

TPS1H000-Q1 Automotive 40V, 1Ω, Single-Channel Smart High-Side Switch

1 Features

- · Qualified for automotive applications
- AEC-Q100 qualified with the following results:
 - Device temperature grade 1: –40°C to 125°C ambient operating temperature range
 - Device HBM ESD Classification Level H2
 - Device CDM ESD Classification Level C4B
- Single-channel 1000mΩ smart high-side switch
- Wide operating voltage: 3.4V to 40V
- Low standby current: <500nA
- Adjustable current limit with external resistor
 - ±15% When ≥150mA
 - ±10% When ≥300mA
- Configurable behavior after current limit
 - Holding mode
 - Latch-off mode with adjustable delay time
 - Auto-retry mode
- Supports standalone operation without an MCU
- Protection:
 - Short-to-GND and overload
 - Thermal shutdown and thermal swing
 - Negative voltage clamp for inductive loads
 - Loss-of-GND and loss-of-battery
- · Diagnostics:
 - Overload and short-to-GND detection
 - Open-load and short-to-battery detection in ON or OFF State
 - Thermal shutdown and thermal swing

3.4 V to 40 V Supply Voltage

2 Applications

- Single-channel LED driver
- Single-channel high-side relay driver
- Body lighting
- Advanced driver assistance systems (ADAS) sensors
- · General resistive, inductive, and capacitive loads

3 Description

The TPS1H000-Q1 device is a fully protected single-channel high-side power switch with an integrated $1000m\Omega$ NMOS power FET.

An adjustable current limit improves system reliability by limiting the inrush or overload current. The high accuracy of the current limit improves overload protection, simplifying the front-stage power design. Configurable features besides current limit provide design flexibility in the areas of functionality, cost, and thermal dissipation.

The device supports full diagnostics with the digital status output. Open-load detection is available in both the ON- and OFF-states. The device supports operation with or without an MCU. Standalone mode allows use of the device in isolated systems.

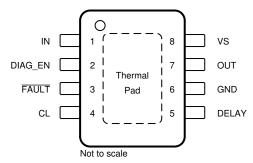
Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾
TPS1H000-Q1	DGN (HVSSOP, 8)	3.00mm × 4.90mm

- For all available packages, see the orderable addendum at the end of the data sheet.
- (2) The package size (length × width) is a nominal value and includes pins, where applicable.

Current-Limit Protection in Auto-Retry Mode

VS Up to 40 V LED Strings IN Up to 40 V DIAG_EN Relays FAULT OUT Sub Module: CL 3 Cameras, Sensors General Resistive, Capaciti DELAY Inductive Loads GND Copyright © 2017, Texas Instruments Incorporated Typical Block Diagram


Table of Contents

1 Features	1
2 Applications	1
3 Description	1
4 Pin Configuration and Functions	3
5 Specifications	4
5.1 Absolute Maximum Ratings	4
5.2 ESD Ratings	4
5.3 Recommended Operating Conditions	4
5.4 Thermal Information	5
5.5 Electrical Characteristics	5
5.6 Switching Characteristics	7
5.7 Typical Characteristics	8
6 Detailed Description	10
6.1 Overview	
6.2 Functional Block Diagram	10
6.3 Feature Description	

6.4 Device Functional Modes	20
7 Application and Implementation	22
7.1 Application Information	22
7.2 Typical Application	
7.3 Power Supply Recommendations	23
7.4 Layout	
8 Device and Documentation Support	25
8.1 Receiving Notification of Documentation Updates.	
8.2 Support Resources	25
8.3 Trademarks	
8.4 Electrostatic Discharge Caution	25
8.5 Glossary	
9 Revision History	
10 Mechanical, Packaging, and Orderable	
Information	25

4 Pin Configuration and Functions

Figure 4-1. DGN PowerPAD[™] Package, 8-Pin HVSSOP With Exposed Thermal Pad (Top View)

PIN		I/O	DESCRIPTION	
NAME	NO.		DESCRIPTION	
CL	4	0	Adjustable current limit. Connect to device GND if external current limit is not used.	
DELAY	5	I/O	Function configuration when in current limit; internal pullup.	
DIAG_EN	2	I	Enable the diagnostic function.	
FAULT	3	0	Open-drain diagnostic status output. Leave floating if not used.	
GND	6	_	Ground pin.	
IN	1	I	Input control for output activation; internal pulldown.	
OUT	7	0	Output, source of the high-side switch, connected to the load.	
VS	8	I	Power supply, drain for the high-side switch.	
Thermal pad	_	_	Thermal pad. Connect to device GND or leave floating.	

Table 4-1. Pin Functions

5 Specifications

5.1 Absolute Maximum Ratings

over operating ambient temperature range (unless otherwise noted)⁽¹⁾ (2)

		MIN	MAX	UNIT
Supply voltage VS pin	t < 400 ms	_	42	V
Reverse polarity voltage ⁽³⁾	t < 1 minute	-36	_	V
Current on GND	t < 2 minutes	-100	250	mA
Voltage on IN and DIAG_EN pins		-0.3	42	V
Current on IN and DIAG_EN pins		-10	_	mA
Voltage on DELAY pin		-0.3	7	V
Current on DELAY pin		-60	_	mA
Voltage on FAULT pin		-0.3	7	V
Current on FAULT pin		-30	10	mA
Voltage on CL pin		-0.3	7	V
Current on CL pin		_	6	mA
Voltage on OUT pin		_	42	V
Inductive load switch-off energy dissipation single pulse ⁽⁴⁾		_	40	mJ
Operating junction temperature		-40	150	°C
Storage temperature, T _{stg}		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to ground.

- (3) Reverse polarity condition: $V_{IN} = 0 V$, reverse current < $I_{R(2)}$, GND pin 1-k Ω resistor in parallel with diode.
- (4) Test condition: V_{VS} = 13.5 V, L = 300 mH, T_J = 150°C. FR4 2s2p board, 2 × 70-μm Cu, 2 × 35-μm Cu. 600 mm² thermal pad copper area.

