

TS3A24159 SCDS238H - MARCH 2007 - REVISED AUGUST 2022

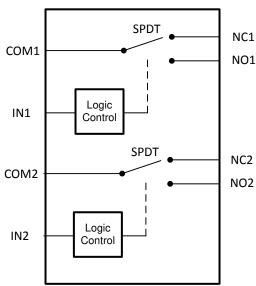
TS3A24159 0.3-Ω 2-Channel SPDT Bidirectional Analog Switch **Dual-Channel 2:1 Multiplexer and Demultiplexer**

1 Features

- Specified break-before-make switching
- Low ON-state resistance (0.3 Ω maximum)
- Low charge injection
- Excellent ON-state resistance matching
- Low total harmonic distortion (THD)
- 1.65-V to 3.6-V single-supply operation
- Control inputs are 1.8-V logic compatible
- Latch-up performance exceeds 100 mA per JESD 78. Class II
- ESD performance tested per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

2 Applications

- Cell phones
- Personal digital assistant (PDAs)
- Portable instrumentation
- Audio and video signal routing
- Low-voltage data-acquisition systems
- Communication circuits
- Modems
- Hard drives
- Computer peripherals
- Wireless terminals and peripherals


3 Description

The TS3A24159 is a 2-channel single-pole doublethrow (SPDT) bidirectional analog switch that is designed to operate from 1.65 V to 3.6 V. It offers low ON-state resistance and excellent ONstate resistance matching with the break-beforemake feature, to prevent signal distortion during the transferring of a signal from one channel to another. The device has excellent total harmonic distortion (THD) performance, low ON-state resistence, and consumes very low power. These are some of the features that make this device suitable for a variety of markets and many different applications.

Device Information⁽¹⁾

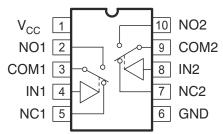
PART NUMBER	PACKAGE	BODY SIZE (NOM)
	VSSOP (10)	3.00 mm × 3.00 mm
TS3A24159	VSON (10)	3.00 mm × 3.00 mm
	DSBGA (10)	1.86 mm × 1.35 mm

For all available packages, see the orderable addendum at the end of the data sheet.

Functional Block Diagram

Table of Contents

1 Features	1	8.2 Functional Block Diagram	18
2 Applications	1	8.3 Feature Description	
3 Description		8.4 Device Functional Modes	
4 Revision History		9 Application and Implementation	
5 Pin Configuration and Functions	3	9.1 Application Information	
6 Specifications	<mark>5</mark>	9.2 Typical Application	
6.1 Absolute Maximum Ratings	<mark>5</mark>	10 Power Supply Recommendations	
6.2 ESD Ratings		11 Layout	<mark>21</mark>
6.3 Recommended Operating Conditions	5	11.1 Layout Guidelines	
6.4 Thermal Information		11.2 Layout Example	
6.5 Electrical Characteristics for 3-V Supply		12 Device and Documentation Support	22
6.6 Electrical Characteristics for 2.5-V Supply		12.1 Documentation Support	
6.7 Electrical Characteristics for 1.8-V Supply		12.2 Receiving Notification of Documentation	
6.8 Switching Characteristics for a 3-V Supply	10	12.3 Support Resources	<mark>22</mark>
6.9 Switching Characteristics for a 2.5-V Supply	10	12.4 Trademarks	<mark>22</mark>
6.10 Switching Characteristics for a 1.8-V Supply	11	12.5 Electrostatic Discharge Caution	<mark>22</mark>
6.11 Typical Characteristics	12	12.6 Glossary	<mark>22</mark>
7 Parameter Measurement Information	14	13 Mechanical, Packaging, and Orderable	
8 Detailed Description	18	Information	<mark>22</mark>
8.1 Overview	18		
 Changes from Revision G (February 2022) to R Changed the maximum V_{CC} from: 3.6 V to: 4 V 		· • /	Page
- Onanged the maximum vec nom. 5.5 v to. 4 v			
Changes from Revision F (September 2019) to			Page
 Updated the numbering format for tables, figure Updated the part number in the <i>Detailed Design</i> 			
Changes from Revision E (March 2019) to Revi	ision F	(September 2019)	Page
 Changed the YZP package image view From: 	Top-Th	rough View To: Bottom View	3
Changes from Revision D (July 2015) to Revisi	ion E (March 2019)	Page
 Changed the YZP package image and deleted. 	the Y	ZP Package Terminal Assignments table	3
 Changed the YZP package image and deleted Changed Turnon time Voc (Full) value From: 2 			
 Changed Turnon time V_{CC} (Full) value From: 2 	2.3 V to	2.7 V To: 2.7 V to 3.6 V in Switching Charac	eristics for
 Changed Turnon time V_{CC} (Full) value From: 2 a 3-V Supply 	V to	2.7 V To: 2.7 V to 3.6 V in Switching Charact	teristics for10
 Changed Turnon time V_{CC} (Full) value From: 2 	2.3 V to	2.7 V To: 2.7 V to 3.6 V in <i>Switching Charact</i> 2.7 V To: 2.7 V to 3.6 V in <i>Switching Charac</i>	teristics for10 teristics for
 Changed Turnon time V_{CC} (Full) value From: 2 a 3-V Supply Changed Turnon time V_{CC} (Full) value From: 2 	2.3 V to	2.7 V To: 2.7 V to 3.6 V in <i>Switching Charact</i> 2.7 V To: 2.7 V to 3.6 V in <i>Switching Charac</i>	teristics for10 teristics for


Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

Changed V+ to V_{CC} throughout the document to meet JEDEC standards......1

5 Pin Configuration and Functions

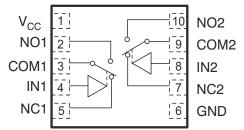


Figure 5-1. DGS Package, 10-Pin VSSOP (Top View)

Figure 5-2. DRC Package, 10-Pin VSON (Top View)

Table 5-1. Pin Functions - VSSOP and VSON

	PIN	TYPE(1)	DESCRIPTION
NO.	NAME	ITPE\'	DESCRIPTION
1	V _{CC}	_	Power supply
2	NO1	I/O	Normally open signal path
3	COM1	I/O	Common signal path
4	IN1	I	Digital control to connect COM to NO or NC
5	NC1	I/O	Normally closed signal path
6	GND	_	Ground
7	NC2	I/O	Normally closed signal path
8	IN2	I	Digital control to connect COM to NO or NC
9	COM2	I/O	Common signal path
10	NO2	I/O	Normally open signal path

(1) I = input, O = output

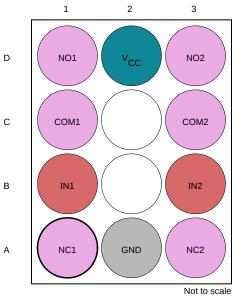


Figure 5-3. YZP Package, 10-Pin DSBGA (Bottom View)

Legend					
Input or Output	Input				
Ground	Power				

Table 5-2. Pin Functions - DSBGA

	PIN	TYPE ⁽¹⁾	DESCRIPTION			
NO.	NAME	IIPE("/	DESCRIPTION			
A1	NC1	I/O	Normally closed signal path			
A2	GND	_	Ground			
A3	NC2	I/O	Normally closed signal path			
B1	IN1	I	igital control to connect COM to NO or NC			
B3	IN2	I	Digital control to connect COM to NO or NC			
C1	COM1	I/O	Common signal path			
C3	COM2	I/O	Common signal path			
D1	NO1	I/O	Normally open signal path			
D2	V _{CC}	_	Power supply			
D3	NO2	I/O	Normally open signal path			

(1) I = input, O = output

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1) (2)

	porating need an temperature range (armos	,	MIN	MAX	UNIT
V _{CC}	Supply voltage ⁽³⁾	Supply voltage ⁽³⁾		4	V
V_{NC} V_{NO} V_{COM}	Signal voltage ^{(3) (4)}			V _{CC} + 0.5	V
I _{I/OK}	Analog port diode current	V _{NC} , V _{NO} , V _{COM} < 0	-50	50	mA
I _{NC}	ON-state switch current		-300	300	
I _{NO} I _{COM}	ON-state peak switch current ⁽⁵⁾	V_{NC} , V_{NO} , $V_{COM} = 0$ to V_{CC}	-500	500	mA
V _{IN}	Digital input voltage		-0.5	3.6	V
I _{IK}	Digital input clamp current ⁽³⁾	V _I < 0	-50		mA
I _{CC}	Continuous current through V _{CC}			100	mA
I _{GND}	Continuous current through GND		-100		mA
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.
- (3) All voltages are with respect to ground, unless otherwise specified.
- (4) This value is limited to 5.5 V maximum.
- (5) Pulse at 1-ms duration <10% duty cycle.</p>

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 or ANSI/ESDA/JEDEC JS-002 ⁽²⁾	1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC}	Supply Voltage	1.65	3.6	V
$egin{array}{c} V_{NC} \ V_{NO} \ V_{COM} \ \end{array}$	Signal Voltage	0	V _{CC}	V
V _{IN}	Digital Input Voltage	0	V _{CC}	V

6.4 Thermal Information

		TS3A24159					
	THERMAL METRIC ⁽¹⁾	DGS (VSSOP)	DRC (VSON)	YZP (DSBGA)	UNIT		
		10 PINS	10 PINS	10 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	154	49.4	90.9	°C/W		
R ₀ JC(top)	Junction-to-case (top) thermal resistance	37.9	71.2	0.3	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	83.6	23.8	8.3	°C/W		
ΨЈТ	Junction-to-top characterization parameter	1.4	2.2	3.2	°C/W		
Ψ_{JB}	Junction-to-board characterization parameter	82.2	23.8	8.3	°C/W		
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	6.1	N/A	°C/W		

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics for 3-V Supply

 V_{CC} = 2.7 V to 3.6 V, T_A = -40°C to 85°C (unless otherwise noted) (1)

PARAME	TER	TEST CONDITION	IS	T _A	V _{CC}	MIN	TYP	MAX	UNIT
ANALOG SWITCH									
Analog signal range	V_{COM}, V_{NO}, V_{NC}					0		V _{CC}	V
Peak ON	r .	$0 \le (V_{NO} \text{ or } V_{NC}) \le V_{CC},$	Switch ON,	25°C	2.7 V		0.2	0.3	Ω
resistance	r _{peak}	I _{COM} = -100 mA,	See Figure 7-1	Full	2.7 V			0.35	52
ON-state	r _{on}	V_{NO} or $V_{NC} = 2 V$,	Switch ON,	25°C	2.7 V		0.26	0.3	Ω
resistance	'on	$I_{COM} = -100 \text{ mA},$	See Figure 7-1	Full	2.7 V			0.34	
ON-state	Δ	V_{NO} or $V_{NC} = 2 \text{ V}, 0.8 \text{ V},$	Switch ON,	25°C	0.7.		0.01	0.05	
resistance match between channels	Δr_{on}	$I_{COM} = -100 \text{ mA},$	See Figure 7-1	Full	2.7 V			0.05	Ω
ON-state resistance flatness	r _{on(flat)}	$0 \le (V_{NO} \text{ or } V_{NC}) \le V_{CC},$ $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 7-1	25°C	2.7 V		0.13		Ω
		V_{NO} or $V_{NC} = 2 \text{ V}, 0.8 \text{ V},$	Switch ON,	25°C			0.01	0.04	Ω
		$I_{COM} = -100 \text{ mA},$ See Figure 7-1	Full				0.05	12	
NC, NO	I _{NC(OFF)} ,	V_{NC} or V_{NO} = 1 V, V_{COM} = 3 V,	Switch OFF,	25°C	0.01/	-10		10	
OFF leakage current	I _{NO(OFF)}	or V_{NC} or $V_{NO} = 3 \text{ V}, V_{COM} = 1 \text{ V},$	See Figure 7-2	Full	3.6 V	-50		50	nA
NC, NO	I _{NC(ON)} ,	V _{NC} or V _{NO} = 1 V, V _{COM} = Open,	Switch ON.	25°C		-10		10	
ON leakage current	I _{NO(ON)}	or V_{NC} or $V_{NO} = 3 \text{ V}, V_{COM} = \text{Open},$	See Figure 7-3	Full	3.6 V	-100		100	nA
COM		V _{NC} or V _{NO} = Open, V _{COM} = 1 V,	Switch ON.	25°C		-10		10	
ON leakage current	I _{COM(ON)}	or V_{NC} or V_{NO} = Open, V_{COM} = 3 V,	See Figure 7-3 Full		3.6 V	-100		100	nA
DIGITAL CONTROL	INPUTS (IN1	, IN2) ⁽²⁾							
Input logic high	V _{IH}			Full		1.4			V
Input logic low	V _{IL}			Full				0.5	V
Input leakage	I I	V ₁ = 3.6 V or 0		25°C	3.6 V	-40	5	40	nA
current	I _{IH} , I _{IL}	V - 3.0 V OI U		Full] 3.0 V	-50		50	IIA

Product Folder Links: TS3A24159

6.5 Electrical Characteristics for 3-V Supply (continued)

 $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, T_{\Delta} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ (unless otherwise noted)}$ (1)

PARAMETER		TEST CONDITI	ONS	T _A	V _{cc}	MIN TYP	MAX	UNIT
DYNAMIC								
Charge injection	Q _C	V _{GEN} = 0, R _{GEN} = 0,	C _L = 1 nF, See Figure 7-10	25°C	3 V	9		рС
NC, NO OFF capacitance	C _{NC(OFF)} , C _{NO(OFF)}	V _{NC} or V _{NO} = V _{CC} or GND, Switch OFF,	See Figure 7-4	25°C	3 V	90		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch ON,	See Figure 7-4	25°C	3 V	224		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V _{CC} or GND, Switch ON,	See Figure 7-4	25°C	3 V	250		pF
Digital input capacitance	Cı	V _{IN} = V _{CC} or GND,	See Figure 7-4	25°C	3 V	2		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 7-7	25°C	3 V	23		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 1 MHz,	See Figure 7-8	25°C	3 V	-72		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, f = 1 MHz,	See Figure 7-9	25°C	3 V	-96		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, See Figure 7-11	25°C	3 V	0.003%		
SUPPLY								
Positive supply	Icc	V _{IN} = V _{CC} or GND		25°C	3.6 V	15	100	nA
current	100	11N 10C 01 014D		Full		1		μΑ

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

6.6 Electrical Characteristics for 2.5-V Supply

 V_{CC} = 2.3 V to 2.7 V, T_A = -40°C to 85°C (unless otherwise noted) (1)

PARAMETER		TEST CONDITIONS	TEST CONDITIONS		V _{cc}	MIN	TYP	MAX	UNIT
ANALOG SWITCH									
Analog signal range	V_{COM}, V_{NO}, V_{NC}					0		V _{CC}	V
Peak ON resistance	r _{peak}	$0 \le (V_{NO} \text{ or } V_{NC}) \le V_{CC},$ $I_{COM} = -8 \text{ mA},$	Switch ON, See Figure 7-1	25°C	2.3 V			0.35	Ω
ON-state	·	V_{NO} or $V_{NC} = 1.8 \text{ V}$,	Switch ON,	Full 25°C				0.45	Ω
resistance	r _{on}	$I_{COM} = -8 \text{ mA},$	See Figure 7-1	Full	- 2.3 V			0.4	
ON-state resistance match	۸۳	V_{NO} or $V_{NC} = 1.8 \text{ V}, 0.8 \text{ V},$	Switch ON,	25°C	2.3 V		0.01	0.05	Ω
between channels	Δr_{on}	$I_{COM} = -8 \text{ mA},$	See Figure 7-1	Full			0.05	0.05	
ON-state		$0 \le (V_{NO} \text{ or } V_{NC}) \le V_{CC},$ $I_{COM} = -8 \text{ mA},$	Switch ON, See Figure 7-1	25°C			0.05		Ω
resistance flatness	r _{on(flat)}	V_{NO} or $V_{NC} = 0.8 \text{ V}$, 1.8 V,	Switch ON, See Figure 7-1	25°C	2.3 V		0.03	80.0	
		$I_{COM} = -8 \text{ mA},$		Full				0.1	
NC, NO	I _{NC(OFF)} ,	V_{NC} or $V_{NO} = 0.5 \text{ V}$, $V_{COM} = 2.2 \text{ V}$,	Switch OFF.	25°C	271/	-10		10	
OFF leakage current	I _{NO(OFF)}	or V_{NC} or $V_{NO} = 2.2 \text{ V}$, $V_{COM} = 0.5 \text{ V}$,	See Figure 7-2	Full	2.7 V	-50		50	nA

⁽²⁾ All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs.

6.6 Electrical Characteristics for 2.5-V Supply (continued)

 V_{CC} = 2.3 V to 2.7 V, T_A = -40°C to 85°C (unless otherwise noted) ⁽¹⁾

PARAME	TER	TEST CONDITIONS	6	TA	V _{cc}	MIN	TYP	MAX	UNIT
NC, NO	I _{NC(ON)} ,	V _{NC} or V _{NO} = 0.5 V, V _{COM} = Open,	Switch ON,	25°C		-10		10	
ON leakage current	I _{NO(ON)}	or V_{NC} or V_{NO} = 2.2 V, V_{COM} = Open,	See Figure 7-3	Full	2.7 V	-100		100	nA
ANALOG SWITCH (continued)								
СОМ		V_{NC} or V_{NO} = Open, V_{COM} = 0.5 V,	Switch ON,	25°C		-10		10	
ON leakage current	I _{COM(ON)}	or V_{NC} or V_{NO} = Open, V_{COM} = 2.2 V,	See Figure 7-3	Full	2.7 V	-100		100	nA
DIGITAL CONTROL	INPUTS (IN1,	IN2) ⁽²⁾							
Input logic high	V _{IH}			Full		1.25			V
Input logic low	V_{IL}			Full				0.5	V
Input leakage	L. L.	V _I = 2.7 V or 0		25°C	2.7 V	-40	5	40	nA
current	I _{IH} , I _{IL}	V - 2.7 V 01 0		Full	2.7 V	-50		50	
DYNAMIC									
Charge injection	$Q_{\mathbb{C}}$	V _{GEN} = 0, R _{GEN} = 0,	C _L = 1 nF, See Figure 7-10	25°C	2.5 V		8		pC
NC, NO OFF capacitance	$C_{NC(OFF)}$, $C_{NO(OFF)}$	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 7-4	25°C	2.5 V		90		pF
NC, NO ON capacitance	$C_{NC(ON)}$, $C_{NO(ON)}$	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch ON,	See Figure 7-4	25°C	2.5 V		250		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V _{CC} or GND, Switch ON,	See Figure 7-4	25°C	2.5 V		250		pF
Digital input capacitance	C_{l}	$V_I = V_{CC}$ or GND,	See Figure 7-4	25°C	2.5 V		2		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 7-7	25°C	2.5 V		23		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 1 MHz,	See Figure 7-8	25°C	2.5 V		-72		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, f = 1 MHz,	See Figure 7-9	25°C	2.5 V		-96		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, See Figure 7-11	25°C	2.5 V	0.	.003%		
SUPPLY									
Positive supply		V = V or CND		25°C	271/		10	100	nΛ
current	I _{CC}	$V_I = V_{CC}$ or GND		Full	2.7 V		700		nA

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

⁽²⁾ All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs.

6.7 Electrical Characteristics for 1.8-V Supply

 V_{CC} = 1.65 V to 1.95 V, T_A = -40°C to 85°C (unless otherwise noted) (1)

PARAME	TER	TEST CONDITIONS	T_A	V _{cc}	MIN	TYP	MAX	UNIT	
ANALOG SWITCH					1				
Analog signal range	V _{COM} , V _{NO} , V _{NC}					0		V _{CC}	V
Peak ON resistance	r _{peak}	$0 \le (V_{NO} \text{ or } V_{NC}) \le V_{CC},$ $I_{COM} = -2 \text{ mA},$	Switch ON, See Figure 7-1	25°C Full	1.65 V		0.4	0.7	Ω
ON-state resistance	r _{on}	V_{NO} or $V_{NC} = 1.5 \text{ V}$, $I_{COM} = -2 \text{ mA}$,	Switch ON, See Figure 7-1	25°C Full	1.65 V		0.3	0.45	Ω
ANALOG SWITCH	(continued)								
ON-state resistance match between channels	Δr_{on}	V_{NO} or $V_{NC} = 0.6 \text{ V}$, 1.5 V, $I_{COM} = -2 \text{ mA}$,	Switch ON, See Figure 7-1	25°C Full	1.65 V		0.02	0.04	Ω
ON-state		$0 \le (V_{NO} \text{ or } V_{NC}) \le V_{CC},$ $I_{COM} = -2 \text{ mA},$	Switch ON, See Figure 7-1	25°C			0.13		
resistance flatness	r _{on(flat)}	V _{NO} or V _{NC} = 0.6 V, 1.5 V, I _{COM} = -8 mA,	Switch ON, See Figure 7-1	25°C Full	1.65 V		0.08	0.15	Ω
NC, NO OFF leakage	I _{NC(OFF)} ,	V_{NC} or $V_{NO} = 0.3 \text{ V}$, $V_{COM} = 1.65 \text{ V}$, or	Switch OFF,	25°C	1.95	-10		10	nA
current	I _{NO(OFF)}	V_{NC} or $V_{NO} = 1.65 \text{ V}, V_{COM} = 0.3 \text{ V},$	See Figure 7-2	Full		-50		50	
NC, NO ON leakage current	I _{NC(ON)} , I _{NO(ON)}	V_{NC} or $V_{NO} = 0.3$ V, $V_{COM} = Open$, Switch ON, $V_{NC} = 0.65$ V, $V_{COM} = 0.65$ V, V_{COM			100	nA			
COM		/va or \/va = Open \/aav = 0.3 \/		-10	-	10			
ON leakage current	I _{COM(ON)}	or V_{NC} or V_{NO} = Open, V_{COM} = 1.65 V,	Switch ON, See Figure 7-3	Full	1.95 V	-100		100	nA
DIGITAL CONTRO	L INPUTS (IN	1, IN2) ⁽²⁾				•			
Input logic high	V_{IH}			Full		1			V
Input logic low	V_{IL}			Full				0.4	V
Input leakage current	$I_{\rm IH},I_{\rm IL}$	V _I = 1.95 V or 0		25°C Full	1.95 V	-40 -50	5	40 50	nA
DYNAMIC					1				1
Charge injection	$Q_{\mathbb{C}}$	V _{GEN} = 0, R _{GEN} = 0,	C _L = 1 nF, See Figure 7-10	25°C	1.8 V		5		pC
NC, NO OFF capacitance	$C_{NC(OFF)}, \ C_{NO(OFF)}$	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 7-4	25°C	1.8 V		90		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch ON,	See Figure 7-4	25°C	1.8 V		250		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V _{CC} or GND, Switch ON,	See Figure 7-4	25°C	1.8 V		250		pF
Digital input capacitance	C _{IN}	V _I = V _{CC} or GND,	See Figure 7-4	25°C	1.8 V		2		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 7-7	25°C	1.8 V		23		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega,$ f = 1 MHz,	See Figure 7-8	25°C	1.8 V		-73		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, $f = 1 MHz$,	See Figure 7-9	25°C	1.8 V		-97		dB

6.7 Electrical Characteristics for 1.8-V Supply (continued)

 V_{CC} = 1.65 V to 1.95 V, T_A = -40°C to 85°C (unless otherwise noted) (1)

PARAME	TER	TEST CO	T _A	V _{cc}	MIN TYP	MAX	UNIT	
Total harmonic distortion	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		25°C	1.8 V	0.005%			
SUPPLY								
Positive supply	1	V _I = V _{CC} or GND		25°C	1.95 V	100	50	nA
current	ICC	AL - ACC OL GIAD		Full	1.95 V		700	11/4

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

6.8 Switching Characteristics for a 3-V Supply

 V_{CC} = 2.7 V to 3.6 V, T_A = -40°C to 85°C (unless otherwise noted)(1)

PARAM	ETER	TEST CO	TA	V _{cc}	MIN	TYP	MAX	UNIT	
Dynamic					'				
				25°C	3.0 V		20	35	
Turnon time	t _{ON}	$V_{COM} = V_{CC},$ $R_L = 50 \Omega$	C _L = 35 pF, See Figure 7-5	Full	2.7 V to 3.6 V			40	ns
				25°C	3.0 V		12	25	
Turnoff time	t _{OFF}	$V_{COM} = V_{CC},$ $R_L = 50 \Omega$	C _L = 35 pF, See Figure 7-5	Full	2.7 V to 3.6 V			30	ns
				25°C	3.0 V	1	10	25	
Break-before- make time	t _{BBM}	$V_{NC} = V_{NO} = V_{CC},$ $R_L = 50 \Omega$	C _L = 35 pF, See Figure 7-6	Full	2.7 V to 3.6 V	0.5		30	ns

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

6.9 Switching Characteristics for a 2.5-V Supply

 V_{CC} = 2.3 V to 2.7 V, T_A = -40°C to 85°C (unless otherwise noted) (1)

PARAM	ETER	TEST CON	T_A	V _{CC}	MIN	TYP	MAX	UNIT	
Dynamic									
				25°C	2.5 V		23	45	
Turnon time	t _{ON}	$V_{COM} = V_{CC},$ $R_L = 50 \Omega$	C _L = 35 pF, See Figure 7-5	Full	2.3 V to 2.7 V			50	ns
				25°C	2.5 V		17	27	
Turnoff time	t _{OFF}	$V_{COM} = V_{CC},$ $R_L = 50 \Omega$	C _L = 35 pF, See Figure 7-5	Full	2.3 V to 2.7 V			30	ns
				25°C	2.5 V	2	14	30	
Break-before- make time	t _{BBM}	$V_{NC} = V_{NO} = V_{CC},$ $R_L = 50 \Omega$	C _L = 35 pF, See Figure 7-6	Full	2.3 V to 2.7 V	1		35	ns

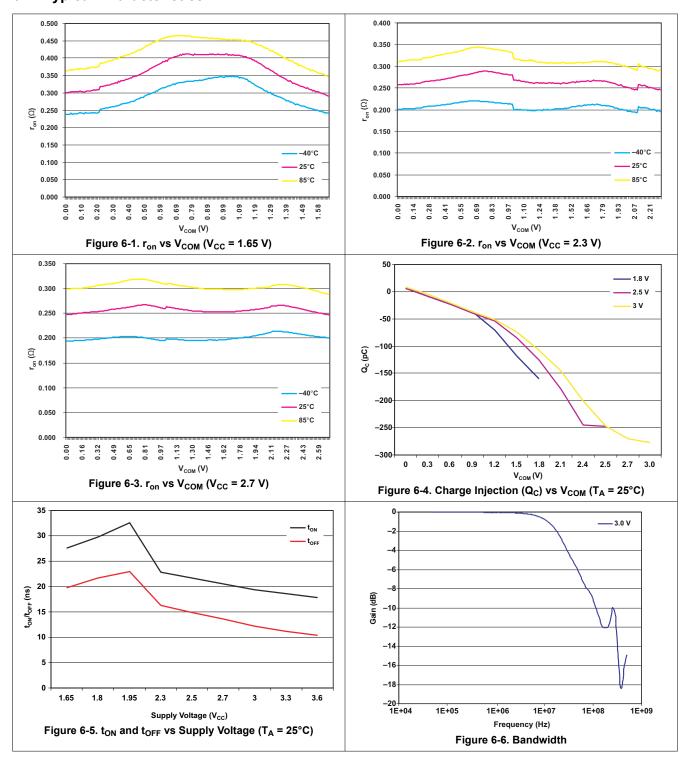
(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

Submit Document Feedback

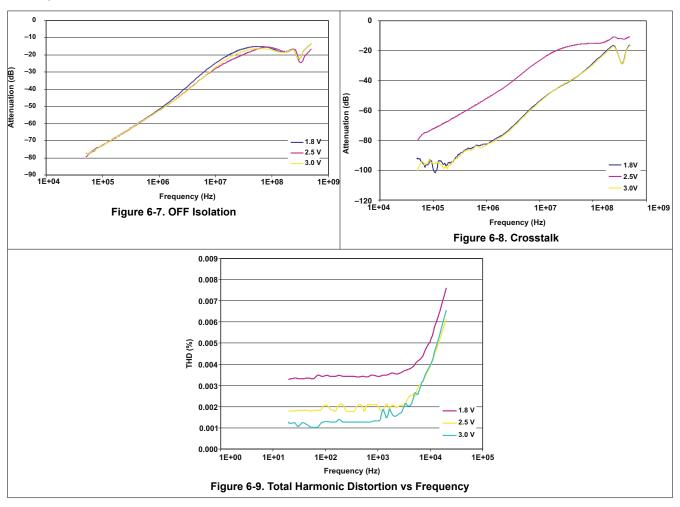
Copyright © 2022 Texas Instruments Incorporated

⁽²⁾ All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs.

6.10 Switching Characteristics for a 1.8-V Supply


 V_{CC} = 1.65 V to 1.95 V, T_A = -40°C to 85°C (unless otherwise noted) (1)

PARAME	ETER	TEST CO	TEST CONDITIONS		V _{CC}	MIN	TYP	MAX	UNIT
Dynamic									
				25°C	1.8 V		53	75	
Turnon time	t _{ON}	$V_{COM} = V_{CC},$ $R_L = 50 \Omega$	C _L = 35 pF, See Figure 7-5	Full	1.65 V to 1.96 V			80	ns
				25°C	1.8 V		24	35	
Turnoff time	t _{OFF}	$V_{COM} = V_{CC},$ $R_L = 50 \Omega$	C _L = 35 pF, See Figure 7-5	Full	1.65 V to 1.96 V			40	ns
				25°C	1.8 V	2	30	40	
Break-before- make time	t _{BBM}	$V_{NC} = V_{NO} = V_{CC},$ $R_L = 50 \Omega$	C _L = 35 pF, See Figure 7-6	Full	1.65 V to 1.96 V	1		50	ns


⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

6.11 Typical Characteristics

6.11 Typical Characteristics (continued)

7 Parameter Measurement Information

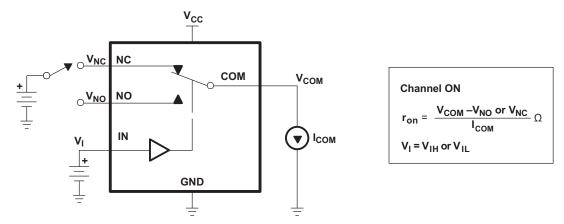
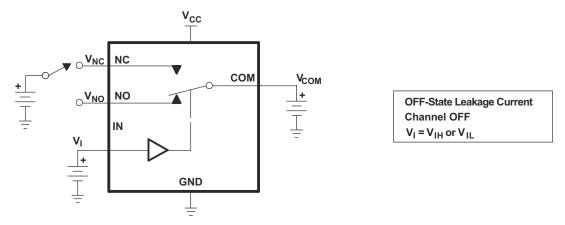



Figure 7-1. ON-State Resistance

 $\textbf{Figure 7-2. OFF-State Leakage Current (I}_{NC(OFF)}, I_{NC(PWROFF)}, I_{NO(OFF)}, I_{NO(PWROFF)}, I_{COM(PWROFF)})\\$

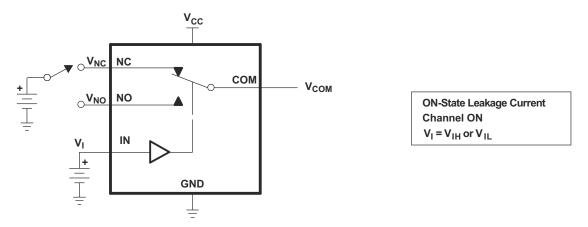


Figure 7-3. ON-State Leakage Current (I_{COM(ON)}, I_{NC(ON)}, I_{NO(ON)})

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

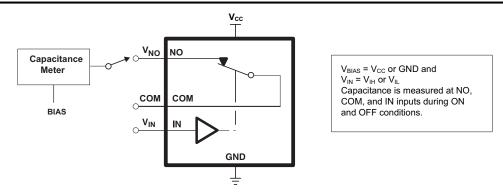
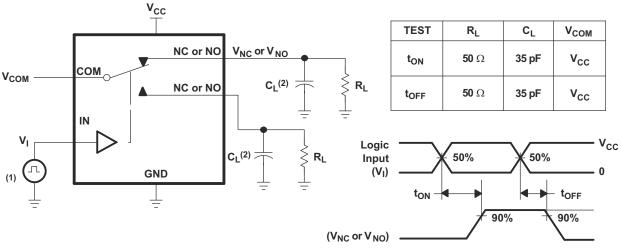
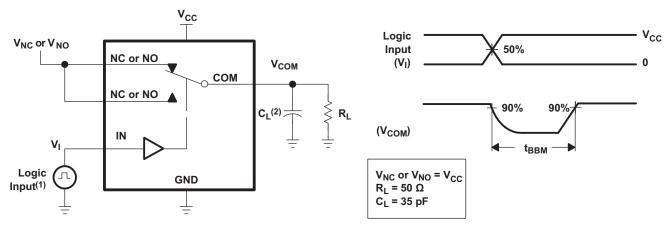
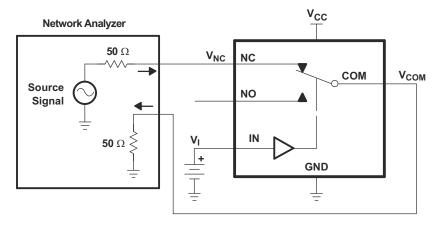




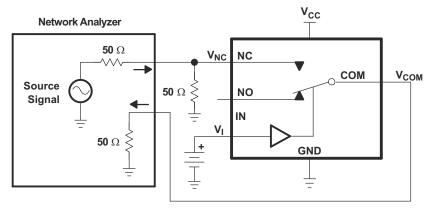
Figure 7-4. Capacitance C_I, C_{NC(OFF)}, C_{NO(OFF)}, C_{NC(ON)}, C_{NO(ON)})

- A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_0 = 50 Ω , t_r < 5 ns. t_f < 5 ns.
- B. C_L includes probe and jig capacitance.


Figure 7-5. Turn-On (t_{ON}) and Turn-Off Time (t_{OFF})

- A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r < 5 ns, t_f < 5 ns.
- B. C_L includes probe and jig capacitance.

Figure 7-6. Break-Before-Make Time (t_{BBM})

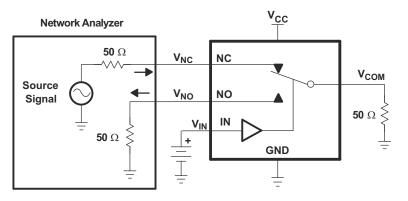

Channel ON: NC to COM $V_I = V_{CC}$ or GND

Network Analyzer Setup

Source Power = 0 dBm (632-mV P-P at $50-\Omega$ load)

DC Bias = 350 mV

Figure 7-7. Bandwidth (BW)


Channel OFF: NC to COM $V_I = V_{CC}$ or GND

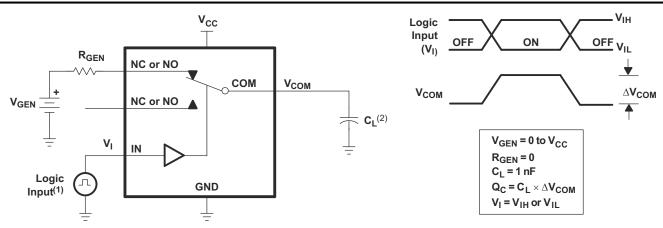
Network Analyzer Setup

Source Power = 0 dBm (632-mV P-P at 50-Ωload)

DC Bias = 350 mV

Figure 7-8. OFF Isolation (O_{ISO})

Channel OFF: NO to COM
V_{IN} = V_{CC} or GND


Channel ON: NC to COM

Network Analyzer Setup

Source Power = 0 dBm (632-mV P-P at 50-Ωload)

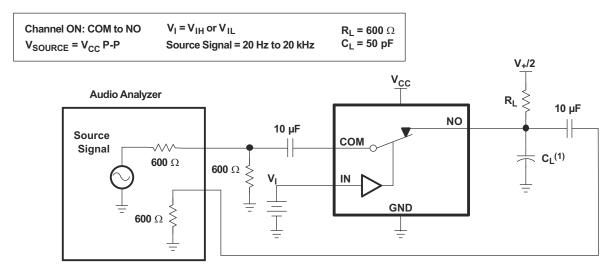
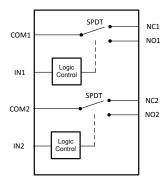

DC Bias = 350 mV

Figure 7-9. Crosstalk (X_{TALK})

- A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r < 5 ns, t_f < 5 ns.
- B. C_L includes probe and jig capacitance.

Figure 7-10. Charge Injection (Q_C)

A. C_L includes probe and jig capacitance.


Figure 7-11. Total Harmonic Distortion (THD)

8 Detailed Description

8.1 Overview

The TS3A24159 is a 2-channel single-pole double-throw (SPDT) bidirectional analog switch that is designed to operate from 1.65 V to 3.6 V. It offers low ON-state resistance and excellent ON-state resistance matching with the break-before-make feature, to prevent signal distortion during the transferring of a signal from one channel to another. The device has excellent total harmonic distortion (THD) performance, low ON-state resistance, and consumes very low power. These are some of the features that make this device suitable for a variety of markets and many different applications.

8.2 Functional Block Diagram

8.3 Feature Description

The TS3A24159 device is bidirectional with two single-pole, double-throw switches. Each of the two switches are controlled independently by two digital signals.

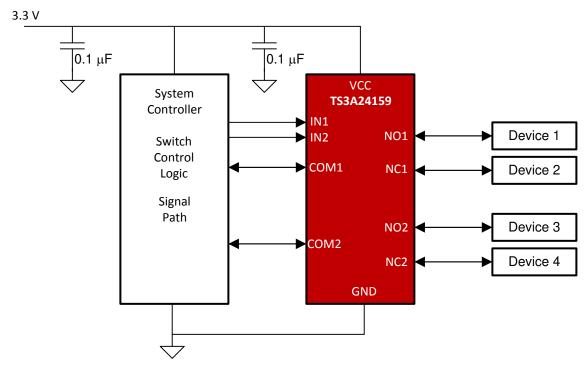
8.4 Device Functional Modes

Table 8-1. Function Table

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	ON	OFF
Н	OFF	ON

Product Folder Links: TS3A24159

9 Application and Implementation


Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The switch of the TS3A24159 device is bidirectional. Hence, NO, NC, and COM pins can be used as both inputs or outputs.

9.2 Typical Application

9.2.1 Design Requirements

Ensure that all of the signals passing through the switch are within the specified ranges to ensure proper performance.

Table 9-1. Design Parameters

		MIN	MAX	UNIT
V _{CC}	Supply Voltage	1.65	3.6	V
V _{NC} V _{NO} V _{COM}	Signal Voltage	0	V _{CC}	V
V _{IN}	Digital Input Voltage	0	V _{CC}	V

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

9.2.2 Detailed Design Procedure

The TS3A24159 device can be properly operated without any external components. However, it is recommended to connect the unused pins to ground through a $50-\Omega$ resistor to prevent signal reflections back into the device. It is also recommended that the digital control pins (IN1 and IN2) be pulled up to V_{CC} or down to GND to avoid undesired switch positions that could result from the floating pin.

Select the appropriate supply voltage to cover the entire voltage swing of the signal passing through the switch because the TS3A24159 input/output signal swing through NO and COM are dependant of the supply voltage $V_{\rm CC}$.

9.2.3 Application Curve

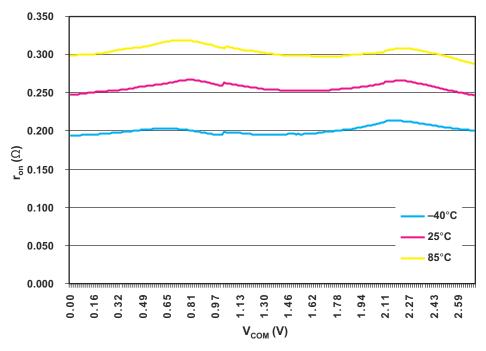


Figure 9-1. ron vs V_{COM}

10 Power Supply Recommendations

- · Proper power-supply sequencing is recommended for all CMOS devices.
- Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the device.
- Always sequence V_{CC} on first, followed by NO or COM.
- Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the V_{CC} supply to other components.
- A 0.1- μF capacitor, connected from V_{CC} to GND, is adequate for most applications.

11 Layout

11.1 Layout Guidelines

To ensure reliability of the device, following common printed-circuit board layout guidelines is recommended. Bypass capacitors must be used on power supplies. Short trace lengths should be used to avoid excessive loading.

11.2 Layout Example

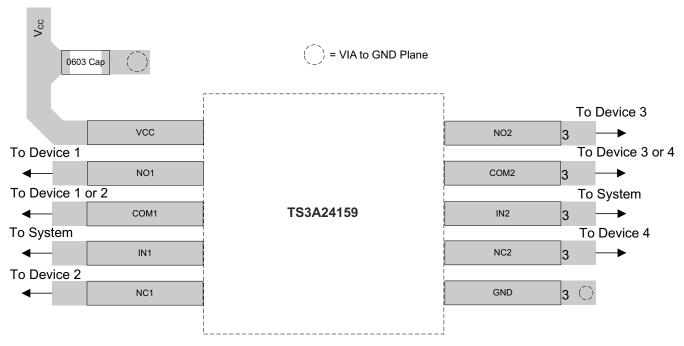


Figure 11-1. Layout Example

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

Texas Instruments, Implications of Slow or Floating CMOS Inputs application note

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.4 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

TI Glossarv

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

www.ti.com 9-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TS3A24159DGSR	Active	Production	VSSOP (DGS) 10	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(L8Q, L8R)
TS3A24159DGSR.B	Active	Production	VSSOP (DGS) 10	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(L8Q, L8R)
TS3A24159DRCR	Active	Production	VSON (DRC) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ZWS
TS3A24159DRCR.B	Active	Production	VSON (DRC) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ZWS
TS3A24159YZPR	Active	Production	DSBGA (YZP) 10	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	L87
TS3A24159YZPR.B	Active	Production	DSBGA (YZP) 10	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	L87

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

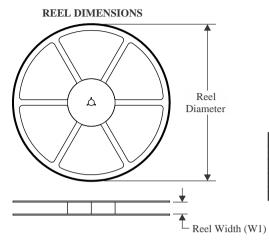
⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

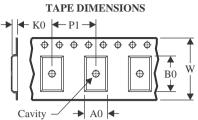
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

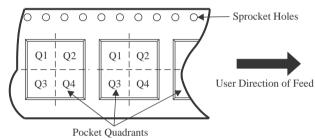
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


PACKAGE OPTION ADDENDUM


www.ti.com 9-Nov-2025

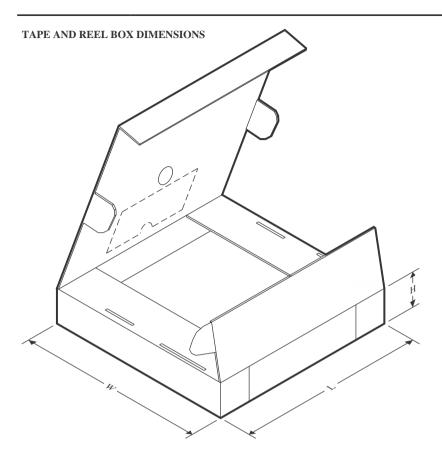
PACKAGE MATERIALS INFORMATION

www.ti.com 23-Jul-2025


TAPE AND REEL INFORMATION

	-
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

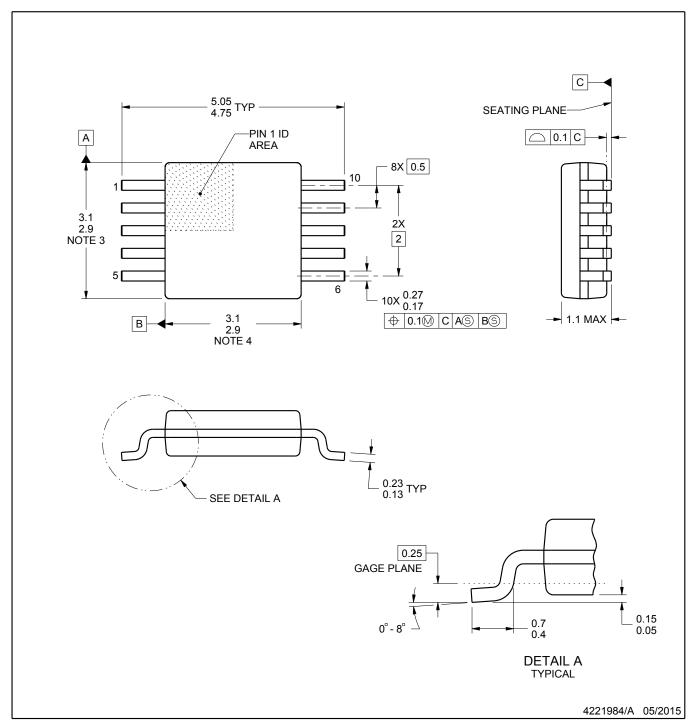


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS3A24159DGSR	VSSOP	DGS	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TS3A24159DRCR	VSON	DRC	10	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TS3A24159YZPR	DSBGA	YZP	10	3000	178.0	9.2	1.49	1.99	0.63	4.0	8.0	Q2

PACKAGE MATERIALS INFORMATION

www.ti.com 23-Jul-2025

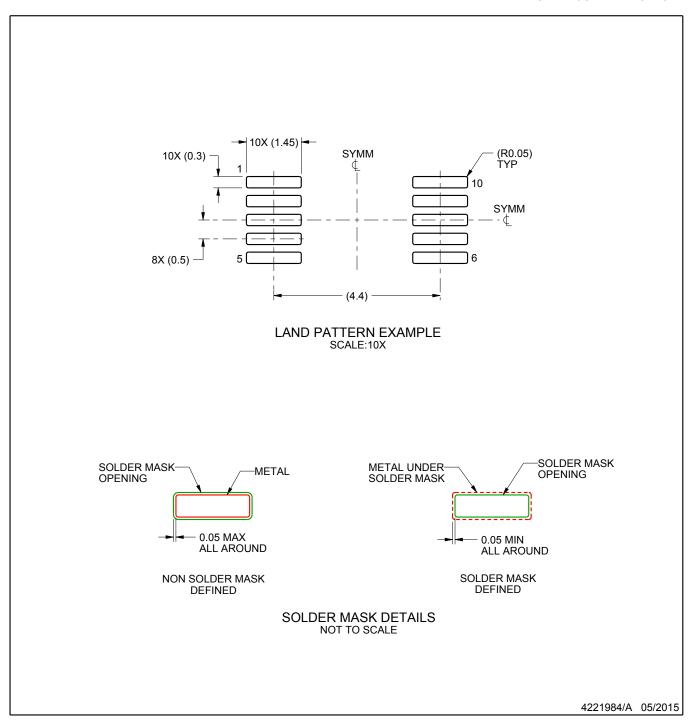


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS3A24159DGSR	VSSOP	DGS	10	2500	358.0	335.0	35.0
TS3A24159DRCR	VSON	DRC	10	3000	353.0	353.0	32.0
TS3A24159YZPR	DSBGA	YZP	10	3000	220.0	220.0	35.0

SMALL OUTLINE PACKAGE

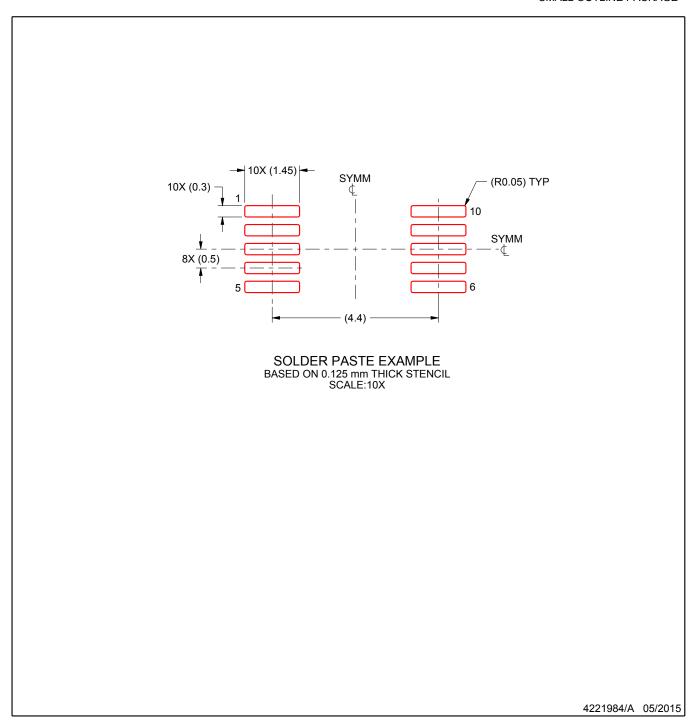
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187, variation BA.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

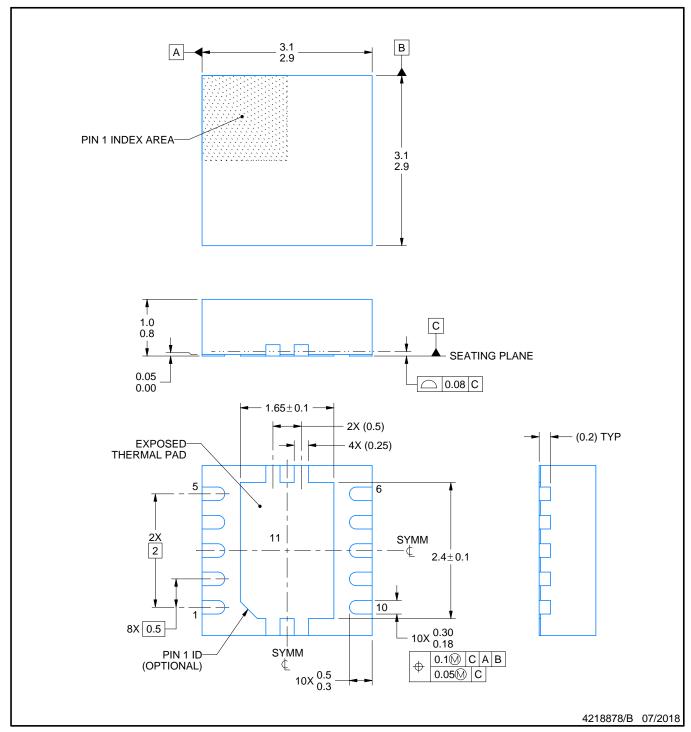
SMALL OUTLINE PACKAGE

NOTES: (continued)


- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

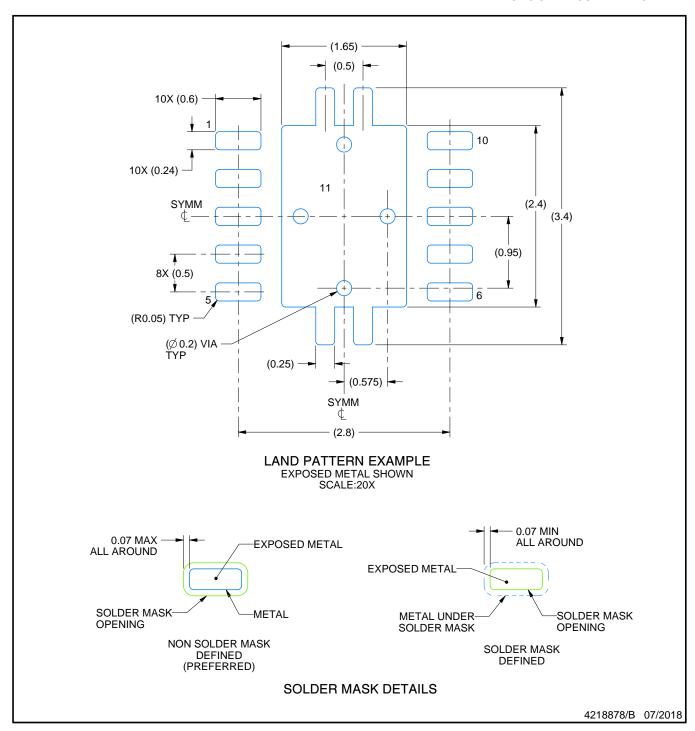
3 x 3, 0.5 mm pitch

PLASTIC SMALL OUTLINE - NO LEAD


This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

INSTRUMENTS www.ti.com

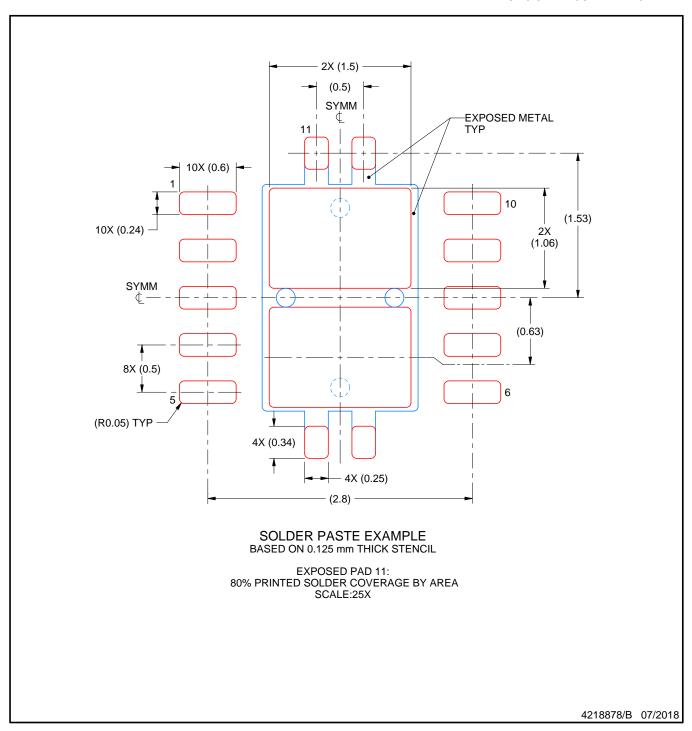
PLASTIC SMALL OUTLINE - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

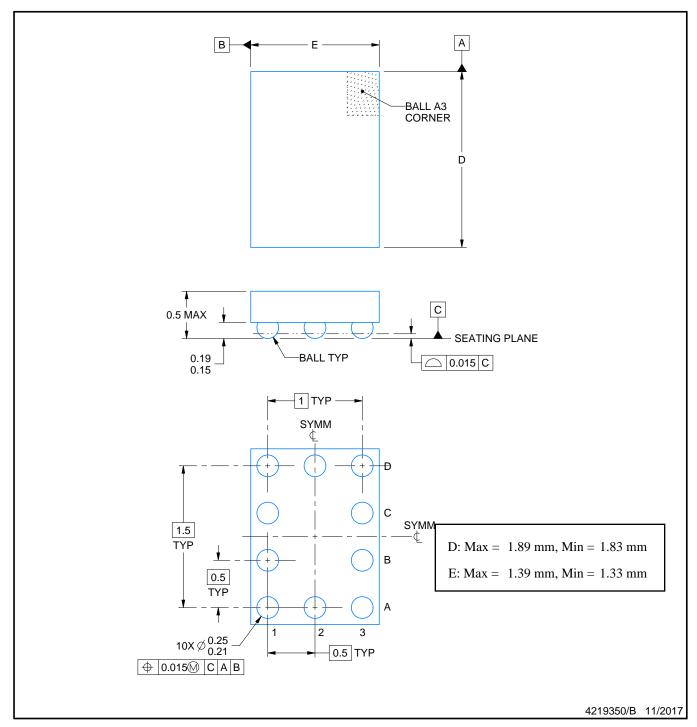
PLASTIC SMALL OUTLINE - NO LEAD



NOTES: (continued)

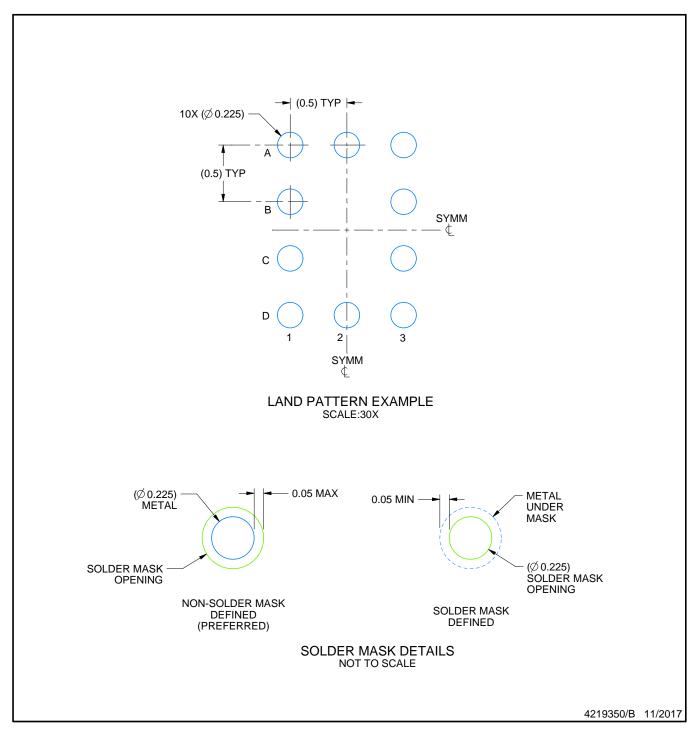
- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC SMALL OUTLINE - NO LEAD


NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

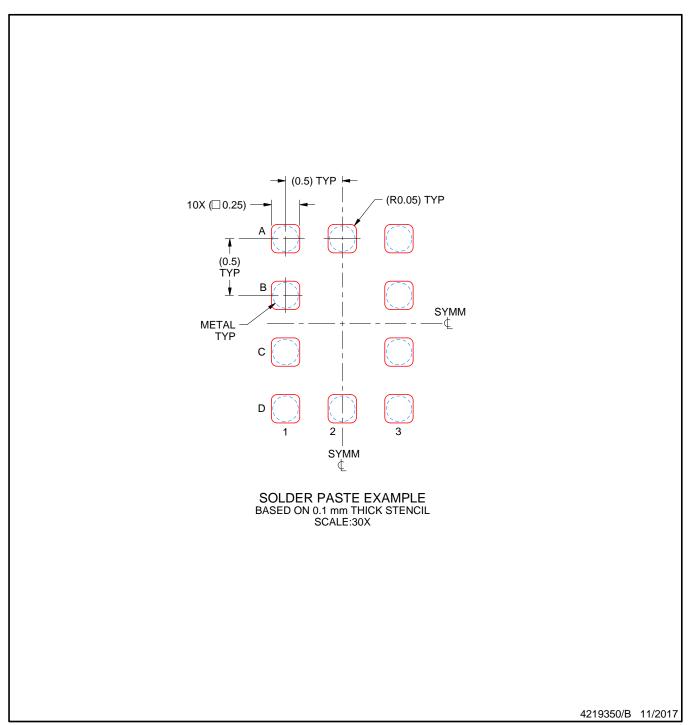
DIE SIZE BALL GRID ARRAY


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

DIE SIZE BALL GRID ARRAY



NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025