GND. V_{CCA} must be less than or equal to V_{CCB} and must not exceed 3.6V.
- V_{CCI} is the supply voltage associated with the input port.

5.4 Thermal Information

			TXB01	04-Q1		
	THERMAL METRIC (1)	PW	RGY	RUT	BQA	UNIT
		14 PINS	14 PINS	12 PINS	14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	121	52.8	119.8	77.1	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	50	67.7	42.6	80.7	
$R_{\theta JB}$	Junction-to-board thermal resistance	62.8	28.9	52.5	46.9	°C/W
ΨЈТ	Junction-to-top characterization parameter	6.4	2.6	0.7	6.1	
ΨЈВ	Junction-to-board characterization parameter	62.2	29.0	52.3	46.8	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	9.3	N/A	23.3	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application note.

5.5 Electrical Characteristics (BQA)

over recommended operating free-air temperature range (unless otherwise noted) (1) (2)

D.4	DAMETED	TEST CONDITIONS	v	V		T _A = 25	°C	-40°C t	to 125°0	C	UNIT
PA	RAMETER	TEST CONDITIONS	V _{CCA}	V _{CCB}	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
.,		204	1.2V			1.1					
V _{OHA}		I _{OH} = –20μA	1.4V to 3.6V					V _{CCA} - 0.4			V
.,		1 - 204	1.2V			0.9					V
V _{OLA}		I _{OL} = 20μA	1.4V to 3.6V							0.4	\ \ \
V _{OHB}		I _{OH} = -20μA		1.65V to 5.5V				V _{CCB} - 0.4			V
V _{OLB}		I _{OL} = 20μA		1.65V to 5.5V						0.4	V
I _I	OE	V _I = V _{CCI} or GND	1.2V to 3.6V	1.65V to 5.5V			±1			±5	μA
	A port	V_{I} or $V_{O} = 0$ to 3.6V	0V	0V to 5.5V			±1			±10	
I _{off}	B port	V_{I} or $V_{O} = 0$ to 5.5V	0V to 3.6V	0V			±1			±10	μA
I _{OZ}	A or B port	OE = GND	1.2V to 3.6V	1.65V to 5.5V			±1			±10	μA
			1.2V	1.65V to 5.5V		0.4					
		$V_I = V_{CCI}$ or GND,	1.4V to 3.6V	1.65V to 5.5V						20	μΑ
I _{CCA}		I _O = 0	3.6V	0V						15	
			0V	5.5V						-15	
			1.2V	1.65V to 5.5V		3.4					
ļ.		$V_I = V_{CCI}$ or GND,	1.4V to 3.6V	1.65V to 5.5V						20	
I _{CCB}		I _O = 0	3.6V	0V						-15	μΑ
			0V	5.5V						15	
		$V_I = V_{CCI}$ or GND,	1.2V	1.65V to 5.5V		3.5					μΑ
I _{CCA} +	CCB	$I_0 = 0$	1.4V to 3.6V	1.65V to 5.5V						40	

Product Folder Links: TXB0104-Q1

over recommended operating free-air temperature range (unless otherwise noted) (1) (2)

DA	DAMETED	AMETER TEST CONDITIONS	V V	V	T _A = 25°C		°C	-40°C	C	UNIT		
FA	RAIVIETER	TEST CONDITIONS	V _{CCA}	V _{CCB}	MIN	TYP	MAX	MIN	TYP	MAX	UNII	
		$V_I = V_{CCI}$ or GND,	1.2V	1.65V to 5.5V		0.4						
I _{CCZA}		I _O = 0, OE = GND	1.4V to 3.6V	1.65V to 5.5V						15	μA	
		$V_I = V_{CCI}$ or GND,	1.2V	1.65V to 5.5V		3.3					_	
I _{CCZB}		I _O = 0, OE = GND	1.4V to 3.6V	1.65V to 5.5V						15	μA	
Ci	OE	BQA package	1.2V to 3.6V	1.65V to 5.5V		4					pF	
C	A port	BQA package	1.2V to 3.6V	- 1.2V to 3.6V 1.65V to 5.5V -	1 65V to 5 5V		6					pF
C _{io}	B port	BQA package				13					pF	

- V_{CCI} is the supply voltage associated with the input port. V_{CCO} is the supply voltage associated with the output port.

5.6 Electrical Characteristics (Other Packages)

over recommended operating free-air temperature range (unless otherwise noted) (1) (2)

D.4	DAMETER	TEST COMPLETIONS		· ·		T _A = 25	°C	-40°C t	o 125°	С	
PARAMETER		TEST CONDITIONS	V _{CCA}	V _{CCB}	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
\/		1 - 20	1.2V			1.1					V
V_{OHA}		I _{OH} = -20μA	1.4V to 3.6V					V _{CCA} - 0.4			V
\/		I = 20A	1.2V			0.9					V
V_{OLA}		I _{OL} = 20μA	1.4V to 3.6V							0.4	\ \ \
V _{OHB}		I _{OH} = -20μA		1.65V to 5.5V				V _{CCB} - 0.4			V
V _{OLB}		I _{OL} = 20μA		1.65V to 5.5V						0.4	V
I _I	OE	V _I = V _{CCI} or GND	1.2V to 3.6V	1.65V to 5.5V			±1			±5	μΑ
	A port	V_{I} or $V_{O} = 0$ to 3.6V	0V	0V to 5.5V			±1			±10	
l _{off}	B port	V_I or $V_O = 0$ to 5.5V	0V to 3.6V	0V			±1			±10	μA
I _{OZ}	A or B port	OE = GND	1.2V to 3.6V	1.65V to 5.5V			±1			±10	μA
			1.2V	1.65V to 5.5V		0.06					
		$V_I = V_{CCI}$ or GND,	1.4V to 3.6V	1.65V to 5.5V						20	μA
I _{CCA}		I _O = 0	3.6V	0V						15	μA
			0V	5.5V						-15	
			1.2V	1.65V to 5.5V		3.4					
		$V_I = V_{CCI}$ or GND,	1.4V to 3.6V	1.65V to 5.5V						20	
I _{CCB}		I _O = 0	3.6V	0V						-15	μA
			0V	5.5V						15	
		$V_I = V_{CCI}$ or GND,	1.2V	1.65V to 5.5V		3.5					
ICCA 1	- I _{CCB}	I _O = 0	1.4V to 3.6V	1.65V to 5.5V						40	μA
		$V_I = V_{CCI}$ or GND,	1.2V	1.65V to 5.5V		0.05					
I _{CCZA}		I _O = 0, OE = GND	1.4V to 3.6V	1.65V to 5.5V						15	μA
		$V_I = V_{CCI}$ or GND,	1.2V	1.65V to 5.5V		3.3					
I _{CCZB}		I _O = 0, OE = GND	1.4V to 3.6V	1.65V to 5.5V			,			15	μA
C _i	OE	PW, RGY, BQA package	1.2V to 3.6V	1.65V to 5.5V		3					pF
•		RUT package	1.2V to 3.6V	1.65V to 5.5V		4					pF

5.6 Electrical Characteristics (Other Packages) (continued)

over recommended operating free-air temperature range (unless otherwise noted) (1) (2)

D/	RAMETER	TEST CONDITIONS	V _{CCA}	V _{CCB}	T _A = 25°C			-40°C	С	UNIT	
-	NIANIL I LIX	TEST CONDITIONS	♥ CCA	▼ CCB	MIN	TYP	MAX	MIN	TYP	MAX	ONT
	A port	PW, RGY, BQA package				5					pF
		RUT package	1.2V to 3.6V	1.65V to 5.5V		6					pF
C _{io}	B port	PW, RGY, BQA package				11					pF
	в роп	RUT package				13					pF

- An external driver must source at least I_{BHLO} to switch this node from low to high. An external driver must sink at least I_{BHHO} to switch this node from high to low.

5.7 Timing Requirements: V_{CCA} = 1.2V

 $T_A = 25^{\circ}C, V_{CCA} = 1.2V$

			V _{CCB} = 1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	UNIT
			TYP	TYP	TYP	TYP	ONIT
	Data rate	For PW, RGY, BQA, RUT package	20	20	20	20	Mbps
t _w	Pulse duration	Data inputs	50	50	50	50	ns

5.8 Timing Requirements: $V_{CCA} = 1.5V \pm 0.1V$

over recommended operating free-air temperature range, V_{CCA} = 1.5V ± 0.1V (unless otherwise noted)

			V _{CCB} = 1.8V ± 0.15V		V _{CCB} = 2.5V ± 0.2V		V _{CCB} = 3.3V ± 0.3V		V _{CCB} = 5V ± 0.5V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Data rate	For PW, RGY, BQA package		40		40		40		40	Mbps
	Data Tate	For RUT package		37		37		40		40	Mbps
t _w	Pulse duration	Data inputs, For PW, RGY, BQA package	25		25		25		25		ns
	Data inputs, For RUT package		27		27		25		25		ns

5.9 Timing Requirements: V_{CCA} = 1.8V ± 0.15V

over recommended operating free-air temperature range, V_{CCA} = 1.8V ± 0.15V (unless otherwise noted)

			V _{CCB} = 1.8V ± 0.15V		V _{CCB} = 2.5V ± 0.2V		V _{CCB} = 3.3V ± 0.3V		V _{CCB} = 5V ± 0.5V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Data rate	For PW, RGY, BQA package		55		55		55		55	Mbps
	Data Tate	For RUT package		37		37		55		55	Mbps
t _w	Pulse duration	Data inputs, For PW, RGY, BQA package	18		18		18		18		ns
	Data inputs, For RUT packag		27		27		18		18		ns

Product Folder Links: TXB0104-Q1

5.10 Timing Requirements: $V_{CCA} = 2.5V \pm 0.2V$

over recommended operating free-air temperature range, V_{CCA} = 2.5V \pm 0.2V (unless otherwise noted)

			V _{CCB} = 2 0.2\		V _{CCB} = 3 0.3V	.3V ±	V _{CCB} = 5V	± 0.5V	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
	Data rate	For PW, RGY, BQA package		75		80		100	Mbps
	Data Tate	For RUT package		65		80		85	Mbps
	Pulse duration	Data inputs, For PW, RGY, BQA package	13		12		10		ns
l _W	Puise duration	Data inputs, For RUT package	15		12		11		ns

5.11 Timing Requirements: $V_{CCA} = 3.3V \pm 0.3V$

over recommended operating free-air temperature range, V_{CCA} = 3.3V \pm 0.3V (unless otherwise noted)

			V _{CCB} = 3.3V	± 0.3V	V _{CCB} = 5V ±	£ 0.5V	UNIT
			MIN	MAX	MIN	MAX	ONII
	Data rate	For PW, RGY, BQA package		100		100	Mbps
	Data rate	For RUT package		90		90	Mbps
	Pulse duration	Data inputs, For PW, RGY, BQA package	10		10		ns
'W	Puise duration	Data inputs, For RUT package	11		11		ns

5.12 Switching Characteristics: $V_{CCA} = 1.2V$ (BQA)

 $T_A = 25^{\circ}C, V_{CCA} = 1.2V$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	UNIT
PARAWETER	PROW (INPUT)	10 (001701)	TYP	TYP	TYP	V _{CCB} = 5V TYP 5.5 5.8 1 1 392 392 4.2 1.1	UNII
+	Α	В	6.9	5.7	5.3	5.5	ns
T _{pd}	В	Α	7.4	6.4	6	5.8	115
	OE	Α	1	1	1	1	
T _{en}	OE	В	1	1	1	1	μs
+	OE	Α	392	392	392	392	no
t _{dis}	OE	В	392	392	392	392	ns
t _{rA} , t _{fA}	A-port rise a	ind fall times	4.2	4.2	4.2	4.2	ns
t _{rB} , t _{fB}	B-port rise a	ind fall times	2.1	1.5	1.2	1.1	ns

5.13 Switching Characteristics: $V_{CCA} = 1.2V$ (Other Packages)

 $T_A = 25^{\circ}C, V_{CCA} = 1.2V$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	UNIT
PARAMETER	FROW (INFOT)	10 (001701)	TYP	TYP	TYP	TYP	UNIT
+	Α	В	6.9	5.7	5.3	5.5	
t _{pd}	В	Α	7.4	6.4	6	5.8	ns
4	OE	Α	1	1	1	1	
t _{en}	OE	В	1	1	1	1	μs
+	OE	Α	320	320	320	330	
t _{dis}	OL	В	150	110	150	110	ns
t _{rA} , t _{fA}	A-port rise a	nd fall times	4.2	4.2	4.2	4.2	ns
t _{rB} , t _{fB}	B-port rise a	nd fall times	2.1	1.5	1.2	1.1	ns

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

5.14 Switching Characteristics: $V_{CCA} = 1.5V \pm 0.1V$ (BQA)

over recommended operating free-air temperature range, $V_{CCA} = 1.5V \pm 0.1V$ (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.8V ± 0.15V		V _{CCB} = 2.5V ± 0.2V		V _{CCB} = 3.3V ± 0.3V		V _{CCB} = 5V ± 0.5V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
4	Α	В		15.9		13.1		13		12.9	
t _{pd}	В	Α		17.2	15			14.7		16.7	ns
4	OE	Α		1		1		1		1	
t _{en}	OE	В		1		1	1			1	μs
4	OE	Α		390		305		305		305	
t _{dis}	OE	В		390		305		305		305	ns
t _{rA} , t _{fA}	A-port rise a	nd fall times		7.1		7.1		7.1		7.1	ns
t _{rB} , t _{fB}	B-port rise a	nd fall times		6.5		5.2		4.8		4.7	ns

5.15 Switching Characteristics: $V_{CCA} = 1.5V \pm 0.1V$ (Other Packages)

over recommended operating free-air temperature range, $V_{CCA} = 1.5V \pm 0.1V$ (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.8V ± 0.15V		V _{CCB} = 2.5V ± 0.2V		V _{CCB} = 3.3V ± 0.3V		V _{CCB} = 5V ± 0.5V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
•	Α	В		15.9		13.1		13		12.9	
t _{pd}	В	Α		17.2		15		14.7		16.7	ns
•	OE	Α		1		1		1		1	
t _{en}	OE	В		1		1		1		1	μs
•	OE	Α		340		280		280		300	no
t _{dis}	OE	В		220		220		220		220	ns
t _{rA} , t _{fA}	A-port rise a	nd fall times		7.1		7.1		7.1		7.1	ns
t _{rB} , t _{fB}	B-port rise a	nd fall times		6.5		5.2		4.8		4.7	ns

5.16 Switching Characteristics: $V_{CCA} = 1.8V \pm 0.15V$ (BQA)

over recommended operating free-air temperature range, V_{CCA} = 1.8V ± 0.15V (unless otherwise noted)

PARAMETER	EDOM (INDIIT)	TO (OUTPUT)			V _{CCB} = 2.5V ± 0.2V		V _{CCB} = 3.3V ± 0.3V		V _{CCB} = 5V ± 0.5V		UNIT
PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	_
_	Α	В		14		10.7		9.8		9.5	
t _{pd}	В	A		15		11.4		10.6		10.1	ns
	OE	A		1		1		1		1	
t _{en}	OE	В		1		1		1		1	μs
•	OE	Α		389		253		250		250	20
t _{dis}	OE	В		389		253		248		248	ns
t _{rA} , t _{fA}	A-port rise a	ind fall times		6.2		6.1		6.1		6.1	ns
t _{rB} , t _{fB}	B-port rise a	ind fall times		5.8		5.2		4.8		4.7	ns

Product Folder Links: TXB0104-Q1

5.17 Switching Characteristics: $V_{CCA} = 1.8V \pm 0.15V$ (Other Packages)

over recommended operating free-air temperature range, V_{CCA} = 1.8V ± 0.15V (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		V _{CCB} = 1.8V ± 0.15V		V _{CCB} = 2.5V ± 0.2V		3.3V ± V	V _{CCB} = 5V ± 0.5V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
+	Α	В		14		10.7		9.8		9.5	ns
t _{pd}	В	Α		15		11.4		10.6		10.1	115
4	OE	Α		1		1		1		1	
t _{en}	OE	В		1		1		1		1	μs
4	OE	Α		280		250		250		250	no
t _{dis}	OE	В		220		220		220		220	ns
t _{rA} , t _{fA}	A-port rise a	nd fall times		6.2		6.1		6.1		6.1	ns
t _{rB} , t _{fB}	B-port rise a	nd fall times		5.8		5.2		4.8		4.7	ns

5.18 Switching Characteristics: $V_{CCA} = 2.5V \pm 0.2V$ (BQA)

over recommended operating free-air temperature range, $V_{CCA} = 2.5V \pm 0.2V$ (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 2.5 0.2V	5V ±	V _{CCB} = 3.3V ± 0.3V		V _{CCB} = 5V ± 0.5V		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX		
	A	В		9.3		8.2		7.7	20	
t _{pd}	В	Α		9.6	8.1			7.4	ns	
	OE	A		1		1	1		116	
t _{en}	OE .	В	1		1			1	μs	
+	OE	A		252		220		220	no	
t _{dis}	OE	В		252		220		220	ns	
t _{rA} , t _{fA}	A-port rise a	nd fall times		5		5		5	ns	
t_{rB}, t_{fB}	B-port rise a	ind fall times		4.6		4.8		4.7	ns	

5.19 Switching Characteristics: $V_{CCA} = 2.5V \pm 0.2V$ (Other Packages)

over recommended operating free-air temperature range, V_{CCA} = 2.5V \pm 0.2V (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 2.5V ± 0.2V		V _{CCB} = 3.3V ± 0.3V		V _{CCB} = 5V ± 0.5V		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX		
+	A	В		9.3		8.2		7.7	20	
t _{pd}	В	A		9.6		8.1		7.4	ns	
	OF	OE A		1		1		1		
t _{en}	OE .	В		1		1		1	μs	
+	OE	Α		220		220		220	20	
t _{dis}	s OE		220		220		220		ns	
t _{rA} , t _{fA}	A-port rise a	nd fall times		5		5		5	ns	
t _{rB} , t _{fB}	B-port rise a	nd fall times		4.6		4.8		4.7	ns	

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

5.20 Switching Characteristics: $V_{CCA} = 3.3V \pm 0.3V$

over recommended operating free-air temperature range, V_{CCA} = 3.3V \pm 0.3V (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 3.3V ± 0	.3V	V _{CCB} = 5V ±	UNIT	
TANAMETER	PROWI (INFOT)	10 (001701)	MIN	MAX	MIN	MAX	ONIT
4	A	В		7.7	·	7	no
T _{pd}	В	Α		7.9		6.8	ns
4	OE	Α		1		μs	
^L en	OE OE	В		1	1		
4	OE	Α		280		280	no
t _{dis}	OE	В		220		220	ns
t _{rA} , t _{fA}	A-port rise a		4.5		4.5	ns	
t _{rB} , t _{fB}	B-port rise a	ind fall times		4.1		4.7	ns

5.21 Operating Characteristics

 $T_A = 25^{\circ}C^{(1)}$

			V _{CCA}								
			1.2V	1.2V	1.5V	1.8V	2.5V	2.5V	3.3V		
	PARAMETER	TEST CONDITIONS				V _{CCB}				UNIT	
FARAWETER			5V	1.8V	1.8V	1.8V	2.5V	5V	3.3V to 5V		
			TYP	TYP	TYP	TYP	TYP	TYP	TYP		
	A-port input, B-port output	$C_1 = 0, f = 10MHz,$	7.8	10	9	8	8	8	9		
C _{pdA}	B-port input, A-port output	$t_r = t_f = 1$ ns,	12	11	11	11	11	11	11		
_	A-port input, B-port output	OE = V _{CCA}	38.1	28	28	28	29	29	29	pF	
C _{pdB}	B-port input, A-port output	(outputs enabled)	25.4	19	18	18	19	21	22		
_	A-port input, B-port output	$C_1 = 0, f = 10MHz,$	0.01	0.01	0.01	0.01	0.01	0.01	0.01		
C _{pdA}	B-port input, A-port output	$t_r = t_f = 1$ ns,	0.01	0.01	0.01	0.01	0.01	0.01	0.01	- 1	
_	A-port input, B-port output	OE = GND	0.01	0.01	0.01	0.01	0.01	0.01	0.03		
C _{pdB}	B-port input, A-port output	(outputs disabled)	0.01	0.01	0.01	0.01	0.01	0.01	0.04		

⁽¹⁾ Cpd parameter is the capacitance used to determine the no-load dynamic power dissipation per logic function for CMOS devices as per the formula: $P_D = C_{pd} (V_{CC})^2 + I_{CC} V_{CC}$. For more details about the use of C_{pd} to calculate power dissipation, refer to the CMOS Power Consumption and C_{pd} Calculation application note.

Product Folder Links: TXB0104-Q1

5.22 Typical Characteristics

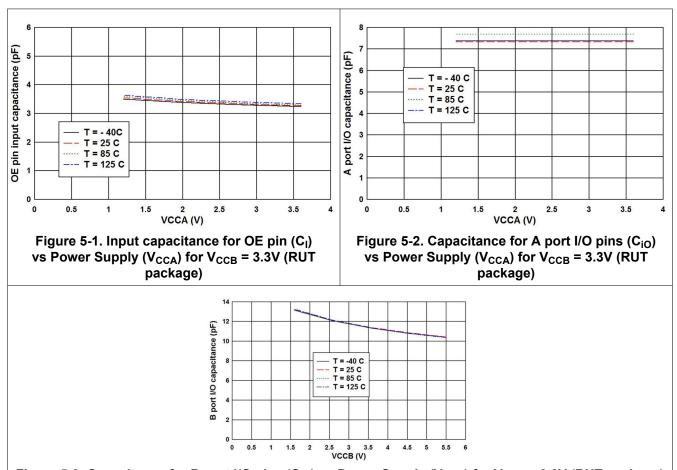
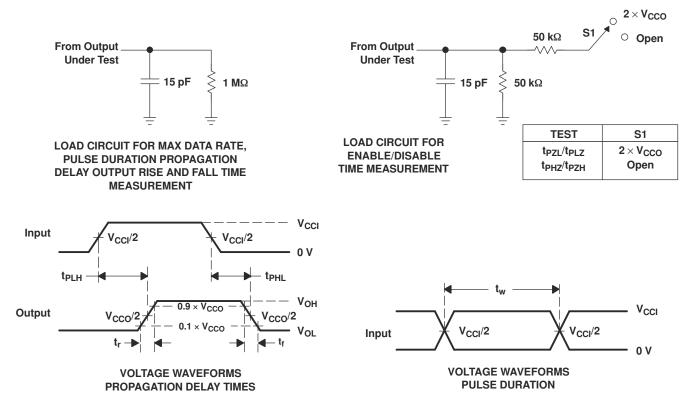



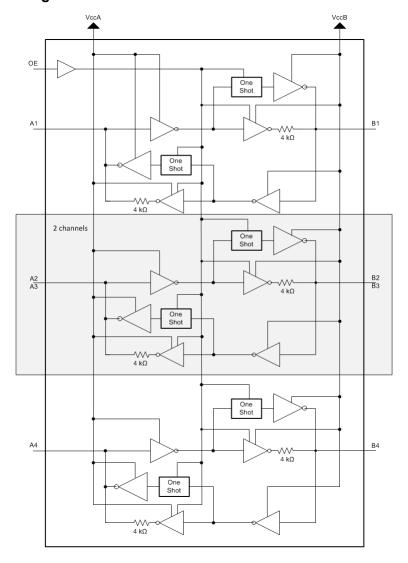
Figure 5-3. Capacitance for B port I/O pins (C_{iO}) vs Power Supply (V_{CCB}) for V_{CCA} = 3.3V (RUT package)

6 Parameter Measurement Information

- A. C_L includes probe and jig capacitance.
- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \ \Omega$, $dv/dt \geq 1 \ V/ns$.
- C. The outputs are measured one at a time, with one transition per measurement.
- D. t_{PLH} and t_{PHL} are the same as t_{pd} .
- E. V_{CCI} is the V_{CC} associated with the input port.
- F. V_{CCO} is the V_{CC} associated with the output port.
- G. All parameters and waveforms are not applicable to all devices.

Figure 6-1. Load Circuits and Voltage Waveforms

Submit Document Feedback


Copyright © 2025 Texas Instruments Incorporated

7 Detailed Description

7.1 Overview

The TXB0104 device is a 4-bit, bi-directional voltage-level translator specifically designed for translating logic voltage levels. The A port is able to accept I/O voltages ranging from 1.2V to 3.6V, while the B port can accept I/O voltages from 1.65V to 5.5V. The device is a buffered architecture with edge-rate accelerators (one-shots) to improve the overall data rate. This device can only translate push-pull CMOS logic outputs. If for open-drain signal translation, please refer to TI's TXS010X products.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Architecture

The TXB0104 architecture (see Section 7.2) does not require a direction-control signal to control the direction of data flow from A to B or from B to A. In a DC state, the output drivers of the TXB0104 can maintain a high or low, but are designed to be weak, so that they can be overdriven by an external driver when data on the bus starts flowing the opposite direction.

The output one-shots detect rising or falling edges on the A or B ports. During a rising edge, the one-shot turns on the PMOS transistors (T1, T3) for a short duration, which speeds up the low-to-high transition. Similarly, during a falling edge, the one-shot turns on the NMOS transistors (T2, T4) for a short duration which speeds up the high-to-low transition. The typical output impedance during output transition is 70Ω at $V_{CCO} = 1.2V$ to 1.8V, 50Ω at $V_{CCO} = 1.8V$ to 3.3V, and 40Ω at $V_{CCO} = 3.3V$ to 5V.

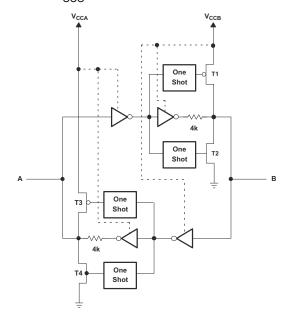


Figure 7-1. Architecture of TXB0104 I/O Cell

7.3.2 Input Driver Requirements

Typical I_{IN} vs V_{IN} characteristics of the TXB0104 are shown in Figure 7-2. For proper operation, the device driving the data I/Os of the TXB0104 must have drive strength of at least ± 2 mA.

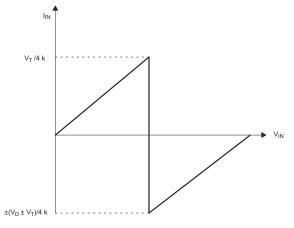


Figure 7-2. Typical I_{IN} vs V_{IN} Curve

7.3.3 Output Load Considerations

TI recommends careful PCB layout practices with short PCB trace lengths to avoid excessive capacitive loading and to verify that proper one shot (O.S.) triggering takes place. PCB signal trace-lengths should be kept short enough such that the round trip delay of any reflection is less than the one-shot duration. This improves signal integrity by ensuring that any reflection sees a low impedance at the driver. The O.S. circuits have been designed to stay on for approximately 10ns. The maximum capacitance of the lumped load that can be driven also depends directly on the one-shot duration. With very heavy capacitive loads, the one-shot can time-out before the signal is driven fully to the positive rail. The O.S. duration has been set to best optimize trade-offs between dynamic I_{CC}, load driving capability, and maximum bit-rate considerations. Both PCB trace length and connectors add to the capacitance that the TXB0104 output sees, so it is recommended that this lumped-load capacitance be considered to avoid O.S. retriggering, bus contention, output signal oscillations, or other adverse system-level affects.

7.3.4 Enable and Disable

The TXB0104 has an OE input that is used to disable the device by setting OE = low, which places all I/Os in the high-impedance (Hi-Z) state. The disable time (t_{dis}) indicates the delay between when OE goes low and when the outputs actually get disabled (Hi-Z). The enable time (t_{en}) indicates the amount of time the user must allow for the one-shot circuitry to become operational after OE is taken high.

7.3.5 Pullup or Pulldown Resistors on I/O Lines

The TXB0104 is designed to drive capacitive loads of up to 70pF. The output drivers of the TXB0104 have low DC drive strength. If pullup or pulldown resistors are connected externally to the data I/Os, their values must be kept higher than $50k\Omega$ to ensure that they do not contend with the output drivers of the TXB0104.

For the same reason, the TXB0104 should not be used in applications such as I^2C or 1-Wire where an open-drain driver is connected on the bidirectional data I/O. For these applications, use a device from the TI TXS01xx series of level translators.

7.4 Device Functional Modes

The TXB0104 device has two functional modes, enabled and disabled. To disable the device, set the OE input to low, which places all I/Os in a high impedance state. Setting the OE input to high enables the device.

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TXB0104 can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another. It can only translate push-pull CMOS logic outputs. If for opendrain signal translation, please refer to TI TXS010X products. Any external pulldown or pullup resistors are recommended larger than $50k\Omega$.

8.2 Typical Application

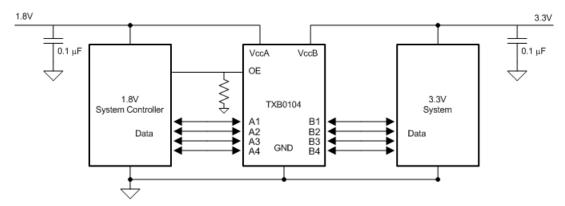


Figure 8-1. Typical Application Schematic

8.2.1 Design Requirements

For this design example, use the parameters listed in Table 8-1. And make sure the $V_{CCA} \le V_{CCB}$.

Table 8-1. Design Parameters

DESIGN PARAMETERS	EXAMPLE VALUE
Input voltage range	1.2V to 3.6V
Output voltage range	1.65V to 5.5V

8.2.2 Detailed Design Procedure

To begin the design process, determine the following:

Input Voltage Range

Use the supply voltage of the device that is driving the TXB0104 device to determine the input voltage range. For a valid logic high the value must exceed the V_{IH} of the input port. For a valid logic low the value must be less than the V_{IL} of the input port.

Output Voltage Range

Use the supply voltage of the device that the TXB0104 device is driving to determine the output voltage range. It is not recommended to have the external pullup or pulldown resistors. If mandatory, it is recommended the value should be larger than $50k\Omega$.

An external pulldown or pullup resistor decreases the output V_{OH} and V_{OL} . Use the below equations to draft estimate the V_{OH} and V_{OL} as a result of an external pulldown and pullup resistor.

Product Folder Links: TXB0104-Q1

$$V_{OH} = V_{CCx} \times R_{PD} \div (R_{PD} + 4.5k\Omega) \tag{1}$$

$$V_{OL} = V_{CCx} \times 4.5k\Omega \div (R_{PH} + 4.5k\Omega) \tag{2}$$

where

- V_{CCx} is the output port supply voltage on either V_{CCA} or V_{CCB}
- R_{PD} is the value of the external pull down resistor
- R_{PU} is the value of the external pull up resistor
- $4.5k\Omega$ is the counting the variation of the serial resistor $4k\Omega$ in the I/O line

8.2.3 Application Curve

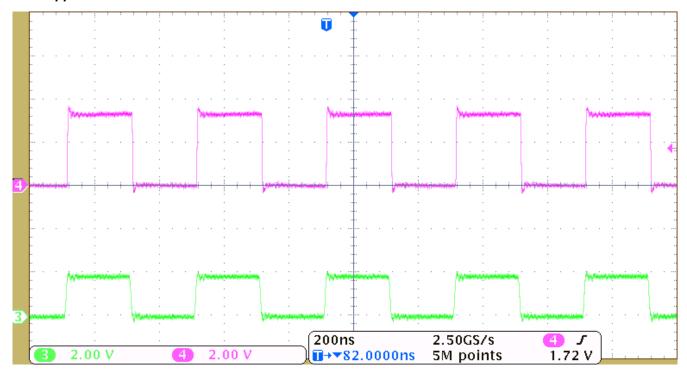


Figure 8-2. Example of Level Translation of a 2.5MHz 1.8V Signal (Green) to a 3.3V Signal (Pink)

8.3 Power Supply Recommendations

During operation, ensure that $V_{CCA} \le V_{CCB}$ at all times. During power-up sequencing, $V_{CCA} \ge V_{CCB}$ does not damage the device, so any power supply can be ramped up first. The TXB0104 has circuitry that disables all output ports when either V_{CC} is switched off ($V_{CCA/B} = 0V$). The output-enable (OE) input circuit is designed so that it is supplied by V_{CCA} and when the (OE) input is low, all outputs are placed in the high-impedance state. To ensure the high-impedance state of the outputs during power up or power down, the OE input pin must be tied to GND through a pulldown resistor and must not be enabled until V_{CCA} and V_{CCB} are fully ramped and stable. The minimum value of the pulldown resistor to ground is determined by the current-sourcing capability of the driver.

8.4 Layout

8.4.1 Layout Guidelines

To ensure reliability of the device, following common printed-circuit board layout guidelines are recommended:

- Use bypass capacitors on power supplies. Place the bypass capacitors as close as possible to the VCCA, VCCB pin, and GND pin
- Use short trace-lengths to avoid excessive loading.

• PCB signal trace-lengths must be kept short enough so that the round-trip delay of any reflection is less than the one-shot duration, approximately 10ns, to verify that any reflection encounters low impedance at the source driver.

8.4.2 Layout Example

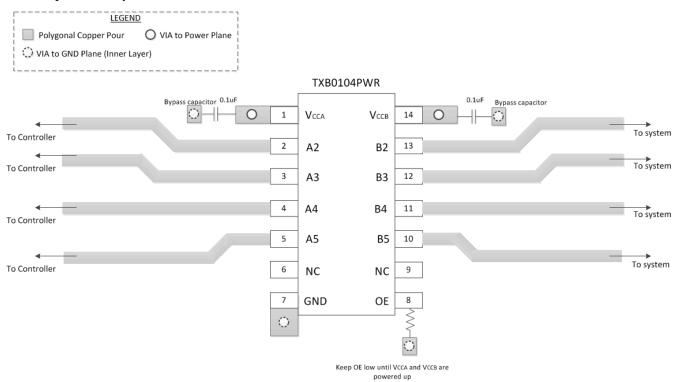


Figure 8-3. Layout Example Schematic

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

9 Device and Documentation Support

9.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.3 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision C (November 2024) to Revision D (May 2025)	Page
•	Updated status from Advanced Information to Production Data	1
• _	Added thermal information for BQA package	6
С	hanges from Revision B (June 2023) to Revision C (November 2024)	Page
•	Added WQFN (14) package and body size	1
•	Changed all instances of 'RGY' in tables to 'RGY,BQA' throughout the document	
•	Updated middle figure title to "BQA/RGY Package"	
•	Added BQA column to Thermal Information table	6
<u>c</u>	hanges from Revision A (October 2014) to Revision B (June 2023) Updated the numbering format for tables, figures, and cross-references throughout the document	Page1
С	hanges from Revision * (June 2008) to Revision A (October 2014)	Page
•	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and	1

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: TXB0104-Q1

www.ti.com 10-Jun-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
PTXB0104QWBQARQ1	Active	Preproduction	WQFN (BQA) 14	3000 LARGE T&R	-	Call TI	Call TI	-40 to 125	
PTXB0104QWBQARQ1.A	Active	Preproduction	WQFN (BQA) 14	3000 LARGE T&R	-	Call TI	Call TI	-40 to 125	
TXB0104QPWRQ1	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	YE04Q1
TXB0104QPWRQ1.A	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	YE04Q1
TXB0104QPWRQ1.B	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	YE04Q1
TXB0104QRGYRQ1	Active	Production	VQFN (RGY) 14	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	YE04Q1
TXB0104QRGYRQ1.A	Active	Production	VQFN (RGY) 14	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	YE04Q1
TXB0104QRGYRQ1.B	Active	Production	VQFN (RGY) 14	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	YE04Q1
TXB0104QRUTRQ1	Active	Production	UQFN (RUT) 12	3000 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	SIG
TXB0104QRUTRQ1.A	Active	Production	UQFN (RUT) 12	3000 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	SIG
TXB0104QRUTRQ1.B	Active	Production	UQFN (RUT) 12	3000 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	SIG
TXB0104QWBQARQ1	Active	Production	WQFN (BQA) 14	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	YE04Q

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

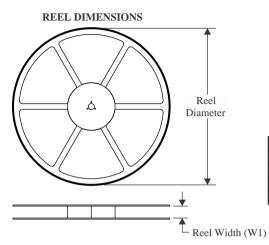
www.ti.com 10-Jun-2025

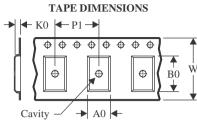
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TXB0104-Q1:

Catalog: TXB0104


NOTE: Qualified Version Definitions:


Catalog - TI's standard catalog product

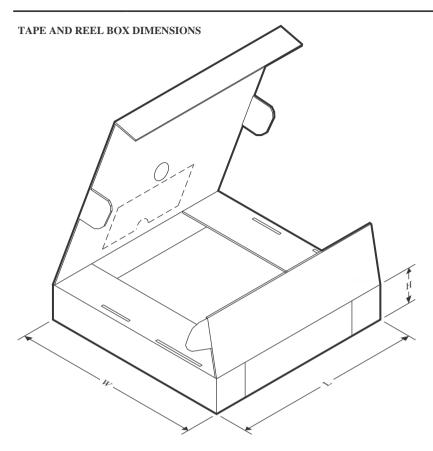
PACKAGE MATERIALS INFORMATION

www.ti.com 25-Jul-2025

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

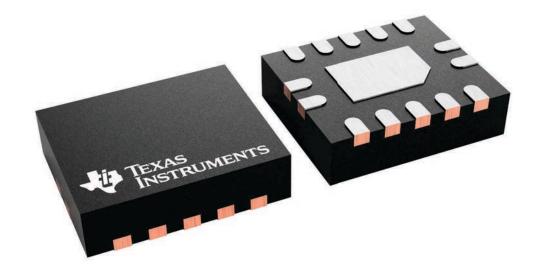


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TXB0104QPWRQ1	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TXB0104QRGYRQ1	VQFN	RGY	14	3000	330.0	12.4	3.75	3.75	1.15	8.0	12.0	Q1
TXB0104QRUTRQ1	UQFN	RUT	12	3000	180.0	8.4	1.95	2.3	0.75	4.0	8.0	Q1
TXB0104QWBQARQ1	WQFN	BQA	14	3000	180.0	12.4	2.8	3.3	1.1	4.0	12.0	Q1

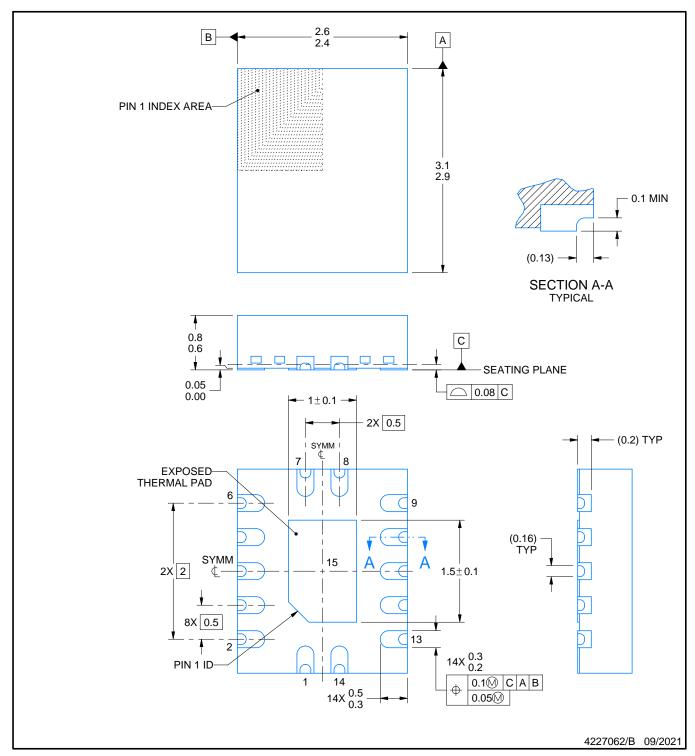
PACKAGE MATERIALS INFORMATION

www.ti.com 25-Jul-2025


*All dimensions are nominal

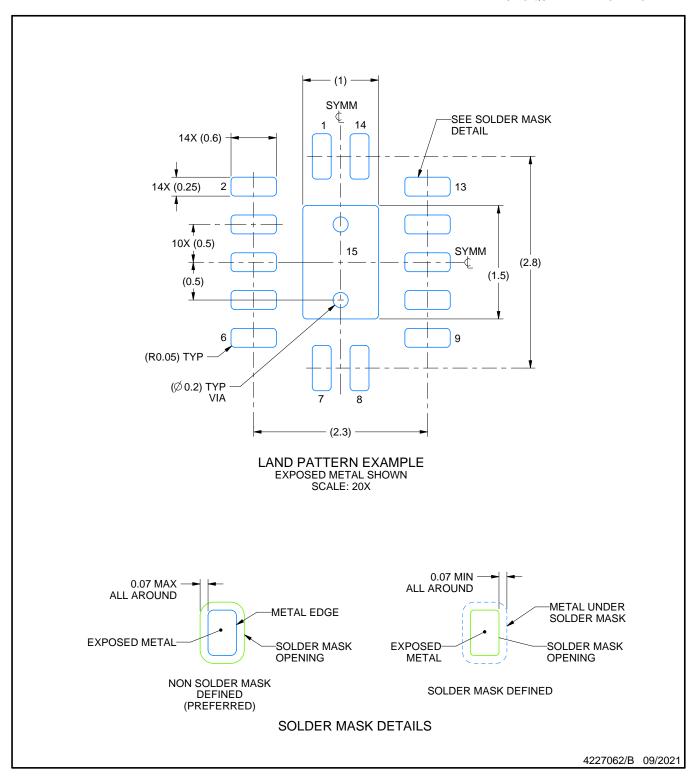
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TXB0104QPWRQ1	TSSOP	PW	14	2000	353.0	353.0	32.0
TXB0104QRGYRQ1	VQFN	RGY	14	3000	353.0	353.0	32.0
TXB0104QRUTRQ1	UQFN	RUT	12	3000	202.0	201.0	28.0
TXB0104QWBQARQ1	WQFN	BQA	14	3000	210.0	185.0	35.0

2.5 x 3, 0.5 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

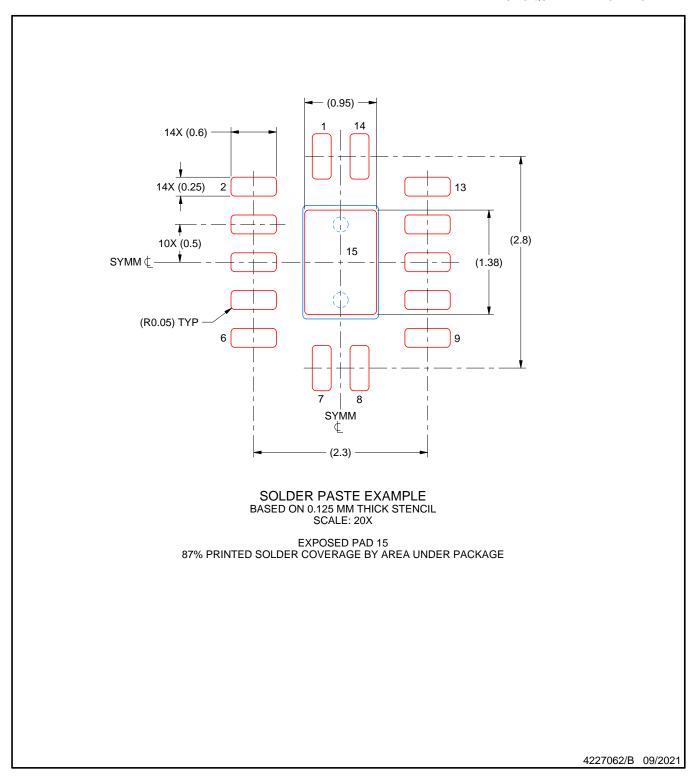
This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

INSTRUMENTS www.ti.com



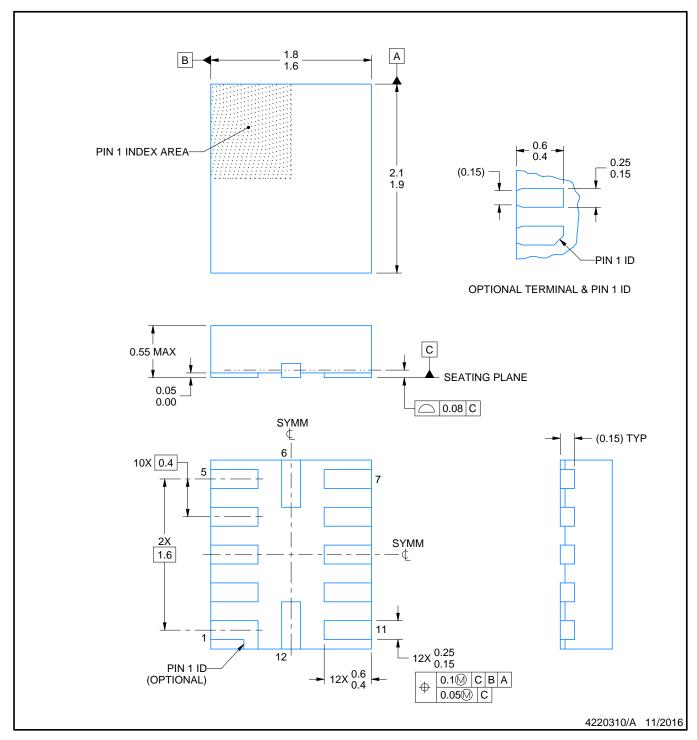
NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



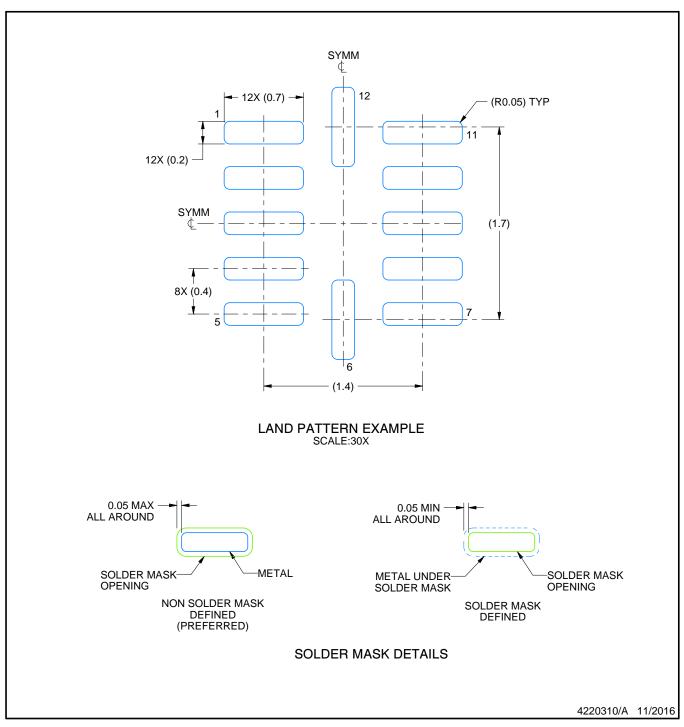
NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



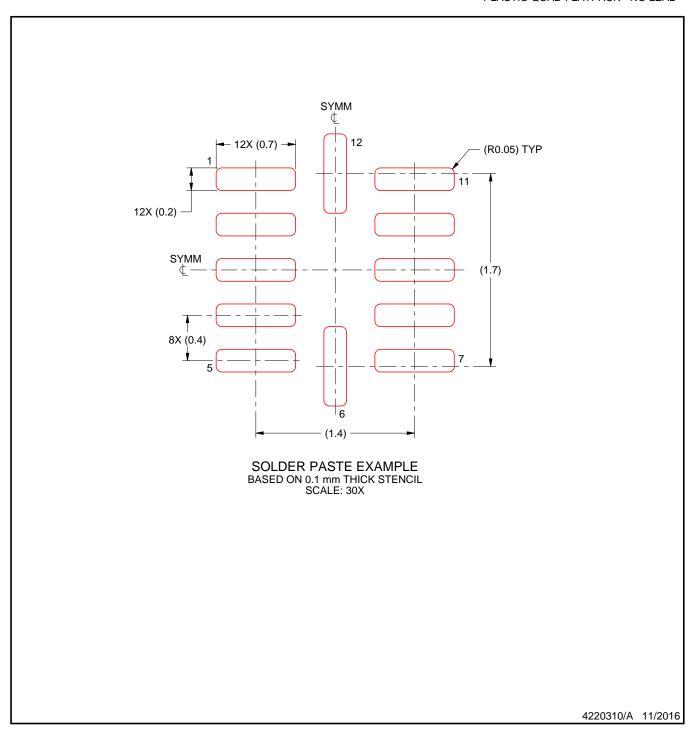
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



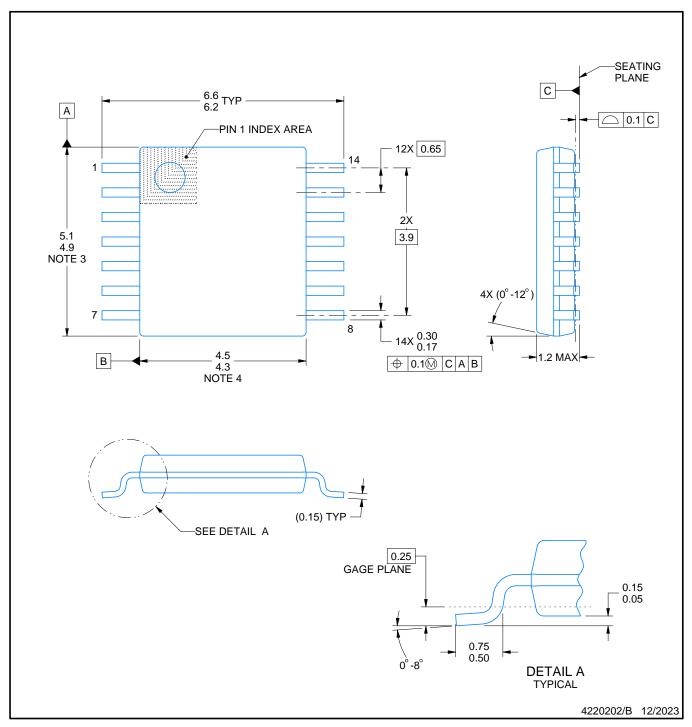
NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.



NOTES: (continued)

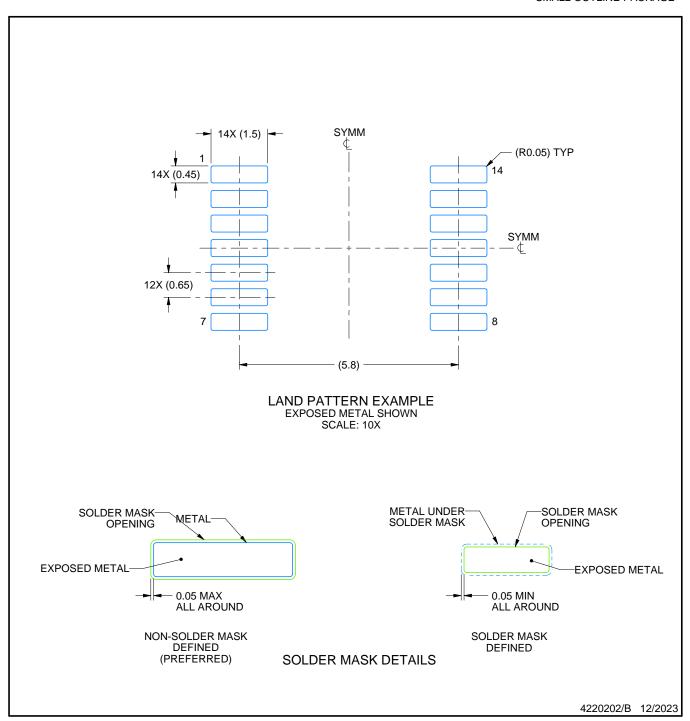
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).


NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

SMALL OUTLINE PACKAGE

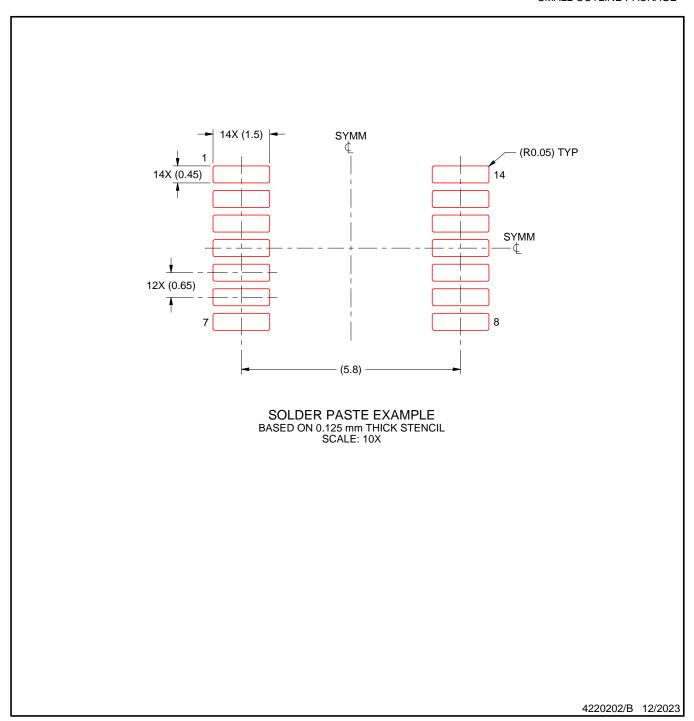
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

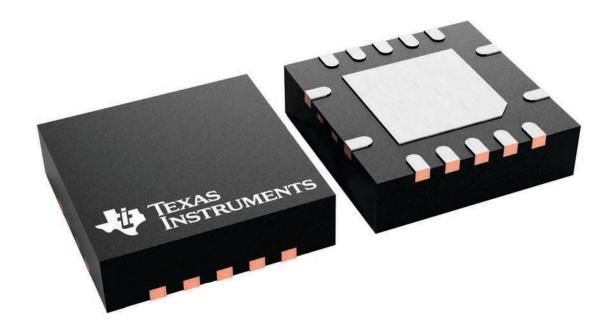

NOTES: (continued)

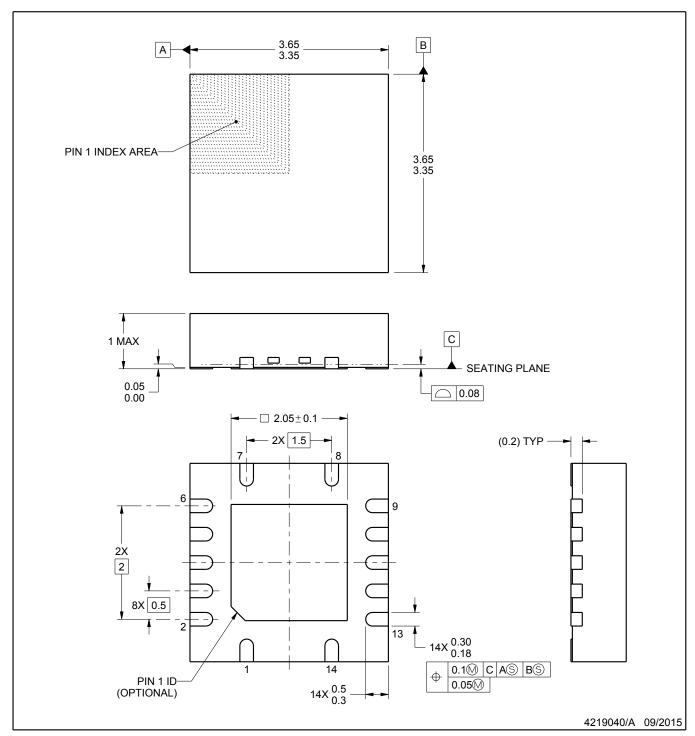
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

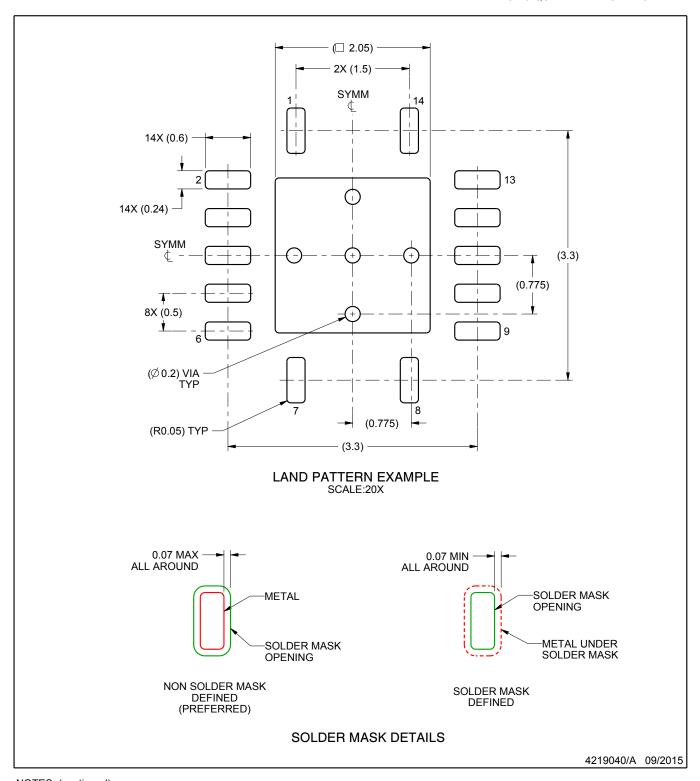
NOTES: (continued)


- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.


3.5 x 3.5, 0.5 mm pitch

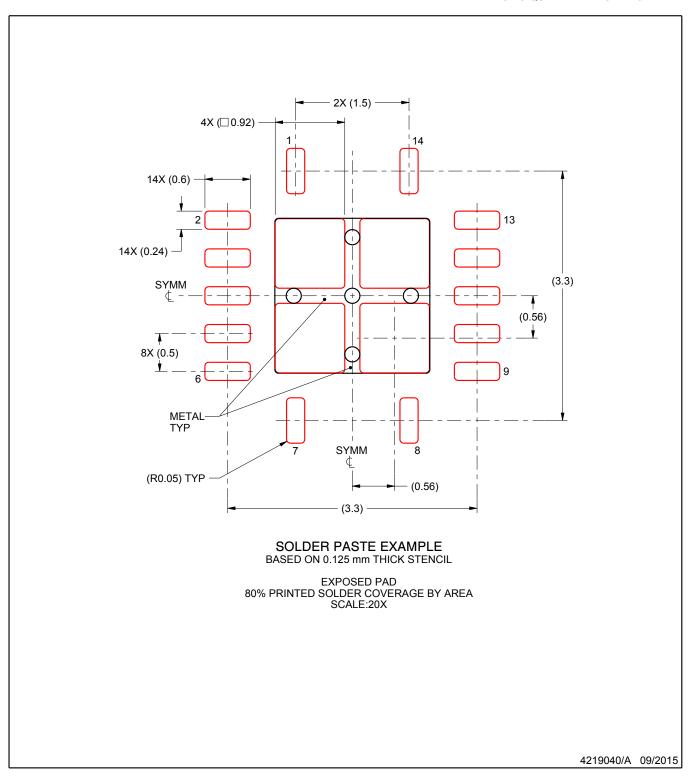
PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- This drawing is subject to change without notice.
 The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated