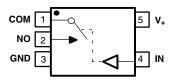
TS5A4594 SINGLE-CHANNEL 8- Ω SPST ANALOG SWITCH

SCDS179 - FEBRUARY 2005


Description

The TS5A4594 is a single-pole single-throw (SPST) analog switch that is designed to operate from 2 V to 5.5 V. This device can handle both digital and analog signals, and signals up to V_{+} can be transmitted in either direction.

Applications

- Sample-and-Hold Circuits
- Battery-Powered Equipment (Cellular Phones, PDAs)
- Audio and Video Signal Routing
- Communication Circuits
- PCMCIA Cards

SOT-23 OR SC-70 PACKAGE (TOP VIEW)

FUNCTION TABLE

IN	NO TO COM, COM TO NO
L	OFF
Н	ON

Features

- Low ON-State Resistance (8 Ω)
- ON-State Resistance Flatness (1.5 Ω)
- Control Inputs Are 5.5-V Tolerant
- Low Charge Injection (5 pC Max)
- 450-MHz –3-dB Bandwidth at 25°C
- Low Total Harmonic Distortion (THD) (0.04%)
- 2-V to 5.5-V Single-Supply Operation
- Specified at 5-V and 3.3-V Nodes
- -82-dB OFF-Isolation at 1 MHz
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- 0.5-nA Max OFF Leakage
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)
- TTL/CMOS-Logic Compatible

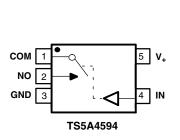
Summary of Characteristics

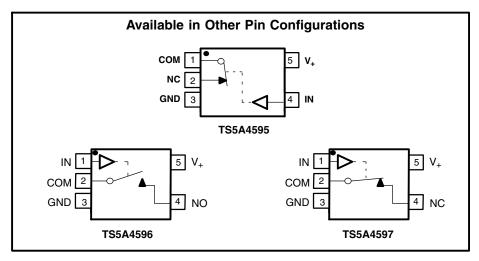
 $V_{+} = 5 \text{ V}, T_{A} = 25^{\circ}\text{C}$

Configuration	Single Pole Single Throw (SPST)
Number of channels	1
ON-state resistance (ron)	8Ω
ON-state resistance flatness (r _{on(flat)})	1.5 Ω
Turn-on/turn-off time (t _{ON} /t _{OFF})	17 ns/14 ns
Charge injection (Q _C)	5 pC
Bandwidth (BW)	450 MHz
OFF isolation (O _{ISO})	-82 dB at 1 MHz
Total harmonic distortion (THD)	0.04%
Leakage current (I _{COM(OFF)} /I _{NO(OFF)})	±0.5 nA
Power-supply current (I ₊)	0.25 μΑ
Package option	5-pin SOT-23 or SC-70

ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING(2)
4000 1- 0500	SOT (SOT-23) – DBV	Tape and reel	TS5A4594DBVR	JSA_
-40°C to 85°C	SOT (SC-70) - DCK	Tape and reel	TS5A4594DCKR	JS_


Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.
 DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Pin Configurations

Absolute Minimum and Maximum Ratings(1)(2)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V ₊	Supply voltage range ⁽³⁾		-0.3	6	V
$V_{NO} \ V_{COM}$	Analog voltage range ⁽³⁾⁽⁴⁾		-0.3	V ₊ + 0.3	<
I _K	Analog port diode current	$V_{NO}, V_{COM} < 0$	-50		mA
I _{NO} I _{COM}	On-state switch current	V_{NO} , $V_{COM} = 0$ to V_{+}	-20	20	mA
I _{NO} I _{COM}	On-state switch current (pulsed at 1 ms, 10% duty cycle)	V_{NO} , $V_{COM} = 0$ to V_{+}	-40	40	mA
VI	Digital input voltage range(3)(4)	·	-0.3	6	V
I _{IK}	Digital input clamp current	V ₁ < 0	-50		mA
I ₊	Continuous current through V ₊			100	mA
I _{GND}	Continuous current through GND		-100		mA
	D. d	DBV package		206	0000
θ_{JA}	Package thermal impedance ⁽⁵⁾	DCK package		252	°C/W
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

⁽²⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

⁽³⁾ All voltages are with respect to ground, unless otherwise specified.

⁽⁴⁾ The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

⁽⁵⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

SCDS179 - FEBRUARY 2005

Electrical Characteristics for 5-V Supply⁽¹⁾ $V_+ = 4.5$ V to 5.5 V, $V_{IH} = 2.4$ V, $V_{IL} = 0.8$ V, $T_A = -40$ °C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITION	T _A	٧,	MIN	TYP	MAX	UNIT	
Analog Switch	•					•			
Analog signal range	V _{COM} , V _{NO}					0		V ₊	V
ON-state	r _{on}	V _{NO} = 3.5 V,	Switch ON,	25°C	4.5 V		5	8	Ω
resistance	ion	I _{COM} = 10 mA,	See Figure 13	Full	4.5 V			10	32
ON-state resistance		V _{NO} = 1.5 V, 2.5 V, 3.5 V,	Switch ON,	25°C	4.5 V		0.5	1.5	Ω
flatness	r _{on(flat)}	$I_{COM} = 10 \text{ mA},$	See Figure 13	Full	4.5 V			2	12
NO OFF Is also as		V _{NO} = 1 V, V _{COM} = 4.5 V,	Switch OFF,	25°C		-0.5	0.01	0.5	
OFF leakage current	I _{NO(OFF)}	or $V_{NO} = 4.5 \text{ V}, V_{COM} = 1 \text{ V},$	See Figure 14	Full	5.5 V	-5		5	nA
COM		V _{COM} = 1 V, V _{NO} = 4.5 V,	Switch OFF,	25°C	5.5 V	-0.5	0.01	0.5	nA
OFF leakage current	I _{COM(OFF)}	$V_{COM} = 4.5 \text{ V}, V_{NO} = 1 \text{ V},$	See Figure 14	Full		-5		5	
NO ON leakage		$V_{NO} = 1 \text{ V}, V_{COM} = 1 \text{ V},$ or $V_{NO} = 4.5 \text{ V}, V_{COM} = 4.5 \text{ V},$	Switch ON,	25°C	5.5 V	-1	0.01	1	
current	I _{NO(ON)}	$v_{NO} = 4.5 \text{ v}, v_{COM} = 4.5 \text{ v},$ or $v_{NO} = 1 \text{ V}, 4.5 \text{ V}, v_{COM} = \text{Open},$	See Figure 15	Full		-10		10	nA
СОМ		V _{COM} = 1 V, V _{NO} = 1 V, or	Switch ON,	25°C		-1	0.01	1	
ON leakage current	ICOM(ON)	$V_{COM} = 4.5 \text{ V}, V_{NO} = 4.5 \text{ V},$ or $V_{COM} = 1 \text{ V}, 4.5 \text{ V}, V_{NO} = \text{Open},$	See Figure 15	Full	5.5 V	-10		10	nA
Digital Control In	put (IN)					•			
Input logic high	V _{IH}			Full		2.4		5.5	V
Input logic low	V _{IL}			Full		0		0.8	V
Input leakage current	I _{IH} , I _{IL}	V _I = V ₊ or 0		25°C Full	5 V	-0.5 -5	0.01	0.5 5	μА

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

TS5A4594 SINGLE-CHANNEL 8- Ω SPST ANALOG SWITCH

SCDS179 - FEBRUARY 2005

Electrical Characteristics for 5-V Supply⁽¹⁾ (continued) $V_+ = 4.5 \text{ V}$ to 5.5 V, $T_A = -40 ^{\circ}\text{C}$ to $85 ^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS			V ₊	MIN	TYP	MAX	UNIT
Dynamic									
Turn-on time		V _{NO} = 3 V,	Can Figure 17	25°C	5 V		12	17	
rum-on time	t _{ON}	$R_L = 300 \Omega$, $C_L = 35 pF$,	See Figure 17	Full	4.5 V to 5.5 V			19	ns
Turn-off time	+	$V_{COM} = 3 V$	See Figure 17	25°C	5 V		9	14	nc
Turr-on time	t _{OFF}	$R_L = 300 \Omega$, $C_L = 35 pF$,	See Figure 17	Full	4.5 V to 5.5 V			17	ns
Charge injection	$Q_{\mathbb{C}}$	$V_{GEN} = 0$, $R_{GEN} = 0$ $C_L = 1$ nF,	See Figure 20	25°C	5 V		2	5	pC
NO OFF capacitance	C _{NO(OFF)}	V _{NO} = 0 V, f = 1 MHz	Switch OFF, See Figure 16	25°C	5 V		6.5		pF
COM OFF capacitance	C _{COM(OFF)}	V _{COM} = 0 V, f = 1 MHz,	Switch OFF, See Figure 16	25°C	5 V		6.5		pF
NO ON capacitance	C _{NO(ON))}	V _{NO} = 0 V, f = 1 MHz,	Switch ON, See Figure 16	25°C	5 V		13		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = 0 V, f = 1 MHz,	Switch ON, See Figure 16	25°C	5 V		13		pF
Digital input capacitance	Cı	V _I = 0 V,	See Figure 16	25°C	5 V		3		pF
Bandwidth	BW	$R_L = 50 \Omega$, Signal = 0 dBm,	Switch ON, See Figure 18	25°C	5 V		450		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, $V_{NO} = 1 V_{RMS}$ $f = 1 MHz$, $C_L = 5 pF$	Switch OFF, See Figure 19	25°C	5 V		-82		dB
Total harmonic distortion	THD	$\begin{array}{ll} \mbox{R}_{L} = 600 \; \Omega, \; \mbox{C}_{L} = 50 \; \mbox{pF}, & \mbox{f} = 20 \; \mbox{Hz} \; \mbox{to} \; 20 \; \mbox{kHz}, \\ \mbox{V}_{SOURCE} = 5 \; \mbox{V}_{p-p}, & \mbox{See Figure} \; 21 \end{array}$		25°C	5 V		0.04		%
Supply									
Positive supply		V V « CND	Outline ON an OFF	25°C	5.5 V		0.01	0.25	^
current	I_{+} $V_{I} = V_{+}$ or GND, Switch ON or OFF		Full	5.5 V			1	μΑ	

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

SCDS179 - FEBRUARY 2005

Electrical Characteristics for 3-V Supply⁽¹⁾ $V_+ = 2.7 \text{ V}$ to 3.6 V, $T_A = -40 ^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$ (unless otherwise noted)

= 1.5 V,							
= 1.5 V,							
= 1.5 V,				0		V ₊	>
· · · · · · · · · · · · · · · · · · ·	Switch ON,	25°C	2.7 V		9.5	16	Ω
_I = 10 mA,	See Figure 13	Full				20	<u> </u>
= 1.5 V, 2.5 V,	Switch ON,	25°C	27V		1.8	6	Ω
_I = 10 mA,	See Figure 13	Full	2.7 V			7	52
= 1 V, V _{COM} = 3 V,	Switch OFF,	25°C		-0.5	0.01	0.5	
$= 3 \text{ V}, \text{ V}_{\text{COM}} = 1 \text{ V},$	See Figure 14	Full	3.6 V	-5		5	nA
$_{M} = 1 \text{ V}, \text{ V}_{NO} = 3 \text{ V},$	Switch OFF,	25°C	3.6 V	-0.5	0.01	0.5	
or _M = 3 V, V _{NO} = 1 V,	See Figure 14	Full		-5		5	nA
= 1 V, V _{COM} = 1 V, or	Switch ON,	25°C	3.6 V	-1	0.01	1	4
= 3 v, v _{COM} = 3 v, or = 1 V, 3 V, V _{COM} = Open,	See Figure 15	Full		-10		10	nA
$_{M} = 1 \text{ V}, V_{NO} = 1 \text{ V},$	Switch ON,	25°C		-1	0.01	1	
$_{M} = 3 \text{ V}, V_{NO} = 3 \text{ V},$ or $_{M} = 1 \text{ V}, 3 \text{ V}, V_{NO} = \text{Open},$	See Figure 15	Full 3	3.6 V	-10		10	nA
		Full		2		5.5	V
		Full		0		8.0	V
V ₊ or 0		25°C	3.6 V	-0.5	0.01	0.5	nA
	= 10 mA, = 1 V, V _{COM} = 3 V,	= 1.5 V, 2.5 V, = 10 mA, See Figure 13 = 1 V, V _{COM} = 3 V, or = 3 V, V _{COM} = 1 V, Switch OFF, See Figure 14 Switch OFF, See Figure 14 Switch OFF, See Figure 14 Switch OFF, See Figure 14 = 1 V, V _{COM} = 1 V, or = 1 V, V _{COM} = 3 V, or = 1 V, 3 V, V _{COM} = Open, M = 1 V, V _{NO} = 1 V, or Switch ON, See Figure 15 Switch ON, See Figure 15	= 1.5 V, 2.5 V,	= 10 mA, See Figure 13 Full = 1.5 V, 2.5 V, Switch ON, See Figure 13 Full = 1 V, V _{COM} = 3 V, or See Figure 14 Full = 1 V, V _{COM} = 1 V, See Figure 14 Full = 1 V, V _{COM} = 1 V, See Figure 14 Full = 1 V, V _{COM} = 1 V, See Figure 14 Full = 1 V, V _{COM} = 1 V, See Figure 14 Full = 1 V, V _{COM} = 1 V, See Figure 15 Full = 1 V, V _{COM} = 3 V, See Figure 15 Full = 1 V, V _{COM} = 0 Pen, See Figure 15 Full = 1 V, V _{COM} = 0 Pen, See Figure 15 Full = 1 V, V _{COM} = 3 V, See Figure 15 Full = 1 V, V _{COM} = 3 V, See Figure 15 Full = 1 V, V _{COM} = 0 Pen, See Figure 15 Full = 1 V,	= 10 mA, See Figure 13 Full = 1.5 V, 2.5 V, Switch ON, See Figure 13 Full = 1 V, V _{COM} = 3 V, or See Figure 14 Full = 1 V, V _{COM} = 1 V, Or See Figure 14 Full = 1 V, V _{COM} = 1 V, See Figure 14 Full = 1 V, V _{COM} = 1 V, See Figure 14 Full = 1 V, V _{COM} = 1 V, See Figure 14 Full = 1 V, V _{COM} = 1 V, See Figure 15 Full = 1 V, V _{COM} = 3 V, See Figure 15 Full = 1 V, V _{COM} = 0 Pen, See Figure 15 Full	= 10 mA, See Figure 13 Full = 1.5 V, 2.5 V, Switch ON, See Figure 13 Full = 1 V, V _{COM} = 3 V, or See Figure 14 Full = 1 V, V _{COM} = 1 V, See Figure 14 Full = 1 V, V _{COM} = 1 V, See Figure 14 Full = 1 V, V _{COM} = 1 V, See Figure 14 Full = 1 V, V _{COM} = 1 V, See Figure 14 Full = 1 V, V _{COM} = 1 V, See Figure 14 Full = 1 V, V _{COM} = 1 V, See Figure 15 Full = 1 V, V _{COM} = 3 V, See Figure 15 Full = 1 V, V _{COM} = 3 V, See Figure 15 Full = 1 V, V _{COM} = 1 V, See Figure 15 Full	= 10 mA, See Figure 13 Full 20 = 1.5 V, 2.5 V,

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

TS5A4594 SINGLE-CHANNEL 8- Ω SPST ANALOG SWITCH

SCDS179 - FEBRUARY 2005

Electrical Characteristics for 3-V Supply⁽¹⁾ (continued) $V_+ = 2.7 \text{ V to } 3.6 \text{ V}, T_A = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C} \text{ (unless otherwise noted)}$

PARAMETER	SYMBOL	TEST CONDITIONS			V ₊	MIN	TYP	MAX	UNIT
Dynamic	•								
Turn-on time		V _{NO} = 2 V,	C _L = 35 pF,	25°C	3 V		20	30	
rum-on ume	t _{ON}	$R_L = 300 \Omega$,	See Figure 17	Full	2.7 V to 3.6 V			35	ns
Turn-off time		$V_{COM} = 2 V$,	$C_L = 35 pF,$	25°C	3 V		15	25	no
rum-on ume	t _{OFF}	$R_L = 300 \Omega$,	See Figure 17	Full	2.7 V to 3.6 V			30	ns
Charge injection	$Q_{\mathbb{C}}$	$V_{GEN} = 0$, $R_{GEN} = 0$, $C_L = 1$ nF,	See Figure 20	25°C	3 V		1	4	рС
NO OFF capacitance	C _{NO(OFF)}	V _{NO} = 0 V, f = 1 MHz,	Switch OFF, See Figure 16	25°C	3 V		6.5		pF
COM OFF capacitance	C _{COM(OFF)}	V _{COM} = 0 V, f = 1 MHz,	Switch OFF, See Figure 16	25°C	3 V		6.5		pF
NO ON capacitance	C _{NO(ON)}	V _{NO} = 0 V, f = 1 MHz,	Switch ON, See Figure 16	25°C	3 V		13		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = 0 V, f = 1 MHz,	Switch ON, See Figure 16	25°C	3 V		13		pF
Digital input capacitance	CI	V _I = 0 V,	See Figure 16	25°C	3 V		3		pF
Bandwidth	BW	$R_L = 50 \Omega$, Signal = 0 dBm	Switch ON, See Figure 18	25°C	3 V		450		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, $V_{NO} = 1 V_{RMS}$,	Switch OFF, See Figure 19	25°C	3 V		-82		dB
Total harmonic distortion	THD	$R_L = 600 \Omega$, $C_L = 50 pF$, $V_{SOURCE} = 3 V_{p-p}$	f = 20 Hz to 20 kHz, See Figure 21	25°C	3 V		0.09		%
Supply				•					
Positive supply current	I ₊	$V_1 = V_+ \text{ or GND},$	Switch ON or OFF	25°C Full	5.5 V		0.01	0.25	μА

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

TYPICAL PERFORMANCE

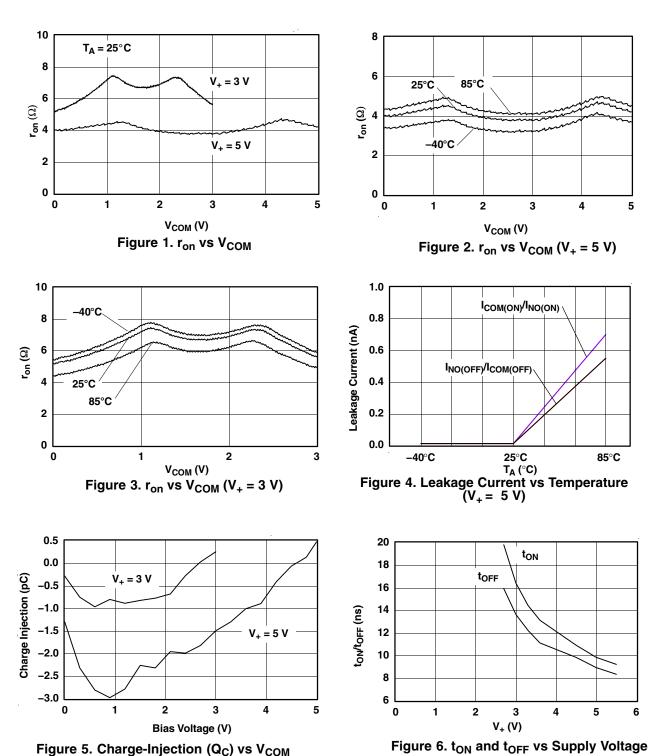


Figure 6. t_{ON} and t_{OFF} vs Supply Voltage

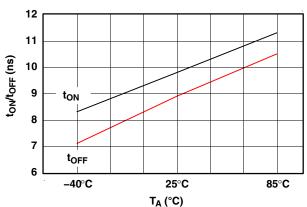


Figure 7. t_{ON} and t_{OFF} vs Temperature (V₊ = 5 V)

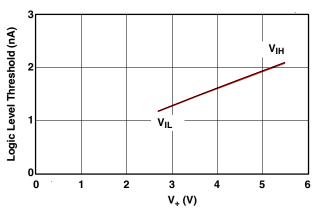


Figure 8. Logic-Level Threshold vs V₊

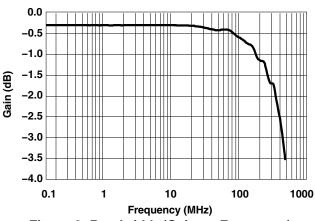


Figure 9. Bandwidth (Gain vs Frequency) $(V_+ = 5 \text{ V})$

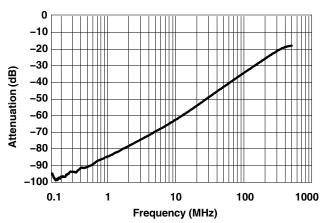


Figure 10. OFF Isolation vs Frequency

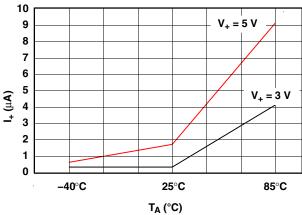


Figure 11. Power-Supply Current vs Temperature

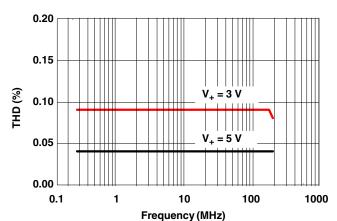


Figure 12. Total Harmonic Distortion vs Frequency

SCDS179 - FEBRUARY 2005

PIN DESCRIPTION

PIN NUMBER	NAME	DESCRIPTION			
1	COM	Common			
2	NO	Normally open			
3	GND	Digital ground			
4	IN	Digital control pin to connect COM to NO			
5	V ₊	Power supply			

PARAMETER DESCRIPTION

SYMBOL	DESCRIPTION DESCRIPTION
V _{COM}	Voltage at COM
V _{NO}	Voltage at NO
r _{on}	Resistance between COM and NO ports when the channel is ON
r _{on(flat)}	Difference between the maximum and minimum value of ron in a channel over the specified range of conditions
I _{NO(OFF)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state
I _{NO(ON)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open
I _{COM(OFF)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO) in the OFF state
I _{COM(ON)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO) in the ON state and the output (NO) open
V _{IH}	Minimum input voltage for logic high for the control input (IN)
V _{IL}	Maximum input voltage for logic low for the control input (IN)
VI	Voltage at the control input (IN)
I _{IH} , I _{IL}	Leakage current measured at the control input (IN)
t _{ON}	Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning ON.
t _{OFF}	Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF.
Q _C	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NO or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L \times \Delta V_{COM}$, C_L is the load capacitance, and ΔV_{COM} is the change in analog output voltage.
C _{NO(OFF)}	Capacitance at the NO port when the corresponding channel (NO to COM) is OFF
C _{NO(ON)}	Capacitance at the NO port when the corresponding channel (NO to COM) is ON
C _{COM(OFF)}	Capacitance at the COM port when the corresponding channel (COM to NO) is OFF
C _{COM(ON)}	Capacitance at the COM port when the corresponding channel (COM to NO) is ON
C _I	Capacitance of control input (IN)
O _{ISO}	OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NO to COM) in the OFF state.
BW	Bandwidth of the switch. This is the frequency in which the gain of an ON channel is -3 dB below the DC gain.
THD	Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.
l ₊	Static power-supply current with the control (IN) pin at V ₊ or GND

PARAMETER MEASUREMENT INFORMATION

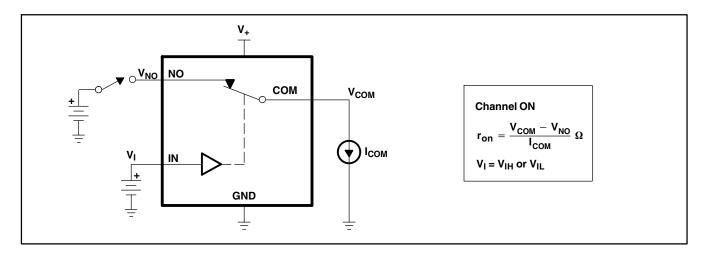


Figure 13. ON-State Resistance (ron)

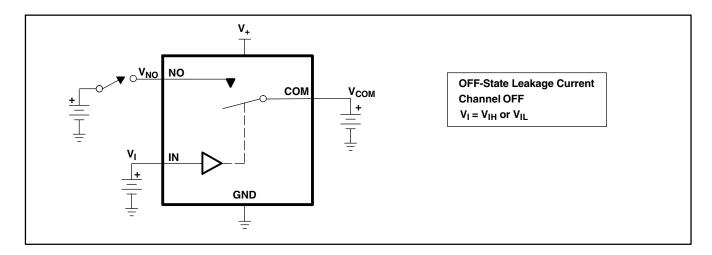


Figure 14. OFF-State Leakage Current ($I_{COM(OFF)}$, $I_{NO(OFF)}$)

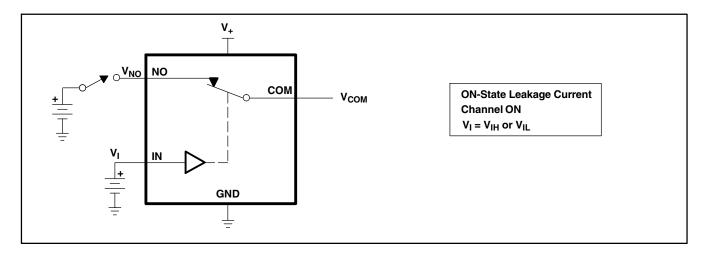


Figure 15. ON-State Leakage Current ($I_{COM(ON)}$, $I_{NO(ON)}$)