5.2 ESD Ratings

				VALUE	UNIT
		Lives and heady meadel (LIDNA) was AFC	All pins except VS, OUT, and GND	±2000	
V _(ESD)	Electrostatic discharge	Q100-002\	Pins VS, OUT, and GND	±3000	V
	Charged-device model (CDM), per AEC Q100-011		±750		

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

5.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
Vs	Operating voltage	4	40	V
	Voltage on IN and DIAG_EN pins	0	40	V
	Voltage on FAULT pin	0	5	V
I _{o,nom}	Nominal dc load current	0	1	А
TJ	Operating junction temperature	-40	150	°C

5.4 Thermal Information

		TPS1H000-Q1	
	THERMAL METRIC ⁽¹⁾	DGN (HVSSOP)	UNIT
		8 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	49.7	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	50.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	21.4	°C/W
ΨJT	Junction-to-top characterization parameter	0.8	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	21.5	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	7.1	°C/W

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

5.5 Electrical Characteristics

over operating ambient temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OPERATIN	G VOLTAGE					
V _{VS(nom)}	Nominal operating voltage		4		40	V
V _{VS(uvr)}	Undervoltage restart	V _{VS} rising	3.5	3.7	4	V
V _{VS(uvf)}	Undervoltage shutdown	V _{VS} falling	3	3.2	3.4	V
V _(uv,hys)	Undervoltage shutdown, hysteresis			0.5		V
	G CURRENT					
I _(op)	Nominal operating current	$V_{VS} = 13.5 V, V_{IN} = 5 V, V_{DIAG_{EN}} = 0$ V, I _{OUT} = 0.1 A, I _{CL} = 0.5 A.			5	mA
I	Standby current	$V_{VS} = 13.5 V$, $V_{IN} = V_{DIAG_{EN}} = V_{CL} = V_{OUT} = 0 V$, $T_{J} = 25 °C$			0.5	
l _(off)	Standby current	V_{VS} = 13.5 V, V_{IN} = $V_{DIAG_{EN}}$ = V_{CL} = V_{OUT} = 0 V, T_{J} = 125 °C			3	μA
I _(off,diag)	Standby current with diagnostics enabled	V_{VS} = 13.5 V, V_{IN} = 0 V, $V_{DIAG_{EN}}$ = 5 V			3	mA
t(off,deg)	Standby-mode deglitch time ⁽¹⁾	IN from high to low, if deglitch time $\ge t_{(off,deg)}$, the device enters into standby mode.		12.5		ms
I _{lkg(out)}	Output leakage current in off-state	V_{VS} = 13.5 V, V_{IN} = V_{DIAG_EN} = V_{OUT} = 0 V			3	μA
POWER ST	AGE					
-	On state registeres	$V_{VS} \ge 3.5 \text{ V}, \text{ T}_{J} = 25^{\circ}\text{C}$		1000		mΩ
r _{DS(on)}	On-state resistance	V _{VS} ≥ 3.5 V, T _J = 150°C			2000	11122
CL(int)	Internal current limit	CL pin connected to GND	1		1.8	А
CL(TSD)	Current-limit value percentage during thermal shutdown			60%		
V _{DS(clamp)}	Drain-to-source voltage internally clamped		45		65	V
OUTPUT D	ODE CHARACTERISTICS				·	
V _F	Drain-to-source diode voltage	IN = 0, I _{OUT} = -0.15 A	0.3	0.7	1	V
R(1)	Continuous reverse current from source to drain during a short-to- battery condition ⁽¹⁾	t < 60 s, V _{IN} = 0 V, T _J = 25°C.			1	A
R(2)	Continuous reverse current from source to drain during a reverse- polarity condition ⁽¹⁾	t < 60 s, V_{IN} = 0 V, T_J = 25°C. GND pin 1-k Ω resistor in parallel with diode.			1	А
	UT (IN, DIAG_EN)					

Copyright © 2024 Texas Instruments Incorporated

5.5 Electrical Characteristics (continued)

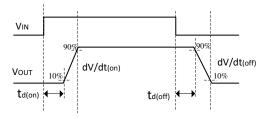
over operating ambient temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IH}	Logic high-level voltage		2			V
V _{IL}	Logic low-level voltage				0.8	V
R _{pd,in}	Logic-pin pulldown resistor	IN. V _{IN} = 5 V	150		400	kΩ
r vpa,in		$DIAG_EN. V_{VS} = V_{DIAG_EN} = 5 V$	350		850	1122
DIAGNOSTI	cs					
I _{lkg(loss,GND)}	Loss of ground output leakage current				100	μΑ
t _{d(ol,on)}	Open-load deglitch time in on-state	$ \begin{split} &V_{IN} = 5 \text{ V}, V_{DIAG_EN} = 5 \text{ V}, \text{ when } I_{OUT} \\ &< I_{(ol,on)}, \text{ duration longer than } t_{d(ol,on)}, \\ &\text{open load is detected.} \end{split} $	200	300	450	μs
I _(ol,on)	Open-load detection threshold in on- state	$\label{eq:VIN} \begin{array}{l} V_{IN} = 5 \ V, \ V_{DIAG_EN} = 5 \ V, \ when \ I_{OUT} \\ < I_{(ol,on)}, \ duration \ longer \ than \ t_{d(ol,on)}, \\ open \ load \ is \ detected. \end{array}$	1	5	8	mA
V _(ol,off)	Open-load detection threshold in off- state	$ \begin{split} & V_{IN} = 0 \; V, \; V_{DIAG_EN} = 5 \; V, \; \text{when} \; V_{VS} \\ & - \; V_{OUT} < V_{(ol,off)}, \; \text{duration longer than} \\ & t_{d(ol,off)}, \; \text{open load is detected}. \end{split} $	1.4		2.6	V
t _{d(ol,off)}	Open-load deglitch time in off-state	$ \begin{split} & V_{IN} = 0 \; V, \; V_{DIAG_EN} = 5 \; V, \; \text{when} \; V_{VS} \\ & - \; V_{OUT} < V_{(ol,off)}, \; \text{duration longer than} \\ & t_{d(ol,off)}, \; \text{open load is detected}. \end{split} $	200	300	450	μs
I _(ol,off)	Off-state output sink current	V _{IN} = 0 V, V _{DIAG_EN} = 5 V, V _{VS} = V _{OUT} = 13.5 V	-70			μA
V _{FAULT}	FAULT low output voltage	I _{FAULT} = 2 mA			0.2	V
t _{FAULT}	FAULT signal holding time ⁽¹⁾			8.5		ms
T _(SD)	Thermal shutdown threshold ⁽¹⁾			175		°C
T _(SD,rst)	Thermal shutdown status reset ⁽¹⁾			155		°C
T _(sw)	Thermal swing shutdown threshold ⁽¹⁾			60		°C
T _(hys)	Hysterisis for resetting the thermal shutdown and swing ⁽¹⁾			10		°C
CURRENT L	IMIT AND DELAY CONFIGURATION					
K _(CL)	Current-limit current ratio ⁽¹⁾			600		
V _{CL(th)}	Current-limit internal threshold voltage ⁽¹⁾			0.8		V
		I _{limit} ≥ 0.05 A , V _{VS} – V _{OUT} ≥ 2.5V	-20%		20%	
dK/K	External current limit accuracy ⁽²⁾ (I _{OUT} – I _{CL} × K _(CL)) × 100 / (I _{CL} ×	$I_{\text{limit}} \ge 0.15 \text{ A}$, $V_{\text{VS}} - V_{\text{OUT}} \ge 2.5 \text{V}$	-15%		15%	
dK _(CL) /K _(CL)	$(I_{OUT} - I_{CL} \land (CL)) \land I_{OUT} \land (I_{CL} \land (CL))$	$I_{limit} \ge 0.3 \text{ A}, I_{limit} < 1 \text{ A}, V_{VS} - V_{OUT} \ge 2.5 V$	-10%		10%	
I _{dl(chg)}	Delay pin charging current in latch-off mode ⁽¹⁾			4.5		μA
V _{dl(th)}	Pulling up threshold in auto-retry mode		2.7			V
V _{dl(ref)}	Internal reference voltage in latch-off mode			1.45		V
t _{dl1}	Internal fixed delay time ⁽¹⁾		300	400	500	μs
t _{dl2}	Adjustable delay time by external capacitor on DELAY pin ⁽¹⁾	Connect with 3.3 uF capacitor as the maximum value.			1000	ms
tol (de r)	Deglitch time when current limit ⁽¹⁾	IN low to high, $V_{DIAG_EN} = 5$ V, the deglitch time from IN rising edge to FAULT reporting out.	300		500	116
t _{CL(deg)}		IN keeps high, V _{DIAG_EN} = 5 V, the deglitch time from CL start-point to FAULT reporting out.	80		180	μs

Copyright © 2024 Texas Instruments Incorporated

5.5 Electrical Characteristics (continued)

over operating ambient temperature range (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{hic(on)}	On-time when in auto-retry mode ⁽¹⁾		35	40	45	ms
t _{hic(off)}	Off-time when in auto-retry mode ⁽¹⁾		0.8	1	1.2	S

(1) Value specified by design, not subject to production test

(2) External current limit accuracy is only applicable to overload conditions greater than 1.5 x the current limit setting

5.6 Switching Characteristics

	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
t _{d(on)}	Turnon delay time, IN rising edge to 10% of V _{OUT}	V _{VS} = 13.5 V, V _{DIAG_EN} = 5 V, I _{OUT} = 0.1 A	20	50	90	μs
t _{d(off)}	90% of V _{OUT}	0.1 A	20	50	90	μs
dV/dt _(on)	Slew rate on, $V_{\mbox{OUT}}$ from 10% to 90%	V _{VS} = 13.5 V, V _{DIAG_EN} = 5 V, I _{OUT} = 0.1 A	0.1		0.6	V/µs
dV/dt _(off)	Slew rate off, V _{OUT} from 90% to 10%	V _{VS} = 13.5 V, V _{DIAG_EN} = 5 V, I _{OUT} = 0.1 A	0.3		0.9	V/µs

Figure 5-1. Output Delay Characteristics

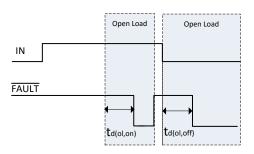
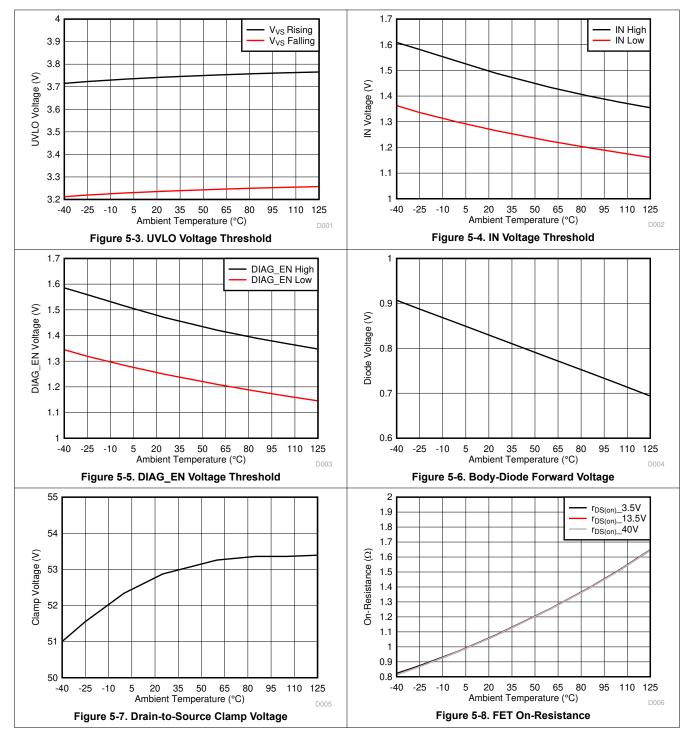
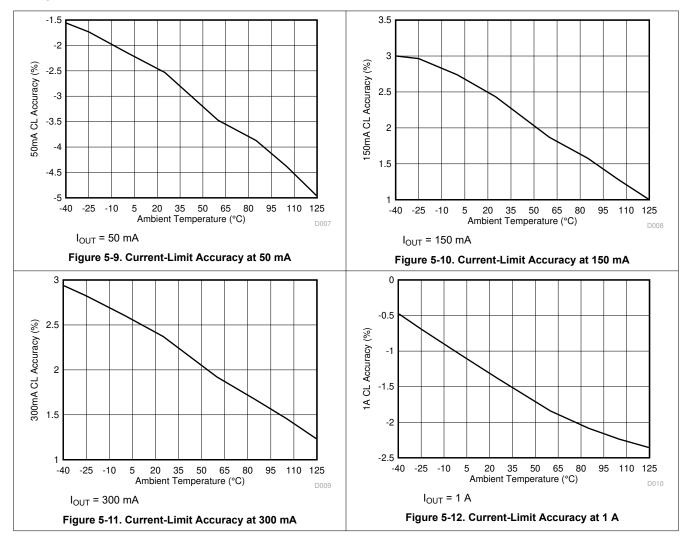



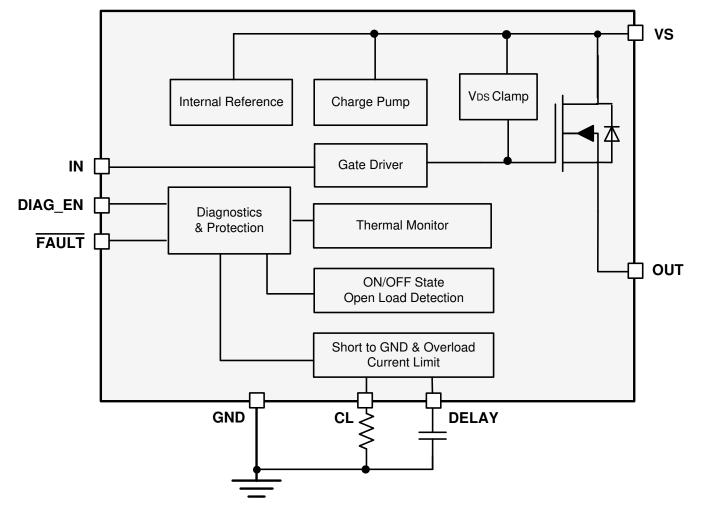
Figure 5-2. Open-Load Blanking-Time Characteristic



5.7 Typical Characteristics

5.7 Typical Characteristics (continued)

6 Detailed Description


6.1 Overview

The TPS1H000-Q1 device is a smart high-side switch, with an internal charge pump and single-channel integrated NMOS power FET. The adjustable current-limit function greatly improves the reliability of the whole system. Full diagnostic features enable intelligent control of the load.

The external high-accuracy current limit allows setting the current-limit value for the application. When overcurrent occurs, the device improves system reliability by clamping the inrush current effectively. The TPS1H000-Q1 device can also save system cost by reducing the size of PCB traces and connectors, and the capacity of the preceding power stage. The TPS1H000-Q1 device allows three modes when a current limit occurs. Through the configuration on the DELAY pin, users can set the output to any of three modes: hold the current consistently, latch off immediately, or retry automatically. The configurable behaviors during current limit provide design flexibility that considers functionality, cost, and thermal dissipation.

The TPS1H000-Q1 device supports full diagnostics with the digital status output. High-accuracy and lowthreshold open-load detection enables real-time on-state monitoring. The TPS1H000-Q1 device also supports operation without an MCU, the standalone mode, which allows the system to implement the full functionality locally.

The TPS1H000-Q1 device is a smart high-side switch for a wide variety of resistive, inductive, and capacitive loads, including LEDs, relays, and sub-modules.

6.2 Functional Block Diagram

6.3 Feature Description

6.3.1 Current Limit

A high-accuracy current limit allows high reliability of the design. It protects the load and the power supply from overstressing during short-circuit-to-GND or power-up conditions. The current limit can also save system cost by reducing the size of PCB traces and connectors, and the capacity of the preceding power stage.

When a current-limit threshold is reached, a closed loop activates immediately. The output current is clamped at the set value, and a fault is reported out. The device heats up due to the high power dissipation on the power FET.

The device has two current-limit thresholds.

- Internal current limit The internal current limit is fixed at I_{CL(int)}. Tie the CL pin directly to the device GND for large-transient-current applications.
- External adjustable current limit An external resistor is used to set the current-limit threshold. Use Equation
 1 to calculate R_(CL). V_{CL(th)} is the internal band-gap voltage. K_(CL) is the ratio of the output current and the
 current-limit set value. K_(CL) is constant across temperature and supply voltage. The external adjustable
 current limit allows the flexibility to set the current-limit value by application.

$$R_{CL} = \frac{V_{CL(th)} \times K_{CL)}}{I_{OUT}}$$
(1)

Note that if using a GND network which causes a level shift between the device GND and board GND, the CL pin must be connected to the device GND.

For better protection from a hard short-to-GND condition (when the IN pin is enabled, a short to GND occurs suddenly), the device implements a fast-trip protection to turn off the output before the current-limit closed loop is set up. The fast-trip response time is less than 1 μ s, typically. With this fast response, the device can achieve better inrush current-suppression performance.

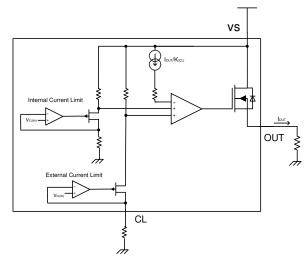


Figure 6-1. Current Limit

6.3.2 DELAY Pin Configuration

When a current limit occurs, the TPS1H000-Q1 device supports three different behaviors of the output.

Table 6-1. Current Limit Configurations

MODE	DELAY CONFIGURATION	OUTPUT CURRENT BEHAVIOR	FAULT RECOVERY				
Holding	Connect to GND directly	When hitting a current limit, the output current holds at the setting current. The device enters into thermal shutdown mode when $T_J > T_{(SD)}$.	FAULT clears when IN turns low for a duration longer than t _{FAULT} OR when the current limit is removed when IN is high.				
Latch-off	Connect to GND through a capacitor	When hitting a current limit, the output current holds at the setting current, but latches off after a preset DELAY time $(t_{d 1} + t_{d 2})$. $t_{d 1}$ is the default delay time; $t_{d 2}$ is a capacitor-configurable delay time. The output stays latched off regardless of whether the current limit is removed. The output recovers only when IN is toggling.	FAULT clears when IN turns low for a duration longer than t _{FAULT} .				
Auto-retry	External pullup	When hitting a current limit, the output current holds at the setting current, but periodically comes on for $t_{hic(on)}$ and turns off for $t_{hic(off)}$.	FAULT clears when IN turns low for a duration longer than t $_{\mbox{FAULT}}$ OR when the current limit is removed for $t_{\mbox{hic}(\mbox{on})}$				

6.3.2.1 Holding Mode

Holding mode is active when the DELAY pin connects to GND directly. When hitting a current limit, the output current holds at the setting current. The device enters into thermal shutdown mode when $T_J > T_{(SD)}$.

Figure 6-2. Holding Mode Connection

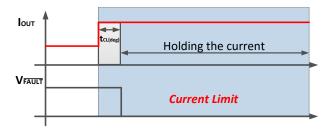


Figure 6-3. Holding Mode Example

6.3.2.2 Latch-Off Mode

Latch-off mode is active when the DELAY pin connects to GND through a capacitor. When hitting a current limit, the output current holds at the setting current, but latches off after a preset DELAY time (t_{d11} + t_{d12}). t_{d11} is the default delay time, t_{d12} is a configurable delay time set by a capacitor. The output stays latched off regardless of whether the current limit is removed. The output recovers only when IN is toggling.

 t_{dl2} can be calculated by Equation 2. The $I_{dl(chg)}$ is the device charging current in latch-off mode, $V_{dl(ref)}$ is the internal reference voltage in latch off mode, t_{dl2} is the user-setting delay time, and C_{DELAY} is the capacitor connected on the DELAY pin.

(2)

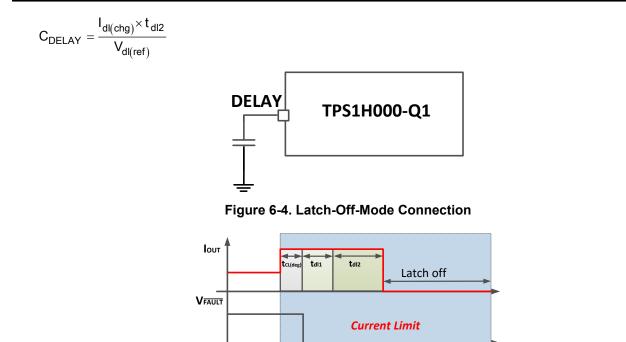


Figure 6-5. Latch-Off-Mode Example

6.3.2.3 Auto-Retry Mode

Auto-retry mode is active when the DELAY pin is externally pulled up. The pullup voltage must be higher than $V_{dl(th)}$. When hitting the current limit, the output current holds at the setting current, but periodically comes on for $t_{hic(on)}$ and turns off for $t_{hic(off)}$.

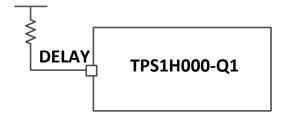
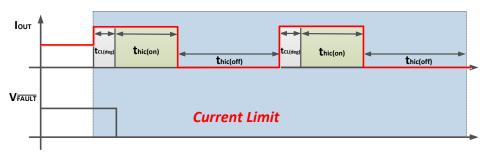



Figure 6-6. Auto-Retry-Mode Connection

6.3.3 Standalone Operation

In a typical application, the TPS1H000-Q1 device is controlled by a microcontroller. The device also supports standalone operation. IN and DIAG_EN have a 40-V maximum dc rating, and can be connected to the VS pin directly. In auto-retry mode, the DELAY pin can also be connected to the VS pin through a 100-k Ω resistor.

Copyright © 2024 Texas Instruments Incorporated

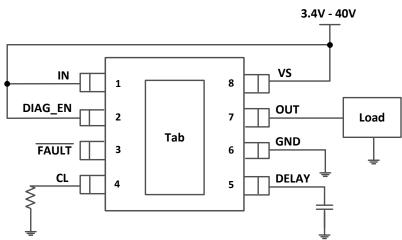


Figure 6-8. Standalone Operation in Latch-Off Mode

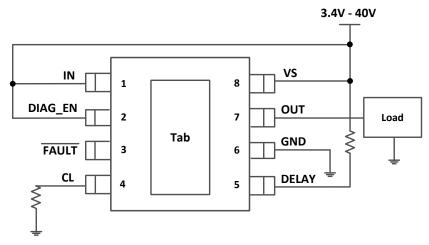


Figure 6-9. Standalone Operation in Auto-Retry Mode

6.3.4 Fault Truth Table

The DIAG_EN pin enables or disables the diagnostic functions. If multiple devices are used, but the ADC resource is limited in the microcontroller, the microcontroller can use GPIOs to set DIAG_EN high to enable the diagnostics of one device while disabling the diagnostics of the other devices by setting DIAG_EN low. In addition, the device can keep the power consumption to a minimum by setting DIAG_EN and IN low.

Table 6-2 applies when the DIAG_EN pin is enabled. Table 6-3 applies when the DIAG_EN pin is disabled.

CONDITION	IN	OUT	CRITERION	FAULT	FAULT RECOVERY		
Normal	L	L	—	н			
Normai	Н	Н	—	н			
Overload or short to GND	Н	L	Current limit triggered.	L	See Table 6-1.		
Open load or short to	н	Н	I _{OUT} < I _(ol,on)	L	FAULT clears when IN turns low for a duration longer than t FAULT . OR FAULT clears when the open load is removed.		
battery	L(1)	Н	$V_{VS} - V_{OUT} < V_{(ol,off)}$	L	FAULT clears when IN is toggling OR FAULT clears when the open load is removed.		
Thermal shutdown	н	_	Thermal shutdown triggered	L	FAULT clears when IN turns lowfor a duration longer than t FAULT .OR FAULT clears when thermalshutdown quits.		
Thermal swing	н	_	Thermal swing triggered	L	FAULT clears when IN turns lowfor a duration longer than t FAULT .OR FAULT clears when thermalswing quits.		

(1) An external pullup is required for open-load detection.

Table 6-3. DIAG_EN Disabled Condition

DIAG_EN	IN	PROTECTIONS AND DIAGNOSTICS
LOW	ON	Diagnostics disabled, full protections
LOW	OFF	Diagnostics disabled, no protection

6.3.5 Full Diagnostics

6.3.5.1 Short-to-GND and Overload Detection

When the output is on, a short to GND or an overload condition causes overcurrent. If the overcurrent triggers either the internal or external current-limit threshold, a fault condition is reported out as FAULT pin = low.

6.3.5.2 Open-Load Detection

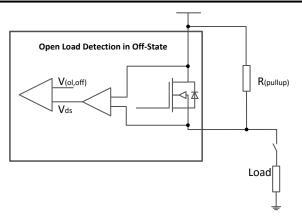
6.3.5.2.1 Output On

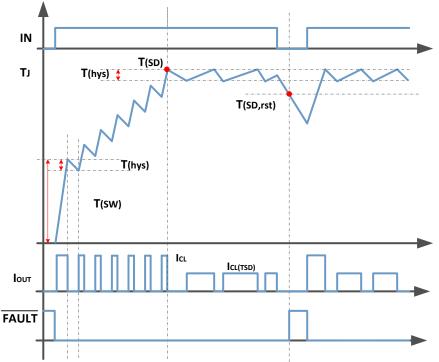
When the output is on, if the current flowing through the output $I_{OUT} < I_{(ol,on)}$, the device recognizes an open-load fault. For open-load detection in output on, no external circuitry is required.

6.3.5.2.2 Output Off

When the output is off, if a load is connected, the output is pulled down to GND. But if an open load occurs, the output voltage is close to the supply voltage ($V_{VS} - V_{OUT} < V_{(ol,off)}$), and the device recognizes an open-load fault.

There is always a leakage current $I_{(ol,off)}$ present on the output due to the internal logic control path or external humidity, corrosion, and so forth. So an external pullup resistor is recommended to offset the leakage current when an open load is detected. The recommended pullup resistance is 15 k Ω .




Figure 6-10. Open-Load Detection in Output Off

6.3.5.3 Short-to-Battery Detection

Short-to-battery has the same detection mechanism and behavior as open-load detection, in both the on-state and off-state.

6.3.5.4 Thermal Fault Detection

To protect the device in severe power stressing cases, the device implements two types of thermal fault detection, absolute temperature protection (thermal shutdown) and dynamic temperature protection (thermal swing).

Thermal behaviors after Short to GND

Figure 6-11. Thermal Behavior Diagram

6.3.5.4.1 Thermal Shutdown

Thermal shutdown is active when the absolute temperature $T_J > T_{(SD)}$. When thermal shutdown occurs, the output turns off.

6.3.5.4.2 Thermal Swing

Thermal swing activates when the power FET temperature is increasing sharply, that is, when $\Delta T = T_{(FET)} - T_{(Logic)} > T_{(sw)}$, then the output turns off. The output automatically recovers and the fault signal clears when $\Delta T = T_{(FET)} - T_{(Logic)} < T_{(sw)} - T_{(hys)}$. The thermal swing function improves the device reliability when subjected to repetitive fast thermal variation.

6.3.5.4.3 Fault Report Holding

When using PWM dimming, FAULT is easily cleared by the PWM falling edge. Even if the fault condition remains all the time, FAULT is discontinuous. To avoid this unexpected fault report behavior, the device implements fault-report holding time. Figure 6-12 shows a typical issue when PWM dimming, the FAULT is cleared unexpectedly even when the short-to-GND still exists. The TPS1H000-Q1 device with fault-report holding function allows the right behavior as shown in Figure 6-13.

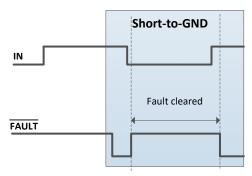
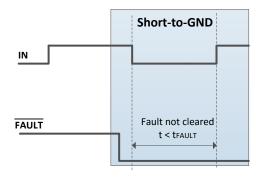



Figure 6-12. Without Fault-Report Holding

Figure	6-13.	With	Fault-Report Holding
--------	-------	------	----------------------

6.3.6 Full Protections

6.3.6.1 UVLO Protection

The device monitors the supply voltage, V_{VS} , to prevent unpredicted behaviors when V_{VS} is too low. When V_{VS} falls down to $V_{VS(uvr)}$, the device shuts down. When V_{VS} rises up to $V_{VS(uvr)}$, the device turns on.

6.3.6.2 Inductive Load Switching Off Clamp

When switching an inductive load off, the inductive reactance tends to pull the output voltage negative. Excessive negative voltage could cause the power FET to break down. To protect the power FET, an internal clamp between drain and source is implemented, namely $V_{DS(clamp)}$.

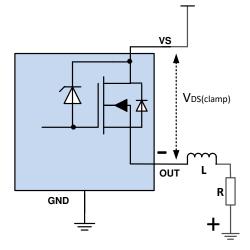


Figure 6-14. Drain-to-Source Clamping Structure

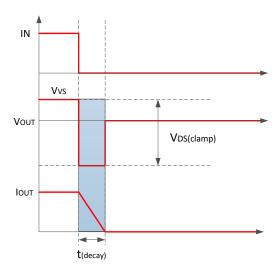


Figure 6-15. Inductive-Load Switching-Off Diagram

6.3.6.3 Loss-of-GND Protection

When loss of GND occurs, the output is shut down regardless of whether the IN pin is high or low. The device can protect against two ground-loss conditions, loss of device GND and loss of module GND.

6.3.6.4 Loss-of-Power-Supply Protection

When loss of supply occurs, the output is shut down regardless of whether the IN pin is high or low. For a resistive or a capacitive load, loss of supply has no risk. But for a charged inductive load, the current is driven from all the logic control pins to maintain the inductance current. To protect the system in this condition, TI recommends protection with an external free-wheeling diode.

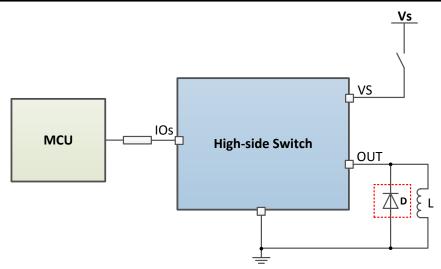


Figure 6-16. Protection for Loss of Power Supply

6.3.6.5 Reverse-Current Protection

Reverse current occurs in two conditions: short to supply and reverse polarity.

- When a short to the supply occurs, there is only reverse current through the body diode. I_{R(1)} specifies the limit of the reverse current.
- In a reverse-polarity condition, there are reverse currents through the body diode and the device GND pin. $I_{R(2)}$ specifies the limit of the reverse current.

To protect the device, TI recommends two types of external circuitry.

- Adding a blocking diode (method 1). Both the device and load are protected when in reverse polarity.
- Adding a GND network (method 2). The reverse current through the device GND is blocked. The reverse current through the FET is limited by the load itself. TI recommends a resistor in parallel with the diode as a GND network. The recommended configuration is a 1-kΩ resistor in parallel with a >100-mA diode. The reverse current protection diode in the GND network forward voltage should be less than 0.6 V in any circumstances. In addition a minimum resistance of 4.7 K is recommended on the I/O pins.

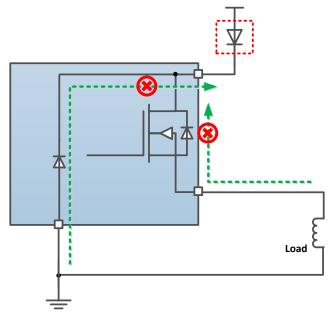


Figure 6-17. Reverse-Current External Protection, Method 1

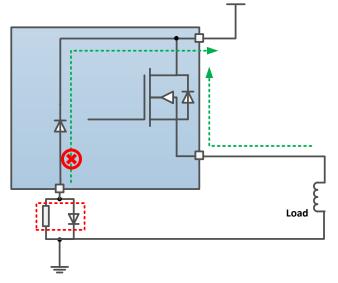
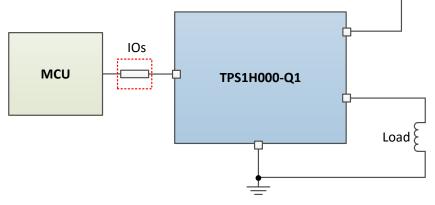
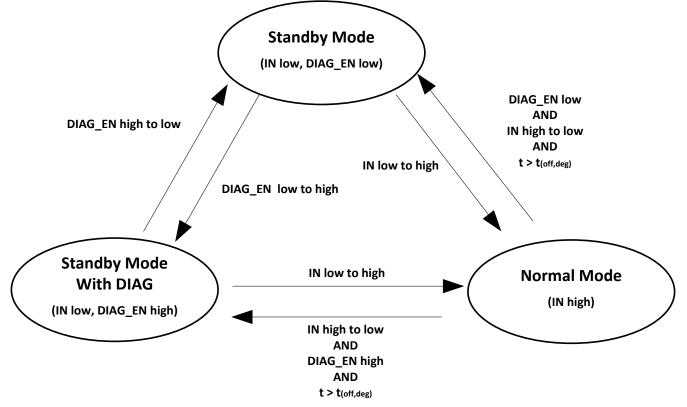


Figure 6-18. Reverse-Current External Protection, Method 2

6.3.6.6 MCU I/O Protection

TI recommends series resistors to protect the microcontroller, for example, $4.7-k\Omega$ when using a 3.3-V microcontroller and $10-k\Omega$ for a 5-V microcontroller.




Figure 6-19. MCU I/O External Protection

6.4 Device Functional Modes

6.4.1 Working Modes

The device has three working modes, the normal mode, the standby mode, and the standby mode with diagnostics, as shown in Figure 6-20.

Figure 6-20. Working Modes

6.4.1.1 Normal Mode

When IN is high, the device enters normal mode.

6.4.1.2 Standby Mode

When IN is low and DIAG_EN is low, the device enters standby mode with ultralow power consumption.

6.4.1.3 Standby Mode With Diagnostics

When IN is low and DIAG_EN is high, the device enters standby mode with diagnostics. The device still supports open-load and short-to-battery detection even when IN is low.

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Application Information

The TPS1H000-Q1 device is a smart high-side switch, with an internal charge pump and single-channel integrated NMOS power FET. The adjustable current-limit function greatly improves the reliability of the whole system. Full diagnostic features enable intelligent control of the load. The TPS1H000-Q1 device can be used for a wide variety of resistive, inductive, and capacitive loads, including LEDs, relays, and sub-modules.

7.2 Typical Application

Figure 7-1 shows an example of how to design the external circuitry parameters.

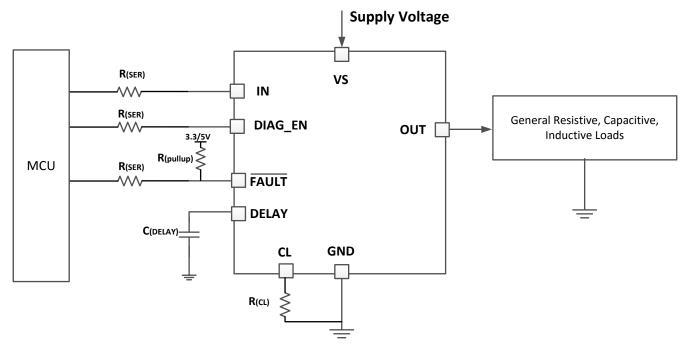


Figure 7-1. Typical Application Circuitry

7.2.1 Design Requirements

- V_{VS} range from 6 V to 18 V
- Nominal current of 100 mA
- Expected current limit value of 500 mA
- Thermal sensitive system, when current limit occurs, the output latches off after 0.2 s. The 0.2 s is to ensure the safe start-up for a capacitive load, clamping the inrush current but without latch-off during start-up.
- Full diagnostics with 5-V MCU, including on-state open-load detection, short-to-GND or overcurrent detection, and thermal shutdown detection

7.2.2 Detailed Design Procedure

To set the adjustable current limit value at 500 mA, calculate $R_{(CL)}$ as follows:

$$R_{(CL)} = \frac{V_{CL(th)} \times K_{(CL)}}{I_{OUT}} = \frac{0.8 \times 600}{0.5} = 960 \ \Omega$$
(3)

To set the adjustable latch-off delay at 0.2 s, calculate $C_{(DELAY)}$ as follows:

$$t_{dl} = t_{CL(deg)} + t_{dl1} + t_{dl2} = 0.2 \approx t_{dl2}$$

$$C_{DELAY} = \frac{I_{dl(chg)} \times t_{dl2}}{V_{dl(ref)}} = \frac{4.5 \times 0.2}{1.45} \times 10^{-6} = 0.62 \,\mu\text{F}$$
(4)

TI recommends $R_{(SER)}$ = 10 k Ω for a 5-V MCU, and $R_{(pullup)}$ = 10 k Ω as the pullup resistor.

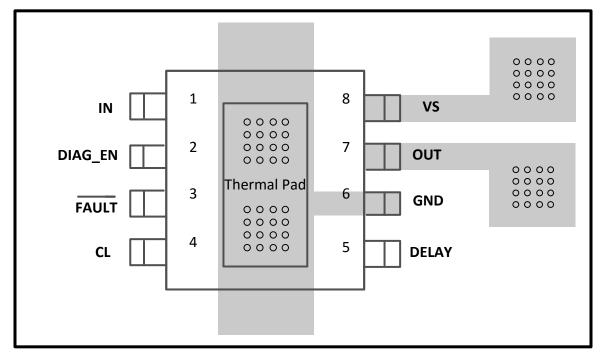
7.2.3 Application Curves

The following curves are test examples of hard short conditions. The load is 0.1 A and the current limit value is 0.5 A. Figure 7-2 shows a waveform of the latch-off mode. Figure 7-3 shows a waveform of the auto-retry mode.

7.3 Power Supply Recommendations

The device can be used for both 12-V and 24-V applications. The normal power supply connection is a 12-V or 24-V system.

7.4 Layout


7.4.1 Layout Guidelines

To prevent thermal shutdown, T_J must be less than 175°C. If the output current is very high, the power dissipation may be large. However, the PCB layout is very important. Good PCB design can optimize heat transfer, which is absolutely essential for the long-term reliability of the device.

- Maximize the copper coverage on the PCB to increase the thermal conductivity of the board. The major
 heat-flow path from the package to the ambient is through the copper on the PCB. Maximum copper is
 extremely important when there are not any heat sinks attached to the PCB on the other side of the board
 opposite the package.
- Add as many thermal vias as possible directly under the package thermal pad to optimize the thermal conductivity of the board.
- All thermal vias should either be plated shut or plugged and capped on both sides of the board to prevent solder voids. To ensure reliability and performance, the solder coverage should be at least 85%.

7.4.2 Layout Example

8 Device and Documentation Support

8.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.3 Trademarks

PowerPAD^M and TI E2E^M are trademarks of Texas Instruments. All trademarks are the property of their respective owners.

8.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.5 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (June 2019) to Revision D (December 2024)

- Updated maximum ratings of VS pin and IN/DIAG_EN pins to 42V in the Absolute Maximum Ratings table...4

Changes from Revision B (March 2018) to Revision C (June 2019)

• Changed IN is high and DIAG_EN is high to IN is low and DIAG_EN is low in the Standby Mode section21

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the mostcurrent data available for the designated device. This data is subject to change without notice and without revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.

Page

Page

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
TPS1H000AQDGNRQ1	Active	Production	HVSSOP (DGN) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	17SX
TPS1H000AQDGNRQ1.A	Active	Production	HVSSOP (DGN) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	17SX

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

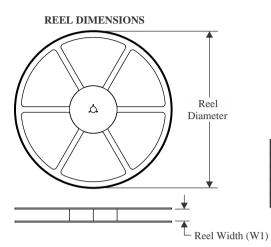
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

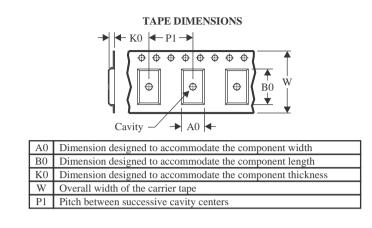
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

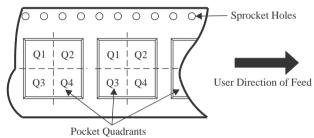
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

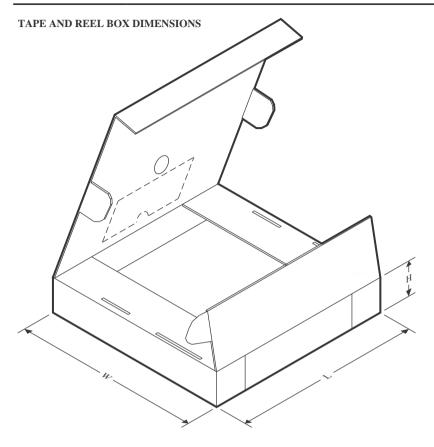

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal	


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS1H000AQDGNRQ1	HVSSOP	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

www.ti.com

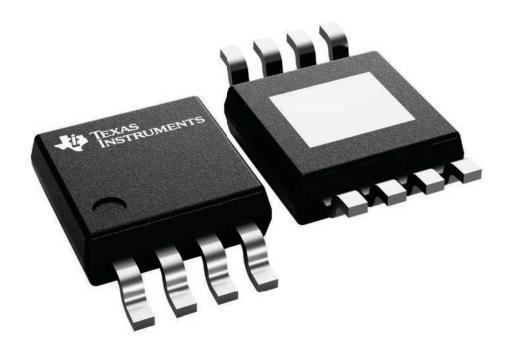
PACKAGE MATERIALS INFORMATION

6-Nov-2024

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS1H000AQDGNRQ1	HVSSOP	DGN	8	2500	366.0	364.0	50.0

DGN 8

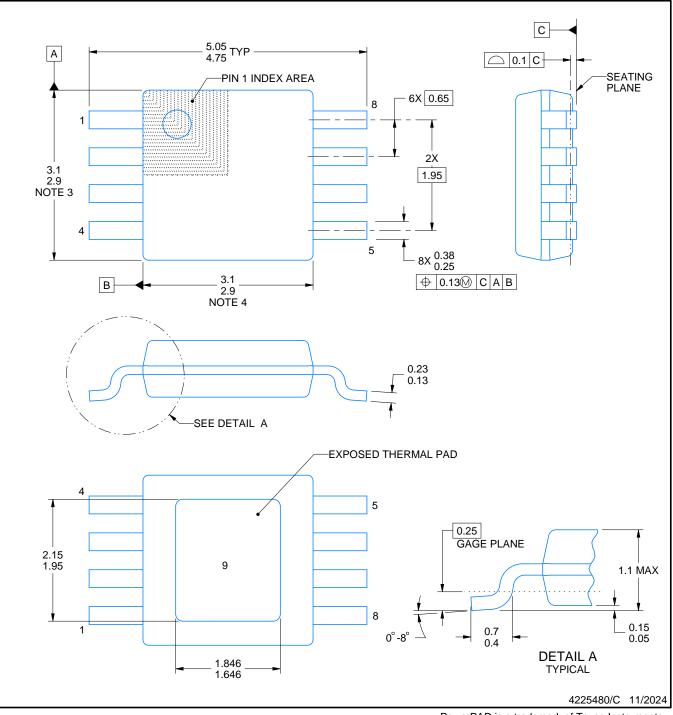

3 x 3, 0.65 mm pitch

GENERIC PACKAGE VIEW

PowerPAD[™] HVSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.



DGN0008G

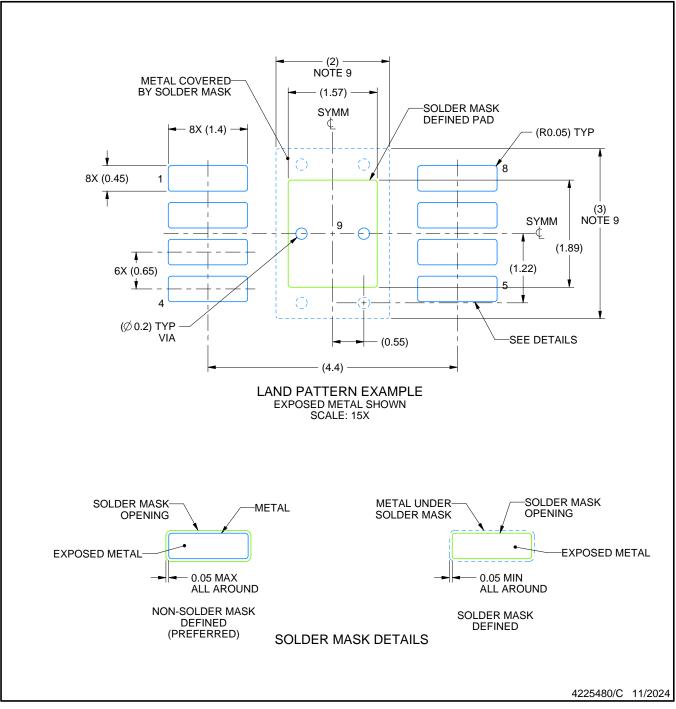
PACKAGE OUTLINE

PowerPAD[™] HVSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.


PowerPAD is a trademark of Texas Instruments.

DGN0008G

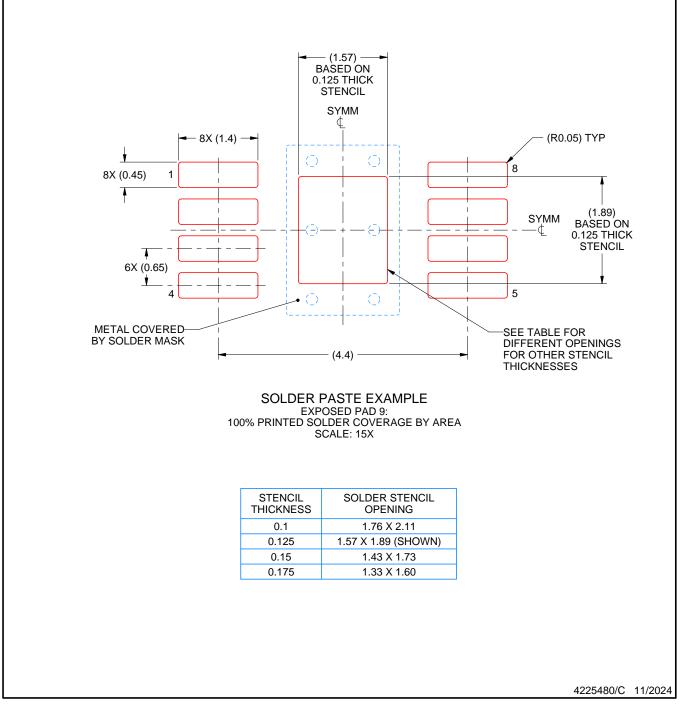
EXAMPLE BOARD LAYOUT

PowerPAD[™] HVSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown
- on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.



DGN0008G

EXAMPLE STENCIL DESIGN

PowerPAD[™] HVSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 11. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated