

TS5A3167 0.9Ω 1-channel 1:1 SPST Analog Switch

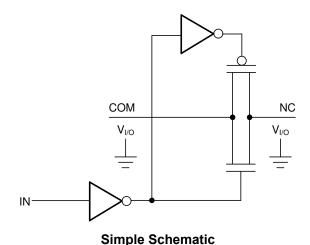
1 Features

- Isolation in powered-off mode, $V_{cc} = 0$
- Low on-state resistance (0.9Ω)
- Control inputs are 5.5V tolerant
- Low charge injection
- Low total harmonic distortion (THD)
- 1.65V to 5.5V single-supply operation
- Latch-up performance exceeds 100mA per JESD 78, Class II
- ESD performance tested per JESD 22
 - 2000V Human-Body Model (A114-B, Class II)
 - 1000V Charged-Device Model (C101)

2 Applications

- Cell phones
- **PDAs**
- Portable instrumentation
- Audio and video signal routing
- Low-voltage data-acquisition systems
- Communication circuits
- Modems
- Hard drives
- Computer peripherals

- Wireless terminals and peripherals
- Microphone switching
- Notebook docking


3 Description

The TS5A3167 is a bidirectional, single-channel, single-pole single-throw (SPST) analog switch that is designed to operate from 1.65V to 5.5V. The TS5A3167 device offers a low ON-state resistance. The device has excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device correct for portable audio applications.

Package Information

PART NUMBER	RT NUMBER PACKAGE ⁽¹⁾ PACKAGE			
	DBV (SOT-23, 5)	2.90mm x 1.60mm		
TS5A3167	DCK (SOT-SC70, 5)	2.00mm x 1.25mm		
	YZP (DSBGA, 5)	1.50mm x 0.90mm		

- For all available packages, see Section Mechanical, (1) Packaging, and Orderable Information.
- The package size (length × width) is a nominal value and includes pins, where applicable.

Table of Contents

1 Features1	7 Detailed Description	17
2 Applications1	7.1 Overview	17
3 Description1	7.2 Functional Block Diagram	17
4 Pin Configuration and Functions3	7.3 Feature Description	17
5 Specifications4	7.4 Device Functional Modes	17
5.1 Absolute Maximum Ratings4	8 Application and Implementation	18
5.2 ESD Ratings4	8.1 Application Information Disclaimer	18
5.3 Recommended Operating Conditions4	8.2 Application Information	18
5.4 Thermal Information4	8.3 Typical Application	
5.5 Electrical Characteristics for 5V Supply5	8.4 Layout	
5.6 Electrical Characteristics for 3.3V Supply6	9 Device and Documentation Support	
5.7 Electrical Characteristics for 2.5V Supply7	9.1 Receiving Notification of Documentation Updates	21
5.8 Electrical Characteristics for 1.8V Supply9	9.2 Support Resources	21
5.9 Typical Characteristics11	9.3 Trademarks	21
6 Parameter Measurement Information13	10 Revision History	21

4 Pin Configuration and Functions

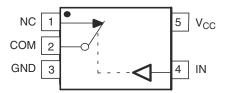


Figure 4-1. DBV or DCK Package 5- Pin (SOT-23 or SC70) Top View

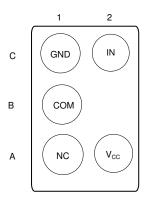


Figure 4-2. YZP Package 5-Pin (DSBGA) Bottom View

PI	IN	DESCRIPTION
NAME	NO.	DESCRIPTION
NC	1	Normally Closed
СОМ	2	Common
GND	3	Ground
IN	4	Digital control pin, COM connected to NC when logic low
V _{CC}	5	Power Supply
NC	A1	Normally Closed
СОМ	B1	Common
GND	C1	Ground
V _{CC}	A2	Power Supply
IN	C2	Digital control pin, COM connected to NC when logic low

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1) (2)

			MIN	MAX	UNIT
Supply voltage range ⁽³⁾		V _{CC}	-0.5	6.5	V
Analog voltage range ^{(3) (4) (5)}		V _{NC} V _{COM}	-0.5	V _{CC} + 0.5	V
Analog port diode current	$V_{NC}, V_{COM} < 0$	I _K	-50		mA
On-state switch current	V V = 0 to V	I _{NC}	-200	-200 200 -400 400	mA
On-state peak switch current ⁽⁶⁾	V_{NC} , $V_{COM} = 0$ to V_{CC}	I _{COM}	-400	400	ША
Digital input voltage range ⁽³⁾ (4)		V _I	-0.5	6.5	V
Digital clamp current	V _I < 0	I _{IK}	-50		mA
Continuous current through V _{CC}		I _{CC}		100	mA
Continuous current through GND		I _{GND}	-100		mA
Storage temperature range		T _{stg}	-65	150	°C

- (1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.
- (2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.
- 3) All voltages are with respect to ground, unless otherwise specified.
- (4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- (5) This value is limited to 5.5V maximum.
- (6) Pulse at 1ms duration < 10% duty cycle.

5.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

- (1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC}	Supply voltage range	1.65	5.5	V
V _{NC} V _{COM}	Analog voltage range	0	V_{CC}	V
VI	Digital input voltage range	0	V _{CC}	V

5.4 Thermal Information

		TS5A3167					
	THERMAL METRIC(1)	DBV (SOT-23)	DCK (SOT-23)	YZP (DSBGA)	UNIT		
		5 PINS	5 PINS	5 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	230.3	268.0	146.2	°C/W		
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	111.9	171.8	1.4	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	69.5	64.5	39.3	°C/W		
ΨЈТ	Junction-to-top characterization parameter	33.0	40.5	0.7	°C/W		

			TS5A3167		
	THERMAL METRIC ⁽¹⁾	DBV (SOT-23)	DCK (SOT-23)	YZP (DSBGA)	UNIT
		5 PINS	5 PINS	5 PINS	
ΨЈВ	Junction-to-board characterization parameter	69.0	62.9	39.8	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.

5.5 Electrical Characteristics for 5V Supply

 V_{CC} = 4.5V to 5.5V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CO	ONDITIONS	TA	V _{cc}	MIN	TYP	MAX	UNIT
ANALOG S	WITCH								
	De els ON es eleteres e	$0 \le V_{NC} \le V_{CC}$	Switch ON, See	25°C	4.5)/		0.8	1.1	
r _{peak}	Peak ON resistance	$I_{COM} = -100 \text{mA}$	Figure 6-1	Full	4.5V			1.2	Ω
	ON state we slate we as	V _{NC} = 2.5V,	Switch ON, See	25°C	4.5)/		0.75	0.9	
r _{on}	ON-state resistance	$I_{COM} = -100 \text{mA}$	Figure 6-1	Full	4.5V			1	Ω
		$0 \le V_{NC} \le V_{CC},$ $I_{COM} = -100 \text{mA}$	Switch ON, See	25°C			0.2		
r _{on(flat)}	ON-state resistance flatness	$V_{NC} = 1V, 1.5V,$	Figure 6-1	25°C	4.5V		0.15	0.25	Ω
		2.5V, I _{COM} = -100mA		Full				0.25	
		V _{NC} = 1V,		25°C		0	4	20	
I _{NC(OFF)} I _{NC(PWROFF)}	NC OFF leakage current	$V_{COM} = 4.5V$, or $V_{NC} = 4.5V$, $V_{COM} = 1V$,	Switch OFF, See Figure 6-2	Full	5.5V	-150		150	nA
'NC(PWROFF)		$V_{NC} = 0 \text{ to } 5.5V,$	I Iguro o z	25°C	0V	-10	0.2	10	
		V _{COM} = 5.5V to 0		Full	00	-50		50	μA
T	, aasta == 1			25°C		0	4	20	
I _{COM(OFF)}		Switch OFF, See Figure 6-2	Full	5.5V	-150		150	nA	
F)		$V_{COM} = 5.5V \text{ to } 0,$	I Iguro o z	25°C	0V	-10	0.2	10	
		V _{NC} = 0 to 5.5V		Full	UV	-50		50	μA
		V _{NC} = 1V,		25°C		– 5	0.4	5	
I _{NC(ON)}	NC ON leakage current	V_{COM} = Open, or V_{NC} = 4.5V, V_{COM} = Open	Switch ON, See Figure 6-3	Full	5.5V	-50		50	nA
		V _{COM} = 1V,	0 11 01 0	25°C		– 5	0.4	5	
I _{COM(ON)}	COM ON leakage current	V_{NC} = Open, or V_{COM} = 4.5V, V_{NC} = Open	Switch ON, See Figure 6-3	Full	5.5V	-20		20	nA
DIGITAL CO	ONTROL INPUTS (IN)	·		·					
V _{IH}	Input logic high			Full		2.4		5.5	V
V _{IL}	Input logic low			Full		0		0.8	V
I _{IH} , I _{IL}	Input leakage current	V _I = 5.5V or 0		25°C	5.5V	-2	0.3	2	nA
יווי יווג.		1, 0.00 0.0		Full	0.01	-20		20	117 \
DYNAMIC			_						
	T 6	$V_{COM} = V_{CC}$	C _L = 35pF, See	25°C	5V	1	4.5	7.5	
t _{ON}	Turn-on time	$R_L = 50\Omega$	Figure 6-5	Full	4.5V to 5.5V	1		9	ns

 V_{CC} = 4.5V to 5.5V, T_{A} = $-40^{\circ}C$ to $85^{\circ}C$ (unless otherwise noted) $^{(1)}$

	PARAMETER	TEST CO	NDITIONS	T _A	V _{CC}	MIN	TYP	MAX	UNIT
		VV	C ₁ = 35pF, See	25°C	5V	4.5	8	11	
t _{OFF}	Turn-off time	$V_{COM} = V_{CC},$ $R_L = 50\Omega$	Figure 6-5	Full	4.5V to 5.5V	3.5		13	ns
Q _C	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0$	C _L = 1nF, See Figure 6-8	25°C	5V		6		рC
C _{NC(OFF)}	NC OFF capacitance	V _{NC} = V _{CC} or GND	Switch OFF, See Figure 6-4	25°C	5V		19		рF
C _{COM(OFF)}	COM OFF capacitance	V _{COM} = V _{CC} or GND	Switch OFF, See Figure 6-4	25°C	5V		18		рF
C _{NC(ON)}	NC ON capacitance	V _{NC} = V _{CC} or GND	Switch ON, See Figure 6-4	25°C	5V		35.5		pF
C _{COM(ON)}	COM ON capacitance	V _{COM} = V _{CC} or GND	Switch ON, See Figure 6-4	25°C	5V		35.5		pF
C _I	Digital input capacitance	V _I = V _{CC} or GND	See Figure 6-4	25°C	5V		2		pF
BW	Bandwidth	$R_L = 50\Omega$	Switch ON, See Figure 6-6	25°C	5V		150		MHz
O _{ISO}	OFF isolation	$R_L = 50\Omega$, f = 1MHz	Switch OFF, See Figure 6-7	25°C	5V		-62		dB
THD	Total harmonic distortion	$R_L = 600\Omega$, $C_L = 50pF$	f = 20Hz to 20kHz, See Figure 6-9	25°C	5V		0.005 %		
SUPPLY									
laa	Positive supply current	$V_{I} = V_{CC}$ or GND	Switch ON or OFF	25°C	5.5V		0.01	0.1	ш
Icc	Ositive supply culterit	AL - ACC OL GIAD	SWILCH ON OF OFF	Full	3.34			1	μA

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

5.6 Electrical Characteristics for 3.3V Supply

 V_{CC} = 3V to 3.6V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CO	ONDITIONS	TA	V _{cc}	MIN	TYP	MAX	UNIT
ANALOG S	SWITCH								
r	Peak ON resistance	$0 \le V_{NC} \le V_{CC}$	Switch ON, See	25°C	3V		1.3	1.6	Ω
r _{peak}	reak ON resistance	$I_{COM} = -100 \text{mA}$	Figure 6-1	Full	3 0			1.8	1 12
r	ON-state resistance	V _{NC} = 2V,	Switch ON, See	25°C	- 3V		1.1	1.5	Ω
r _{on}	ON-State resistance	$I_{COM} = -100 \text{mA}$	Figure 6-1	Full	3 0			1.7	12
		$0 \le V_{NC} \le V_{CC}$, $I_{COM} = -100 \text{mA}$	Switch ON, See Figure 6-1	25°C			0.3		
r _{on(flat)}	ON-state resistance flatness	$V_{NC} = 2V, 0.8V,$		25°C 3V	3V		0.15	0.25	Ω
		I _{COM} = -100mA		Full				0.25	
		V _{NC} = 1V,		25°C		– 5	0.5	5	
I _{NC(OFF)}	NC OFF leakage current	$V_{NC} = 3V$, Switch OFF, See Full	3.6V	-50		50	nA		
l		$V_{NC} = 0 \text{ to } 3.6V,$		25°C	- OV	– 5	0.1	5	μA
I _{NC(PWROFF)}		$V_{COM} = 3.6V \text{ to } 0$		Full		-25		25	μΛ
		$V_{COM} = 1V$		25°C		– 5	0.5	5	
I _{COM(OFF)}	COM OFF leakage current	$V_{NC} = 3V$, or $V_{COM} = 3V$, $V_{NC} = 1V$	Switch OFF, See Figure 6-2	Full	3.6V	-50		50	nA
I _{COM(PWROF}	V _{COM} = 3.6V to 0,			25°C	- 0V	– 5	0.1	5	
F)		$V_{NC} = 0 \text{ to } 3.6V$		Full] ""	-25		25	μA

 V_{CC} = 3V to 3.6V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CO	NDITIONS	TA	V _{CC}	MIN	TYP	MAX	UNIT
		V _{NC} = 1V,		25°C		-2	0.3	2	
I _{NC(ON)}	NC ON leakage current	V_{COM} = Open, or V_{NC} = 3V, V_{COM} = Open	Switch ON, See Figure 6-3	Full	3.6V	-20		20	nA
		V _{COM} = 1V,		25°C		-2	0.3	2	
I _{COM(ON)}	ON leakage current	V_{NC} = Open, or V_{COM} = 3V, V_{NC} = Open	Switch ON, See Figure 6-3	Full	3.6V	-20		20	nA
DIGITAL C	ONTROL INPUTS (IN)								
V _{IH}	Input logic high			Full		2		5.5	V
V _{IL}	Input logic low			Full		0	,	0.8	V
	I)/ F 5\/ 0		25°C	0.01	-2	0.3	2	A
I _{IH} , I _{IL}	Input leakage current	V _I = 5.5V or 0		Full	3.6V	-20		20	nA
DYNAMIC									
		., .,		25°C	3.3V	1.5	5	9.5	
t _{ON}	Turn-on time	$V_{COM} = V_{CC},$ $R_L = 50\Omega$	C _L = 35pF, See Figure 6-5	Full	3V to 3.6V	1.0		10	ns
		., .,	0 05 5	25°C	3.3V	4.5	8.5	11	
t _{OFF}	Turn-off time	$V_{COM} = V_{CC},$ $R_L = 50\Omega$	C _L = 35pF, See Figure 6-5	Full	3V to 3.6V	3		12.5	ns
Q _C	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0$	C _L = 1nF, See Figure 6-8	25°C	3.3V		6		pC
C _{NC(OFF)}	NC OFF capacitance	V _{NC} = V _{CC} or GND	Switch OFF, See Figure 6-4	25°C	3.3V		19.5		pF
C _{COM(OFF)}	COM OFF capacitance	V _{COM} = V _{CC} or GND	Switch OFF, See Figure 6-4	25°C	3.3V		18.5		pF
C _{NC(ON)}	NC ON capacitance	V _{NC} = V _{CC} or GND	Switch ON, See Figure 6-4	25°C	3.3V		36		pF
C _{COM(ON)}	COM ON capacitance	V _{COM} = V _{CC} or GND	Switch ON, See Figure 6-4	25°C	3.3V		36		pF
Cı	Digital input capacitance	$V_I = V_{CC}$ or GND	See Figure 6-4	25°C	3.3V		2		pF
BW	Bandwidth	$R_L = 50\Omega$	Switch ON, See Figure 6-6	25°C	3.3V		150		MHz
O _{ISO}	OFF isolation	$R_L = 50\Omega$, f = 1MHz	Switch OFF, See Figure 6-7	25°C	3.3V		-62		dB
THD	Total harmonic distortion	$R_L = 600\Omega$, $C_L = 50pF$	f = 20Hz to 20kHz, See Figure 6-9	25°C	3.3V		0.01%		
SUPPLY									
	Docitive cumply surrent	\/ = \/	Switch ON as OFF	25°C	2 617		0.001	0.05	
I _{CC}	Positive supply current	$V_I = V_{CC}$ or GND	Switch ON or OFF	Full	3.6V			0.3	μA

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

5.7 Electrical Characteristics for 2.5V Supply

 V_{CC} = 2.3V to 2.7V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CO	T _A	V _{CC}	MIN	TYP	MAX	UNIT		
ANALOG SWITCH										
_	Peak ON resistance	110 007	Switch ON, See Figure 6-1	25°C	2.3V		1.8	2.4	Ω	
r _{peak}				Full	Z.3V			2.6		
r	ON-state resistance	V _{NC} = 2V, I _{COM} = -100mA	Switch ON, See	25°C	2.3V		1.2	2.1	Ω	
r _{on}	ON-State resistance	$I_{COM} = -100 \text{mA}$	Figure 6-1	Full	Z.3V			2.4		

 V_{CC} = 2.3V to 2.7V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CO	NDITIONS	TA	V _{cc}	MIN	TYP	MAX	UNIT
		$0 \le V_{NC} \le V_{CC}$, $I_{COM} = -100 \text{mA}$	Switch ON, See	25°C			0.7		
r _{on(flat)}	ON-state resistance flatness	V _{NC} = 2V, 0.8V,	Figure 6-1	25°C	2.3V		0.4	0.6	Ω
		$I_{COM} = -100 \text{mA}$		Full	1		,	0.6	
		V _{NC} = 1V,		25°C		-5	0.3	5	
I _{NC(OFF)}	NC OFF leakage current	$V_{COM} = 3V$, or $V_{NC} = 3V$, $V_{COM} = 1V$	Switch OFF, See Figure 6-2	Full 2.7V		-50		50	nA
l		$V_{NC} = 0 \text{ to } 3.6V,$		25°C	0V	-2	0.05	2	μΑ
I _{NC(PWROFF)}		$V_{COM} = 3.6V \text{ to } 0$		Full		-15		15	μΑ
		$V_{COM} = 1V$,		25°C		- 5	0.3	5	
I _{COM(OFF)}	COM OFF leakage current	$V_{NC} = 3V$, or $V_{COM} = 3V$, $V_{NC} = 1V$	Switch OFF, See Figure 6-2	Full	2.7V	-50		50	nA
I _{COM(PWROF}		$V_{COM} = 3.6V \text{ to } 0,$] iguio o 2	25°C	0) (-2	0.05	2	μA
F)		$V_{NC} = 0 \text{ to } 3.6V$		Full	0V	-15		15	
		V _{NC} = 1V,		25°C		-2	0.3	2	
I _{NC(ON)}	NC ON leakage current	V _{COM} = Open, or V _{NC} = 3V, V _{COM} = Open	Switch ON, See Figure 6-3	Full	2.7V	-20		20	nA
		V _{COM} = 1V,	Switch ON, See Figure 6-3	25°C		-2	0.3	2	nA
I _{COM(ON)}	COM ON leakage current	V_{NC} = Open, or V_{COM} = 3V, V_{NC} = Open		Full	2.7V	-20		20	
DIGITAL CO	ONTROL INPUTS (IN)								
V_{IH}	Input logic high			Full		1.8		5.5	V
V_{IL}	Input logic low			Full		0		0.6	V
I _{IH} , I _{IL}	Input leakage current	V _I = 5.5V or 0		25°C	2.7V	-2	0.3	2	nA
'IH' 'IL	Impatioakago ourront	V 0.0 V 01 0		Full	2.7 0	-20		20	
DYNAMIC									
		V _{COM} = V _{CC} ,	C _L = 35pF, See	25°C	2.5V	2	6	10	
t _{ON}	Turn-on time	$R_L = 50\Omega$	Figure 6-5	Full	2.3V to 2.7V	1		12	ns
		$V_{COM} = V_{CC}$	C _L = 35pF, See	25°C	2.5V	4.5	8	10.5	
t _{OFF}	Turn-off time	$R_L = 50\Omega$	Figure 6-5	Full	2.3V to 2.7V	3		15	ns
Q_C	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0$	C _L = 1nF, See Figure 6-8	25°C	2.5V		4		рC
C _{NC(OFF)}	NC OFF capacitance	$V_{NC} = V_{CC}$ or GND	Switch OFF, See Figure 6-4	25°C	2.5V		19.5		pF
C _{COM(OFF)}	COM OFF capacitance	V _{COM} = V _{CC} or GND	Switch OFF, See Figure 6-4	25°C	2.5V		18.5		pF
C _{NC(ON)}	NC ON capacitance	V _{NC} = V _{CC} or GND	Switch ON, See Figure 6-4	25°C	2.5V		36.5		pF
C _{COM(ON)}	COM ON capacitance	V _{COM} = V _{CC} or GND	Switch ON, See Figure 6-4	25°C	2.5V		36.5		pF
Cı	Digital input capacitance	V _I = V _{CC} or GND	See Figure 6-4	25°C	2.5V		2		pF
BW	Bandwidth	R _L = 50Ω	Switch ON, See Figure 6-6	25°C	2.5V		150		MHz
O _{ISO}	OFF isolation	$R_L = 50\Omega$, f = 1MHz	Switch OFF, See Figure 6-7	25°C	2.5V		-62		dB

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

 V_{CC} = 2.3V to 2.7V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CO	T _A	V _{CC}	MIN	TYP	MAX	UNIT	
THD	Total harmonic distortion	$R_L = 600\Omega$, $C_L = 50pF$	f = 20Hz to 20kHz, See Figure 6-9	25°C	2.5V	0.02%			
SUPPLY									
	Positivo aupply aurrent	$V_1 = V_{CC}$ or GND	Switch ON or OFF	25°C 2.7V			0.001	0.02	
Icc	Positive supply current	AI - ACC OL GIAD	SWILCH ON OF OFF	Full	Z./V			0.25	μΑ

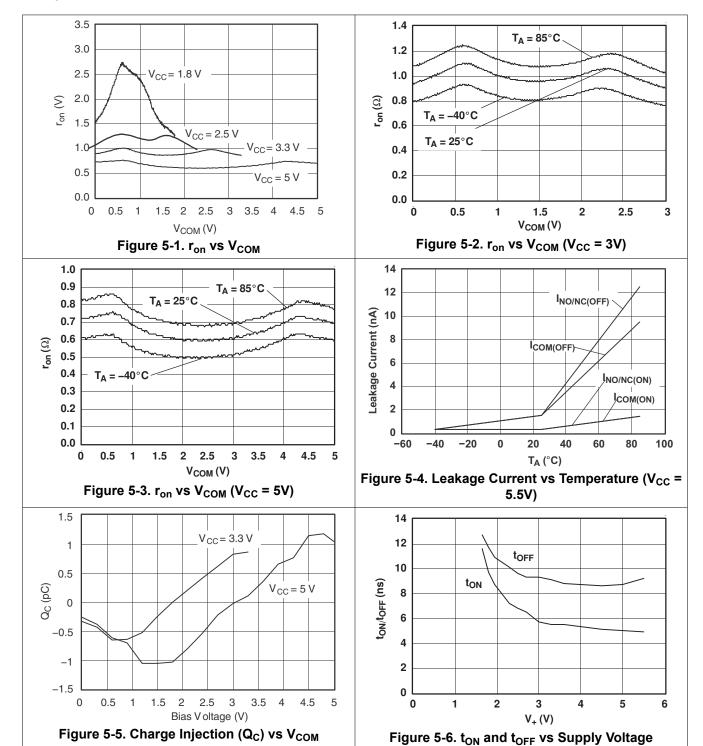
⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

5.8 Electrical Characteristics for 1.8V Supply

 V_{CC} = 1.65V to 1.95V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

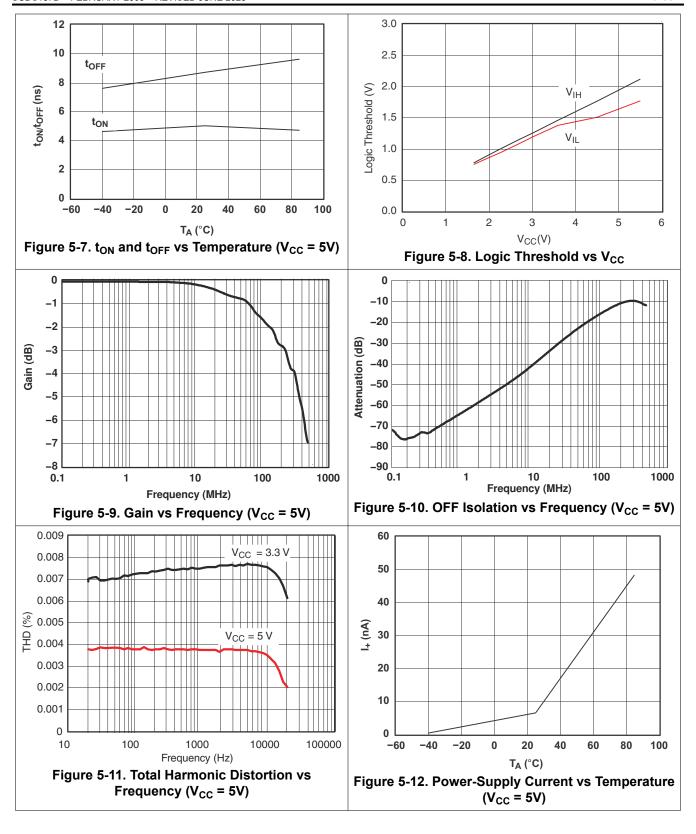
	PARAMETER	TEST CO	ONDITIONS	TA	V _{cc}	MIN	TYP	MAX	UNIT	
ANALOG S	WITCH									
	Deals ON maristance	$0 \le V_{NC} \le V_{CC}$	Switch ON, See	25°C	4.05\/		4.2	25	_	
r _{peak}	Peak ON resistance	$I_{COM} = -100 \text{mA}$	Figure 6-1	Full	1.65V			30	Ω	
	ON state registance	V _{NC} = 2V,	Switch ON, See	25°C	1.65V		1.6	3.9	Ω	
r _{on}	ON-state resistance	$I_{COM} = -100 \text{mA}$	Figure 6-1	Full	1.05V			4.0	12	
		$0 \le V_{NC} \le V_{CC},$ $I_{COM} = -100 \text{mA}$	$0 \le V_{NC} \le V_{CC}$, $I_{COM} = -100 \text{mA}$ Switch ON, See				2.8			
r _{on(flat)}	ON-state resistance flatness	$V_{NC} = 2V, 0.8V,$	Figure 6-1	25°C	1.65V		4.1	22	Ω	
		I _{COM} = -100mA		Full				27		
		V _{NC} = 1V,		25°C		– 5		5		
I _{NC(OFF)}	NC OFF leakage current	$V_{COM} = 3V$, or $V_{NC} = 3V$, $V_{COM} = 1V$	Switch OFF, See Figure 6-2	Full	1.95V	-50		50	nA	
l		$V_{NC} = 0 \text{ to } 3.6V,$		25°C	0V	-2		2	μA	
I _{NC(PWROFF)}		$V_{COM} = 3.6V \text{ to } 0$		Full	UV	-10		10	μΛ	
		$V_{COM} = 1V$		25°C		- 5		5		
I _{COM(OFF)}	COM OFF leakage current	$V_{NC} = 3V$, or $V_{COM} = 3V$, $V_{NC} = 1V$	Switch OFF, See Figure 6-2	Full	1.95V	-50		50	nA	
I _{COM(PWROF}		$V_{COM} = 0 \text{ to } 3.6V,$	7.3	25°C	0V	-2		2	μA	
F) .		V _{NC} = 3.6V to 0		Full	UV	-10		10	μΑ	
		V _{NC} = 1V,	0 11 1 01 0	25°C		-2		2		
I _{NC(ON)}	NC ON leakage current	V_{COM} = Open, or V_{NC} = 3V, V_{COM} = Open	Switch ON, See Figure 6-3	Full	1.95V	-20		20	nA	
		V _{COM} = 1V,	0 11 1 01 0	25°C		-2		2		
I _{COM(ON)}	COM ON leakage current	V_{NC} = Open, or V_{COM} = 3V, V_{NC} = Open	Switch ON, See Figure 6-3	Full	1.95V	-20		20	nA	
DIGITAL CO	ONTROL INPUTS (IN)									
V_{IH}	Input logic high			Full		1.5		5.5	V	
V_{IL}	Input logic low			Full		0		0.6	V	
I _{IH} , I _{IL}	Input leakage current	V _I = 5.5V or 0		25°C	1.95V	-2	0.3	2	nA	
'IH, 'IL	Input loakago outront	V ₁ = 0.0 V 01 0		Full	1.00 V	-20		20		
DYNAMIC										
				25°C	1.8V	3	9	18		
t _{ON}	Turn-on time	$V_{COM} = V_{CC},$ $R_L = 50\Omega$	C _L = 35pF, See Figure 6-5	Full	1.65V to 1.95V	1		20	ns	

 V_{CC} = 1.65V to 1.95V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾


	PARAMETER	TEST CO	NDITIONS	T _A	V _{CC}	MIN	TYP	MAX	UNIT
				25°C	1.8V	5	10	15.5	
t _{OFF}	Turn-off time	$V_{COM} = V_{CC},$ $R_L = 50\Omega$	C _L = 35pF, See Figure 6-5	Full	1.65V to 1.95V	4		18.5	ns
Q _C	Charge injection	$V_{\text{GEN}} = 0$, $C_{\text{L}} = 1 \text{nF, See}$ $C_{\text{Eigure 6-8}}$			рС				
C _{NC(OFF)}	NC OFF capacitance	V _{NC} = V _{CC} or GND Switch OFF, See Figure 6-4 25°C 1.8V 19.5			pF				
C _{COM(OFF)}	COM OFF capacitance	V _{COM} = V _{CC} or GND	Switch OFF, See Figure 6-4	25°C	1.8V		18.5		pF
C _{NC(ON)}	NC ON capacitance	V _{NC} = V _{CC} or GND	Switch ON, See Figure 6-4	25°C	1.8V		36.5		pF
C _{COM(ON)}	COM ON capacitance	V _{COM} = V _{CC} or GND	Switch ON, See Figure 6-4	25°C	1.8V	36.5			pF
Cı	Digital input capacitance	V _I = V _{CC} or GND	See Figure 6-4	25°C	1.8V		2		pF
BW	Bandwidth	R _L = 50Ω	Switch ON, See Figure 6-6	25°C	1.8V		150		MHz
O _{ISO}	OFF isolation	$R_L = 50\Omega$, f = 1MHz	Switch OFF, See Figure 6-7	25°C	1.8V		-62		dB
THD	Total harmonic distortion	$R_L = 600\Omega,$ $C_L = 50pF$	f = 20Hz to 20kHz, See Figure 6-9	25°C	1.8V		0.055 %		
SUPPLY				•					
laa	Positive supply current	$V_1 = V_{CC}$ or GND	Switch ON or OFF	25°C	1.95V		0.001 0.01		μA
I _{CC}	ositive supply culterit	AI - ACC OLGIAD	Switch ON OF OFF	Full	1.337			0.15	μΛ

The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: TS5A3167


5.9 Typical Characteristics

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

6 Parameter Measurement Information

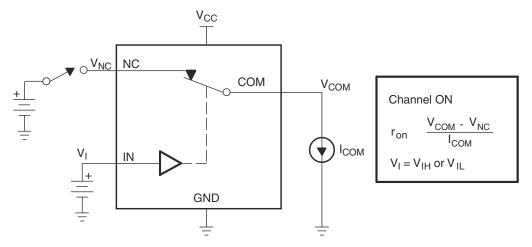
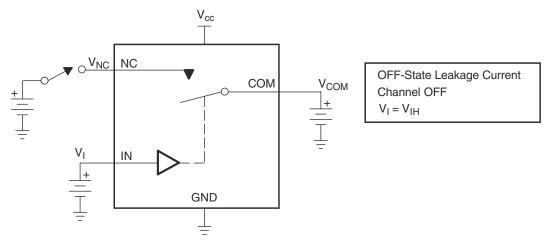



Figure 6-1. ON-State Resistance (ron)

 $\textbf{Figure 6-2. OFF-State Leakage Current (I_{COM(OFF)},\,I_{NC(OFF)},\,I_{NC(PWROFF)},\,I_{NC(PWROFF)})}\\$

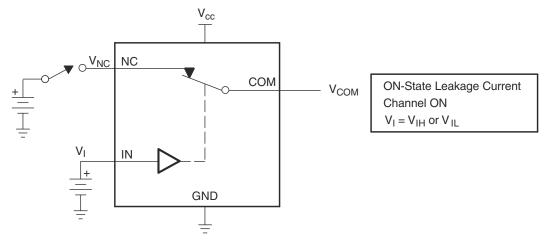


Figure 6-3. ON-State Leakage Current ($I_{COM(ON)}$, $I_{NC(ON)}$)

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

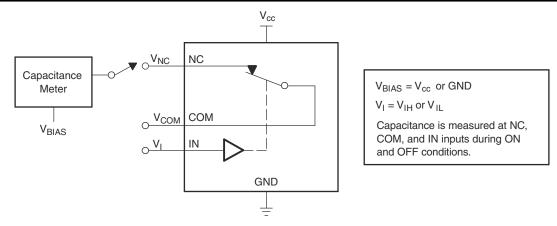
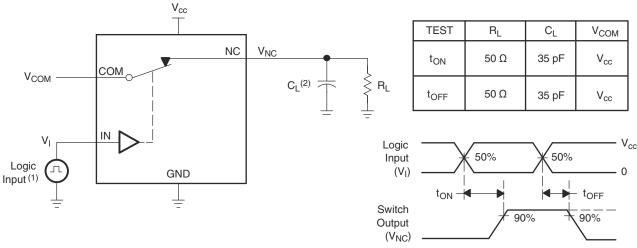



Figure 6-4. Capacitance (C_I, $C_{COM(OFF)}$, $C_{COM(ON)}$, $C_{NC(OFF)}$, $C_{NC(ON)}$)

- A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz, $Z_O = 50\Omega$, $t_r < 5$ ns, $t_f < 5$ ns.
- B. C_L includes probe and jig capacitance.

Figure 6-5. Turn-On (t_{ON}) and Turn-Off Time (t_{OFF})

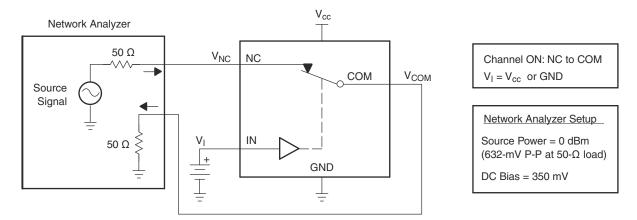


Figure 6-6. Bandwidth (BW)

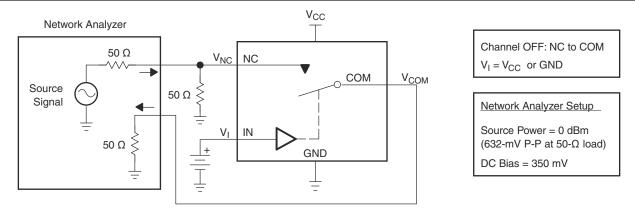
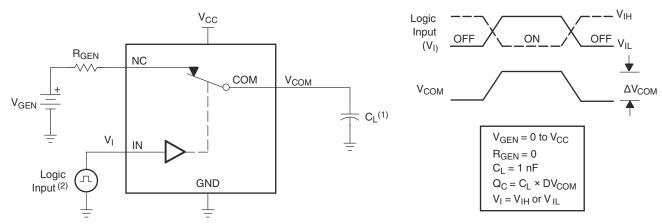
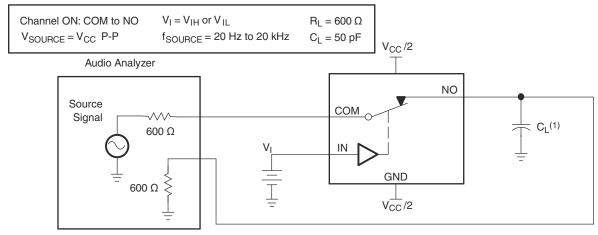




Figure 6-7. OFF Isolation (O_{ISO})

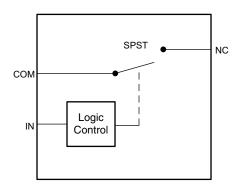
- C_L includes probe and jig capacitance.
- B. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10MHz, Z_O = 50Ω, t_f < 5ns, t_f < 5ns.</p>

Figure 6-8. Charge Injection (Q_C)

A. C_L includes probe and jig capacitance.

Figure 6-9. Total Harmonic Distortion (THD)

Table 6-1. Parameter Description


SYMBOL	DESCRIPTION
V _{COM}	Voltage at COM
V _{NC}	Voltage at NC
r _{on}	Resistance between COM and NC ports when the channel is ON
r _{peak}	Peak on-state resistance over a specified voltage range
r _{on(flat)}	Difference between the maximum and minimum value of ron in a channel over the specified range of conditions
I _{NC(OFF)}	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state under worst-case input and output conditions
I _{NC(PWROFF)}	Leakage current measured at the NC port during the power-down condition, V _{CC} = 0
I _{COM(OFF)}	Leakage current measured at the COM port, with the corresponding channel (COM to NC) in the OFF state under worst-case input and output conditions
I _{COM(PWROFF)}	Leakage current measured at the COM port during the power-down condition, V _{CC} = 0
I _{NC(ON)}	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) open
I _{COM(ON)}	Leakage current measured at the COM port, with the corresponding channel (COM to NC) in the ON state and the output (NC) open
V _{IH}	Minimum input voltage for logic high for the control input (IN)
V _{IL}	Maximum input voltage for logic low for the control input (IN)
V _I	Voltage at the control input (IN)
I _{IH} , I _{IL}	Leakage current measured at the control input (IN)
t _{ON}	Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NC) signal when the switch is turning ON.
t _{OFF}	Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NC) signal when the switch is turning OFF.
Q _C	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC or COM) output. This is measured in coulombs (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L \times \Delta V_{COM}$, C_L is the load capacitance, and ΔV_{COM} is the change in analog output voltage.
C _{NC(OFF)}	Capacitance at the NC port when the corresponding channel (NC to COM) is OFF
C _{COM(OFF)}	Capacitance at the COM port when the corresponding channel (COM to NC) is OFF
C _{NC(ON)}	Capacitance at the NC port when the corresponding channel (NC to COM) is ON
C _{COM(ON)}	Capacitance at the COM port when the corresponding channel (COM to NC) is ON
Cı	Capacitance of control input (IN)
O _{ISO}	OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM) in the OFF state.
BW	Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3dB below the DC gain.
THD	Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.
Icc	Static power-supply current with the control (IN) pin at V _{CC} or GND

7 Detailed Description

7.1 Overview

The TS5A3167 is a bidirectional, single-channel, single-pole single-throw (SPST) analog switch that is designed to operate from 1.65V to 5.5V. This device provides a signal switching solution while maintaining excellent signal integrity, which makes the TS5A3367 appropriate for a wide range of applications in various markets including personal electronics, portable instrumentation, and test and measurement equipment. The device maintains the signal integrity by its low ON-state resistance, excellent ON-state resistance matching, and total harmonic distortion (THD) performance. The device consumes very low power and provides isolation when VCC = 0.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Isolation in Powered-Off Mode, $V_{CC} = 0$

When power is not supplied to the V_{CC} pin, V_{CC} = 0, the signal paths NC and COM are high impedance. This is specified in the electrical characteristics table under the COM and NC OFF leakage current when V_{CC} = 0. Because the device is high impedance when it is not powered, other signals are connectable without interference of the TS5A3167.

7.4 Device Functional Modes

Placing a logic low signal on the IN pin of the device turns on the switch and provides a low impedance path from NC to COM.

Table 7-1. Functions

IN	NC TO COM, COM TO NC				
L	ON				
Н	OFF				

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

8 Application and Implementation

8.1 Application Information Disclaimer

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.2 Application Information

The TS5A3167 switch is bidirectional, so the NC and COM pins can be used as either inputs or outputs. This switch is typically used when there is one signal path that requires isolation at certain times.

8.3 Typical Application

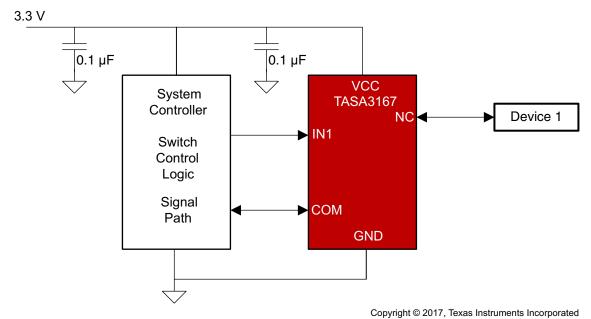


Figure 8-1. Typical Application

8.3.1 Design Requirements

The TS5A3167 device can be properly operated without any external components.

Unused pin may be left floating or connected to ground.

TI recommends pulling up the digital control pin (IN) to V_{CC} or pulling down to GND to avoid undesired switch positions that could result from the floating pin. A floating digital pin could cause excess current consumption refer to *Implications of Slow or Floating CMOS Inputs*.

8.3.2 Detailed Design Procedure

Select the appropriate supply voltage to cover the entire voltage swing of the signal passing through the switch because the TS5A3167 input and output signal swing through NC and COM are dependent on the supply voltage V_{CC} . For example, if the desired signal level to pass through the switch is 5V, V_{CC} must be greater than or equal to 5V. V_{CC} = 3.3V is not valid for passing a 5V signal since the analog signal voltage cannot exceed the supply.

8.3.3 Application Curves

Figure 8-2. ron vs V_{COM}

Power Supply Recommendations

TI recommends proper power-supply sequencing for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the device. It is recommended that V_{CC} is powered on first, followed by NC or COM but not required because of the Isolation in Powered-Off Mode, V_{CC} = 0 feature.

Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the V_{CC} supply to other components. A $0.1\mu F$ capacitor, connected from V_{CC} to GND, is adequate for most applications.

8.4 Layout

8.4.1 Layout Guidelines

TI recommends following common printed-circuit board layout guidelines to ensure reliability of the device.

- · Use bypass capacitors on power supplies
- Use short trace lengths to avoid excessive loading

8.4.2 Layout Example

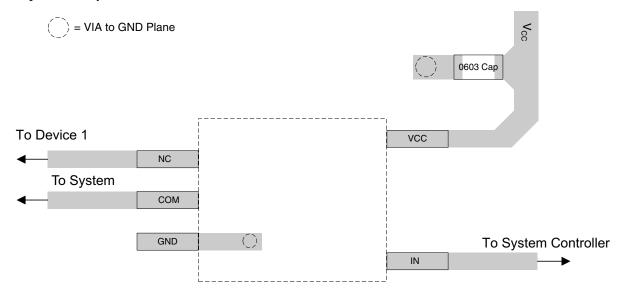


Figure 8-3. Example Layout

9 Device and Documentation Support

9.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.3 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision C (August 2018) to Revision D (June 2025)	Page
	Updated the numbering format for tables, figures, and cross-references throughout the document	
•	Moved Parameter Description table from Section 9 to Section 6	13
С	hanges from Revision B (March 2017) to Revision C (August 2018)	Page
_	hanges from Revision B (March 2017) to Revision C (August 2018) Changed the DSBGA Body Size From: 1.50 mm x 9.00 mm To: 1.50 mm x 0.90 mm in the <i>Device In</i> table	formation

Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: *TS5A3167*

www.ti.com 7-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
TS5A3167DBVR	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(JATF, JATR) (JATH, JATP)
TS5A3167DBVR.B	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JATF, JATR) (JATH, JATP)
TS5A3167DCKR	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(JG5, JGF, JGR) (JGH, JGP, JGS)
TS5A3167DCKR.B	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 85	(JG5, JGF, JGR) (JGH, JGP, JGS)
TS5A3167DCKRG4	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JG5, JGF, JGR) (JGH, JGP, JGS)
TS5A3167DCKRG4.B	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JG5, JGF, JGR) (JGH, JGP, JGS)
TS5A3167YZPR	Active	Production	DSBGA (YZP) 5	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	JGN
TS5A3167YZPR.B	Active	Production	DSBGA (YZP) 5	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	JGN

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

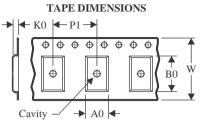
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

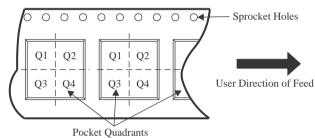
www.ti.com 7-Nov-2025


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

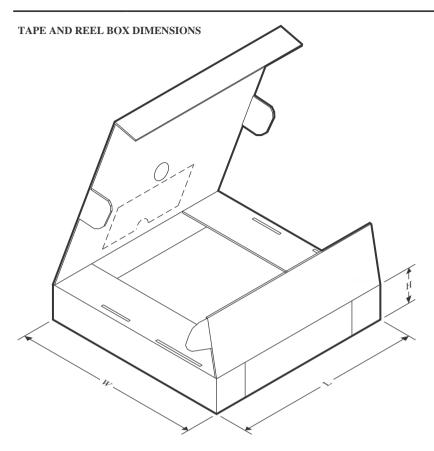
PACKAGE MATERIALS INFORMATION

www.ti.com 8-Nov-2025


TAPE AND REEL INFORMATION

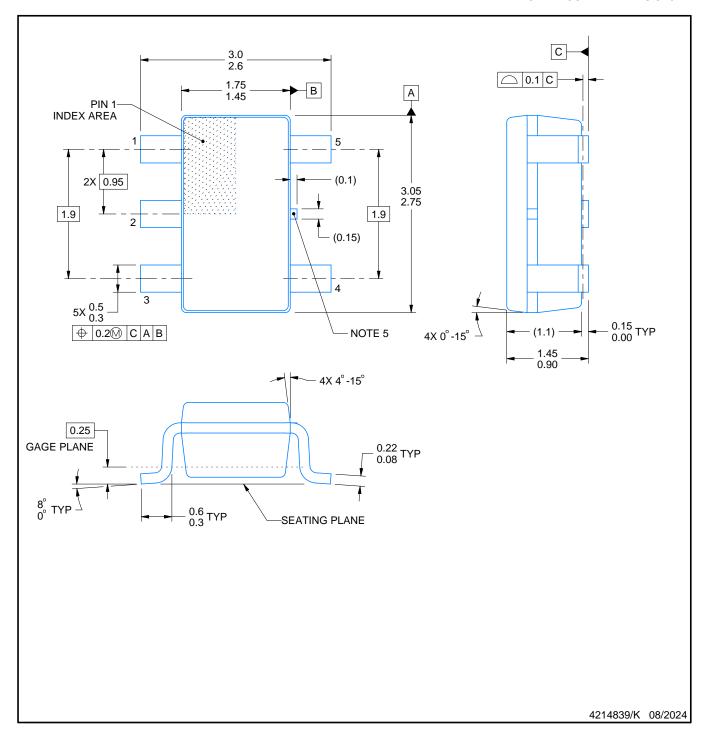
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



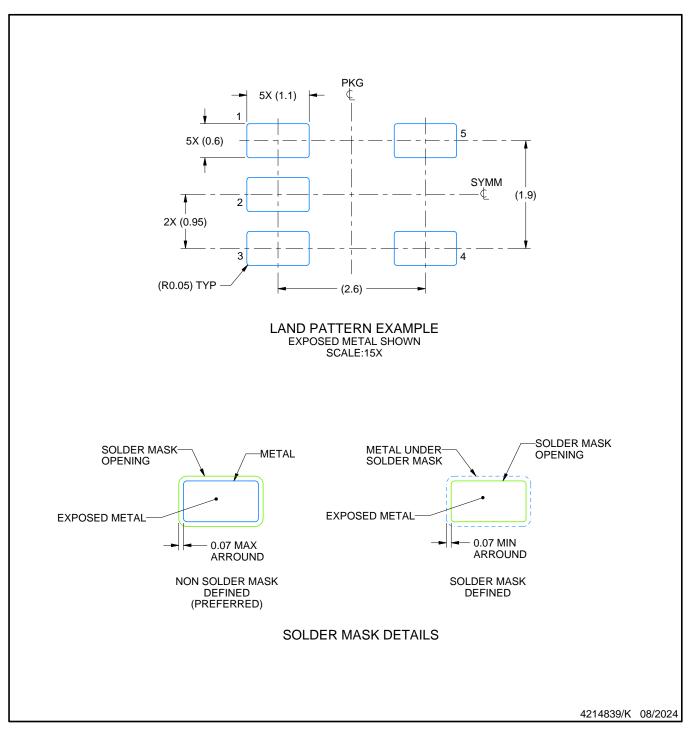
*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5A3167DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TS5A3167DCKR	SC70	DCK	5	3000	180.0	8.4	2.47	2.3	1.25	4.0	8.0	Q3
TS5A3167DCKR	SC70	DCK	5	3000	180.0	8.4	2.3	2.5	1.2	4.0	8.0	Q3
TS5A3167DCKRG4	SC70	DCK	5	3000	180.0	8.4	2.47	2.3	1.25	4.0	8.0	Q3
TS5A3167YZPR	DSBGA	YZP	5	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1


www.ti.com 8-Nov-2025

*All dimensions are nominal

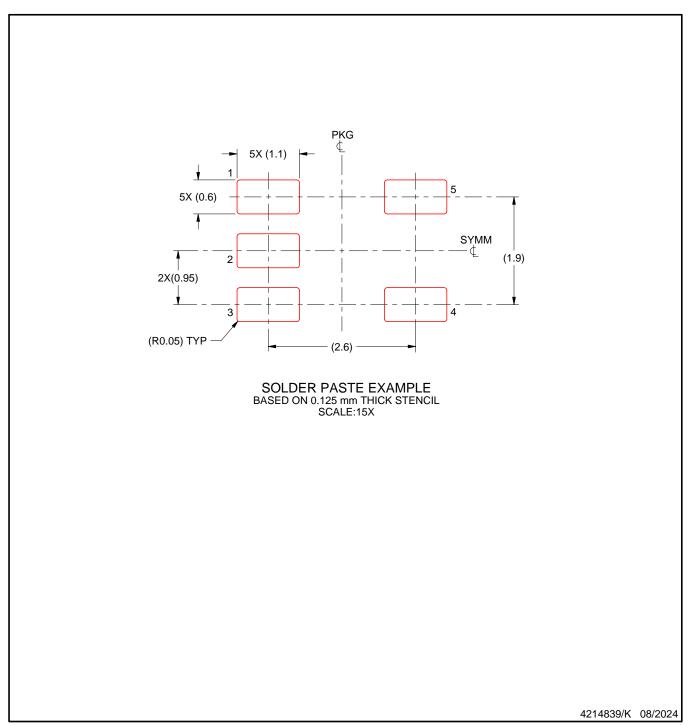
7 till dillitorioriorio di o mominar							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A3167DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TS5A3167DCKR	SC70	DCK	5	3000	202.0	201.0	28.0
TS5A3167DCKR	SC70	DCK	5	3000	210.0	185.0	35.0
TS5A3167DCKRG4	SC70	DCK	5	3000	202.0	201.0	28.0
TS5A3167YZPR	DSBGA	YZP	5	3000	220.0	220.0	35.0



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-178.

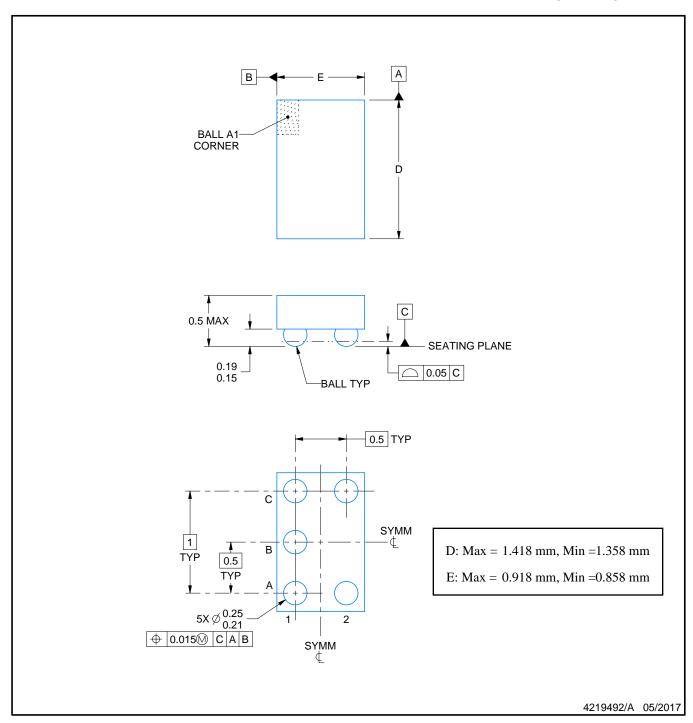
- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.



NOTES: (continued)

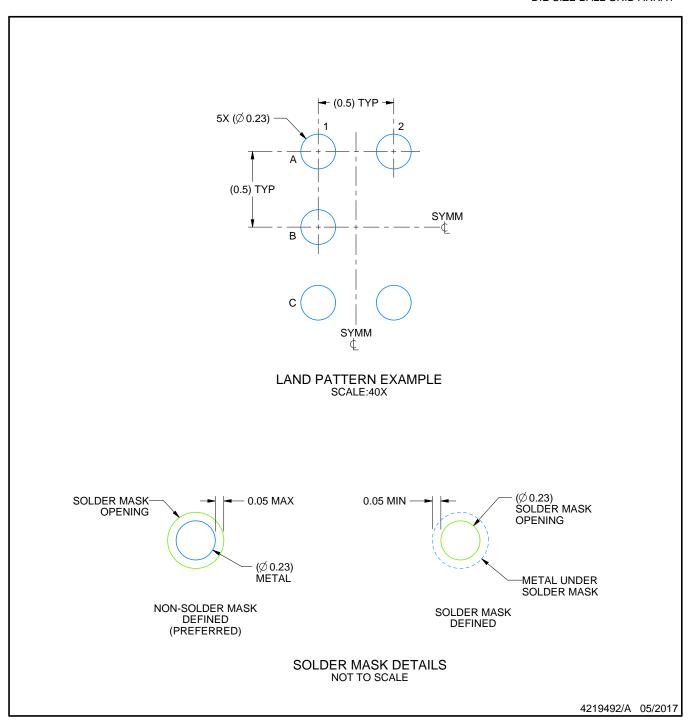
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

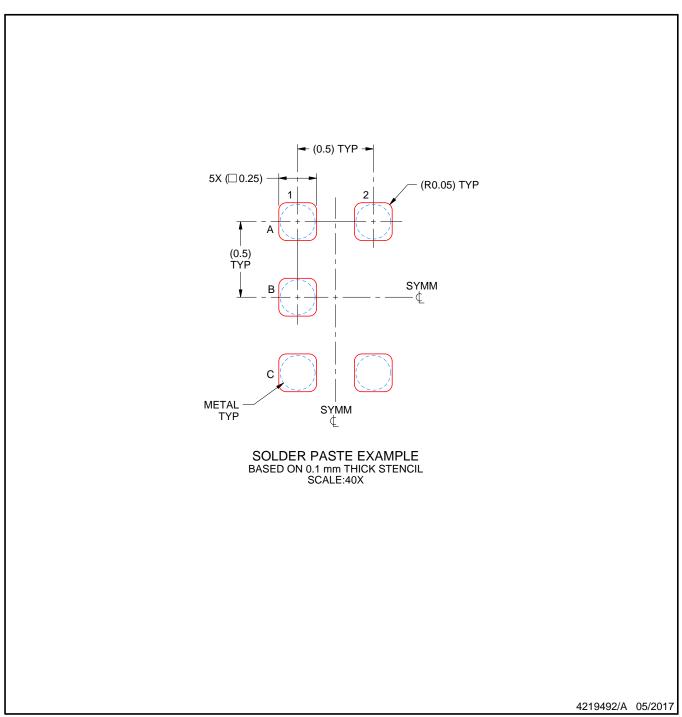
DIE SIZE BALL GRID ARRAY



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

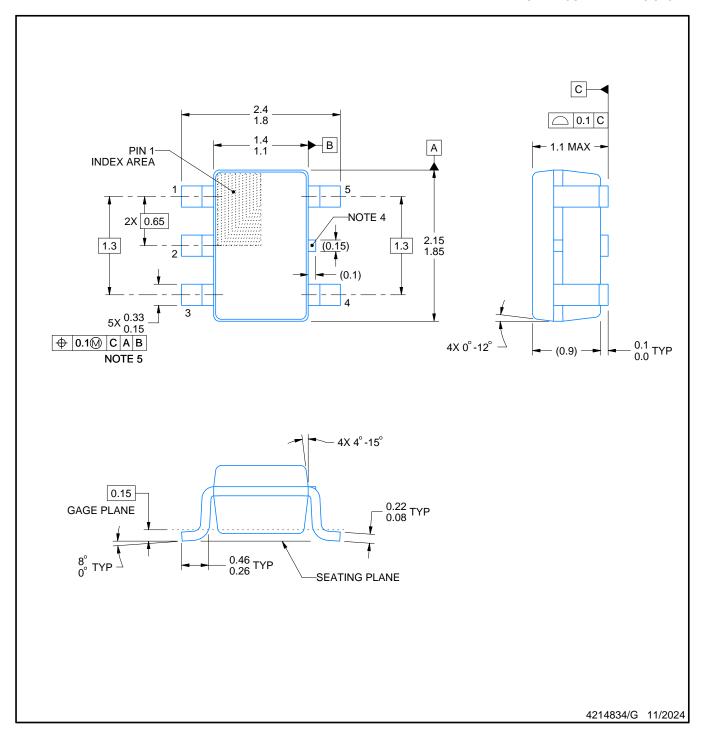
DIE SIZE BALL GRID ARRAY



NOTES: (continued)

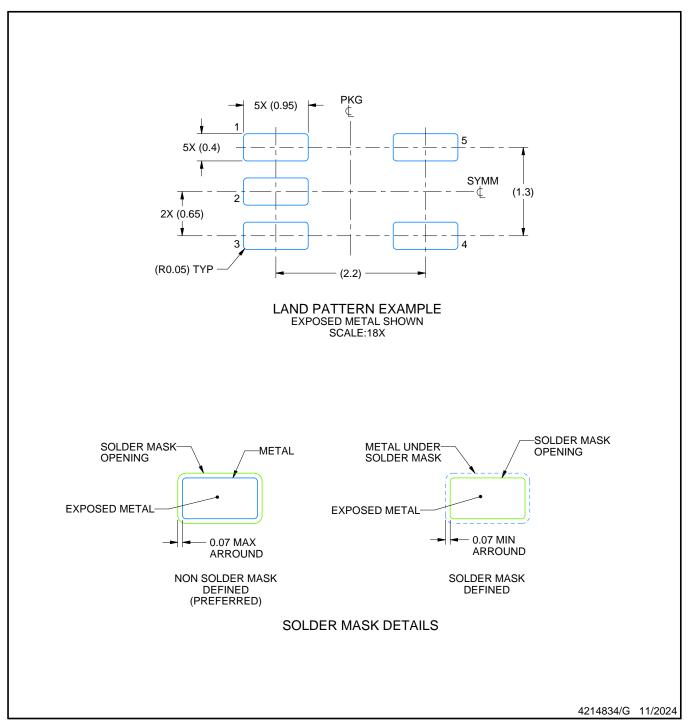
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

DIE SIZE BALL GRID ARRAY



NOTES: (continued)

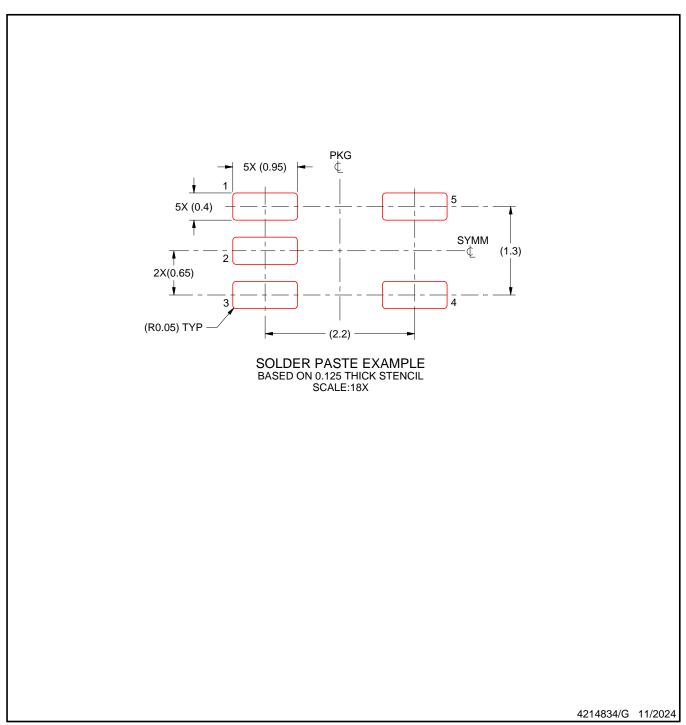
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-203.

- 4. Support pin may differ or may not be present.5. Lead width does not comply with JEDEC.
- 6. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25mm per side



NOTES: (continued)

7. Publication IPC-7351 may have alternate designs.8. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 10. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025