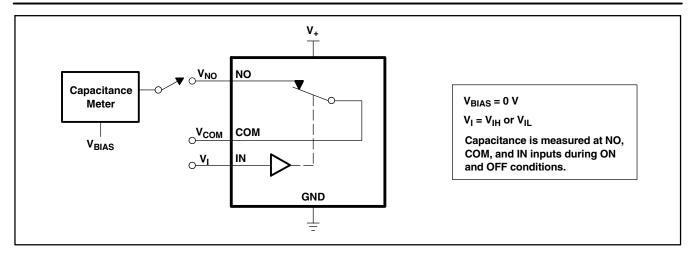
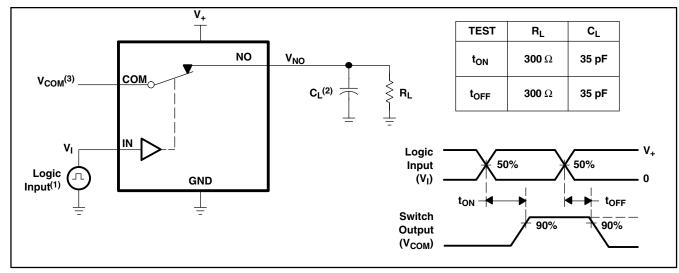



Figure 16. Capacitance (C_I, $C_{COM(OFF)}$, $C_{COM(ON)}$, $C_{NO(OFF)}$, $C_{NO(ON)}$)

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f < 5~ns$, $t_f < 5~ns$.
- $^{(2)}$ C_L includes probe and jig capacitance.
- (3) See Electrical Characteristics for V_{COM}.

Figure 17. Turn-On (t_{ON}) and Turn-Off Time (t_{OFF})

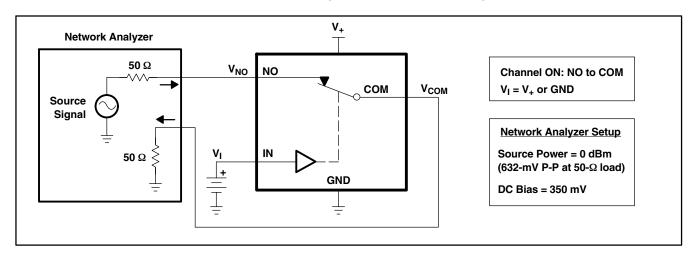


Figure 18. Bandwidth (BW)

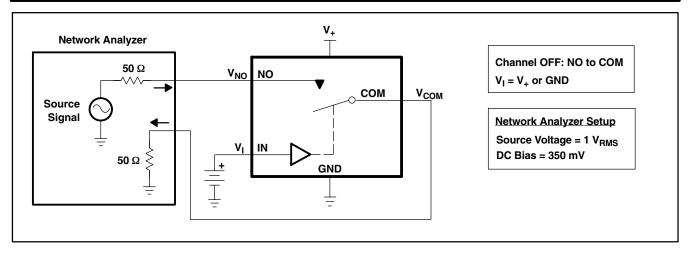
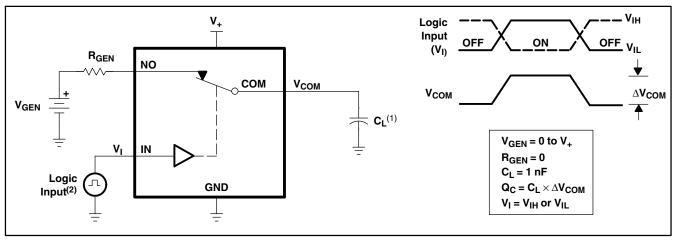
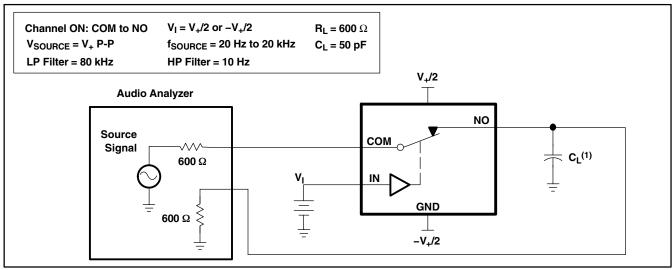




Figure 19. OFF Isolation (O_{ISO})

- (1) C_L includes probe and jig capacitance.
- (2) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $t_r < 5$ ns, $t_f < 5$ ns.

Figure 20. Charge Injection (Q_C)

(1) C_L includes probe and jig capacitance.

Figure 21. Total Harmonic Distortion (THD)

www.ti.com

15-Jul-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TS5A4594DBVR	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	JSAR
TS5A4594DBVR.B	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 85	JSAR
TS5A4594DBVRG4	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	JSAR
TS5A4594DBVRG4.B	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	JSAR
TS5A4594DCKR	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	NIPDAU SN NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JS5, JSF, JSR)
TS5A4594DCKR.B	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 85	(JS5, JSF, JSR)
TS5A4594DCKRG4	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	NIPDAU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JS5, JSF, JSR)
TS5A4594DCKRG4.B	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JS5, JSF, JSR)

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

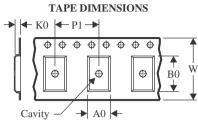
⁽³⁾ RoHS values: Yes, No. RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM


www.ti.com 15-Jul-2025

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 12-Jul-2025

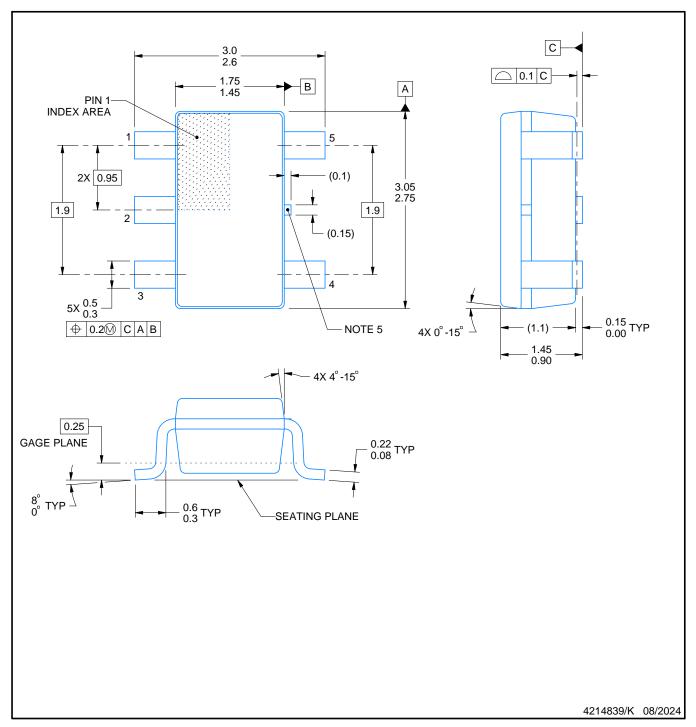
TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

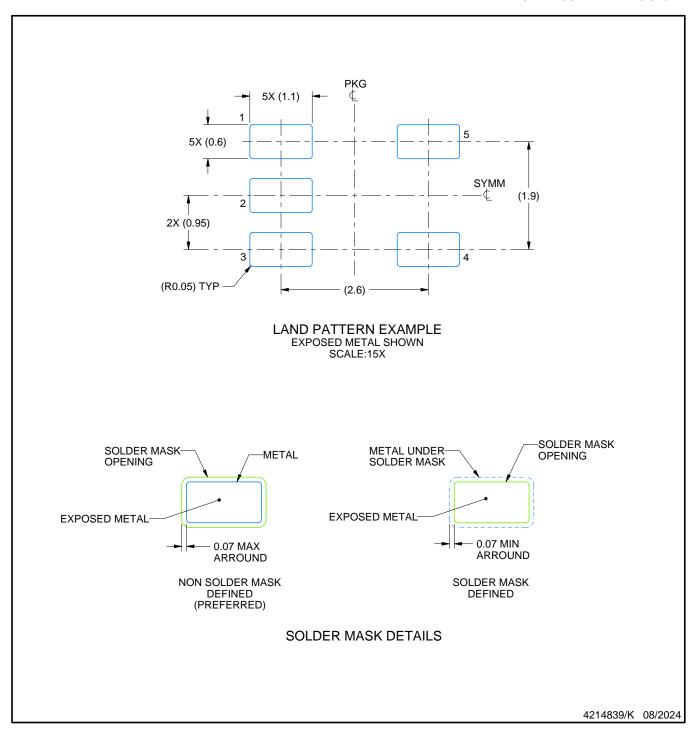
*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5A4594DBVR	SOT-23	DBV	5	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
TS5A4594DBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TS5A4594DBVRG4	SOT-23	DBV	5	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
TS5A4594DCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TS5A4594DCKRG4	SC70	DCK	5	3000	180.0	8.4	2.47	2.3	1.25	4.0	8.0	Q3
TS5A4594DCKRG4	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3


www.ti.com 12-Jul-2025

*All dimensions are nominal

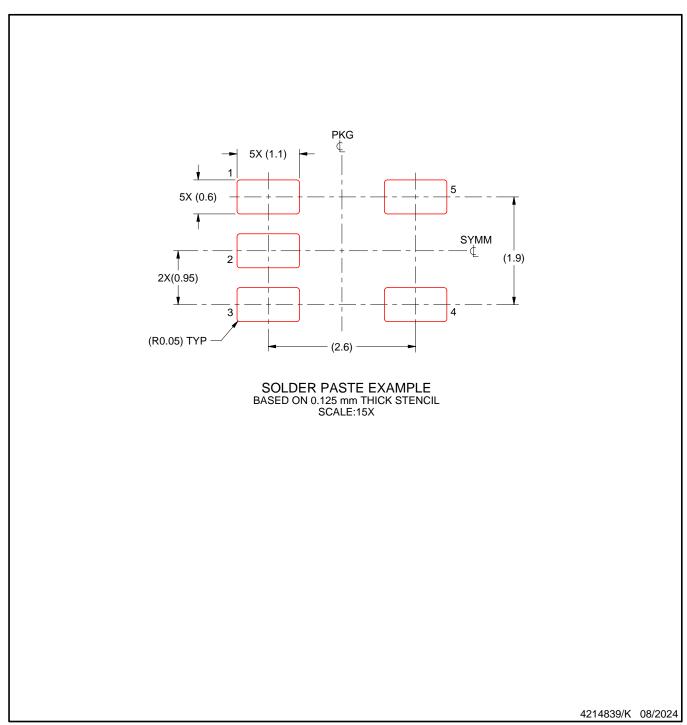
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A4594DBVR	SOT-23	DBV	5	3000	202.0	201.0	28.0
TS5A4594DBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
TS5A4594DBVRG4	SOT-23	DBV	5	3000	202.0	201.0	28.0
TS5A4594DCKR	SC70	DCK	5	3000	180.0	180.0	18.0
TS5A4594DCKRG4	SC70	DCK	5	3000	202.0	201.0	28.0
TS5A4594DCKRG4	SC70	DCK	5	3000	180.0	180.0	18.0



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-178.

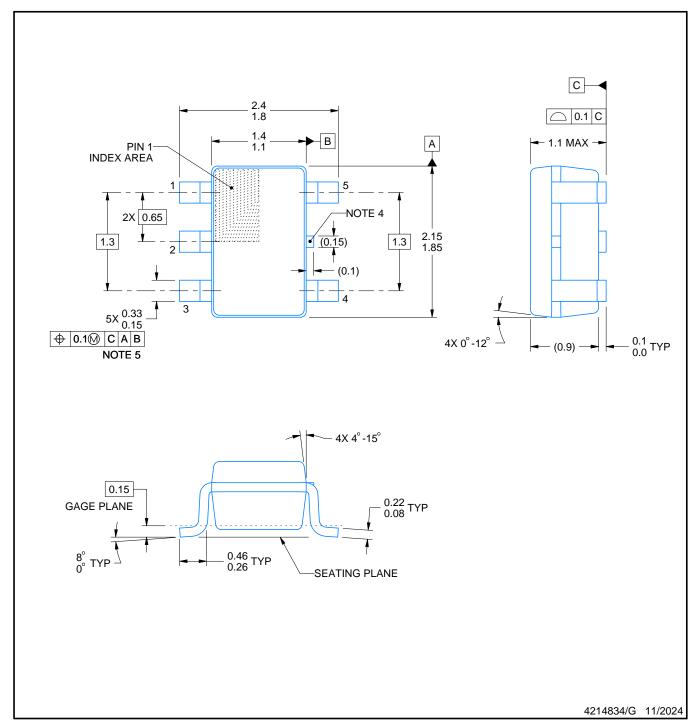
- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.



NOTES: (continued)

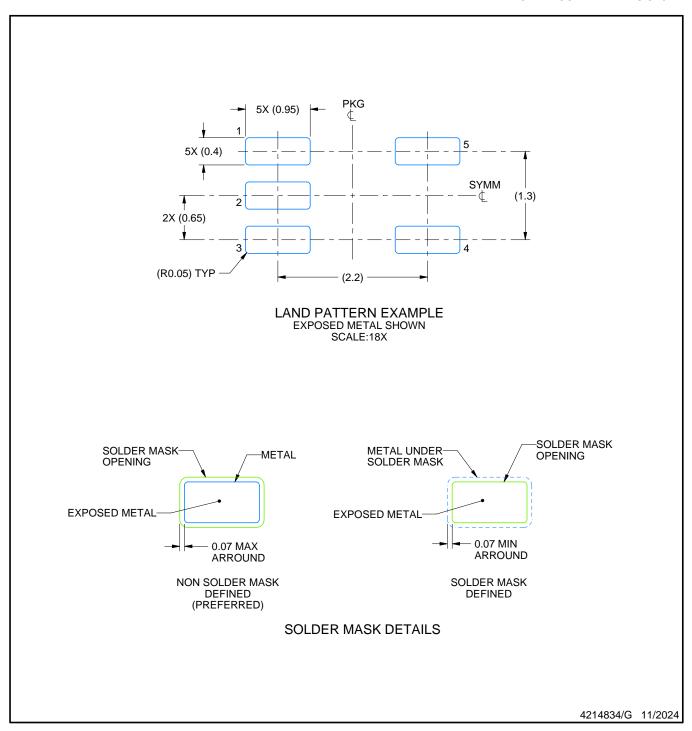
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



NOTES: (continued)

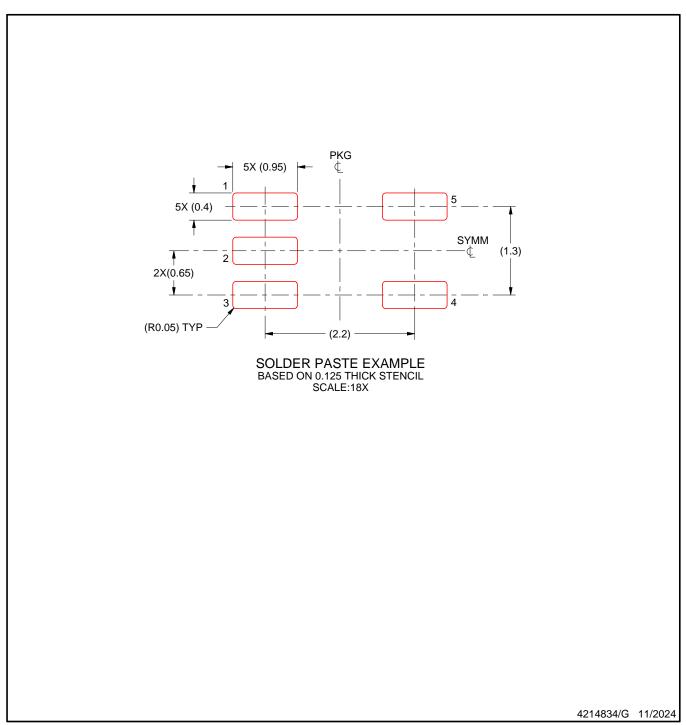
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-203.

- 4. Support pin may differ or may not be present.5. Lead width does not comply with JEDEC.
- 6. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25mm per side



NOTES: (continued)

7. Publication IPC-7351 may have alternate designs.8. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 10. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated