

TPD8S009 8-Channel ESD Protection for DisplayPort and HDMI

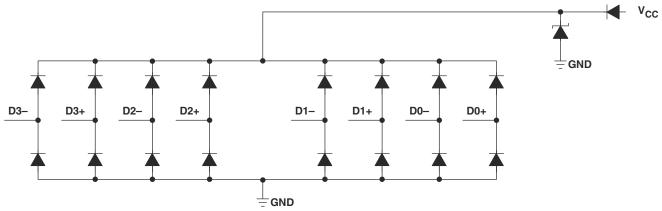
1 Features

- IEC 61000-4-2 Level 4 ESD Protection
 - ±8kV Contact Discharge
- IEC 61000-4-5 Surge Protection
 - $-2.5A (8/20\mu s)$
- I/O Capacitance: 0.8pF (Typical)
- Low Leakage Current: 10nA (Typical)
- Supports High-Speed Differential Data Rates (3dB Bandwidth > 4GHz)
- Ioff Feature
- Industrial Temperature Range: -40°C to +85°C
- Easy Straight-Through Routing Package for HDMI and DisplayPort Connectors

2 Applications

- **End Equipment**
 - Set-Top Boxes
 - Laptops and Desktops
 - **Projectors**
 - Video Surveillance
- Interfaces
 - DisplayPort 1.1
 - **HDMI 1.4**
 - DVI

3 Description


The TPD8S009 device is an eight-channel TVS diode array for ESD protection. The TPD8S009 is rated to dissipate contact ESD strikes at the maximum level specified in the IEC 61000-4-2 international standard (Level 4), with ±8kV contact discharge ESD protection. The low capacitance (0.8pF) of this device, coupled with the excellent matching between differential signal pairs enables this device to provide transient voltage suppression circuit protection for high-speed idfferential data rates (3dB bandwidth > 4GHz).

The TPD8S009 is offered in a 8-pin SON package. This package offers easy design and layout, as the package matches exactly with the HDMI and DisplayPort high-speed pinout.

Package Information

PART NUMBER	PACKAGE (1)	BODY SIZE (NOM)
TPD8S009	SON (15)	2.50mm × 6.50mm

For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Internal Schematic

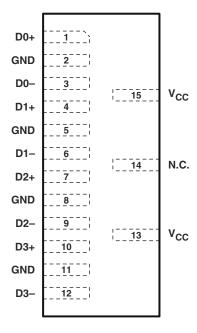


Table of Contents

1 Features	1	7 Application and Implementation	8
2 Applications	1	7.1 Application Information	8
3 Description		7.2 Typical Application	
4 Pin Configuration and Functions		8 Power Supply Recommendations	
Pin Functions	3	9 Layout	
5 Specifications		9.1 Layout Guidelines	
5.1 Absolute Maximum Ratings		9.2 Layout Example	
5.2 ESD Ratings		10 Device and Documentation Support	
5.3 Recommended Operating Conditions		10.1 Third-Party Products Disclaimer	
5.4 Thermal Information	4	10.2 Support Resources	11
5.5 Electrical Characteristics	<mark>5</mark>	10.3 Trademarks	
5.6 Typical Characteristics	<mark>5</mark>	10.4 Electrostatic Discharge Caution	11
6 Detailed Description		10.5 Glossary	
6.1 Overview		11 Revision History	
6.2 Functional Block Diagram	6	12 Mechanical, Packaging, and Orderable	
6.3 Feature Description	6	Information	11
6.4 Device Functional Modes	<mark>7</mark>		

4 Pin Configuration and Functions

N.C. - Not internally connected

Figure 4-1. DSM Package 15-Pin SON Top View

Pin Functions

PIN		TYPE	DESCRIPTION			
NO.	NAME	ITPE	DESCRIPTION			
1	D0+					
3	D0-					
4	D1+					
6	D1-	ESD port	High-speed ESD clamp provides ESD protection to the high-speed display port/HDMI			
7	D2+	ESD bou	differential data lines.			
9	D2-					
10	D3+					
12	D3-					
2						
5	GND	OND	Ground			
8	GND	GND	Ground			
11						
14	N.C.	No connect	No internal signal connection			
13	V _{CC} Supply		I/O gupely			
15			I/O supply			

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
V _{CC}	Supply voltage	-0.3	6	V
V _{IO}	IO signal voltage	0	V _{CC}	V
T _A	Characterized free-air operating temperature	-40	85	°C
P _{PP}	Peak pulse power (t _p = 8/20μs)		25	W
I _{PP}	Peak pulse current (t _p = 8/20µs)		2.5	Α
T _{stg}	Storage temperature	-65	125	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2500	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V
		IEC 61000-4-2 Contact Discharge	±8000	
		IEC 61000-4-2 Air-Gap Discharge	±9000	

- (1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

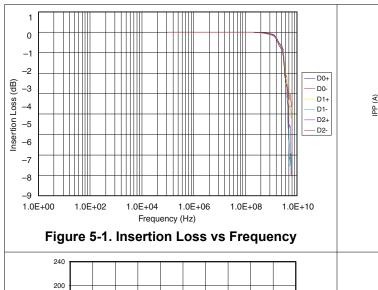
over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{IO}	Input pin voltage	0	V _{CC}	V
T _A	Operating free-air temperature	-40	85	°C

5.4 Thermal Information

		TPD8S009	
	THERMAL METRIC(1)	DSM (SON)	UNIT
		15 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	405.4	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	35.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	284.3	°C/W
ΨЈТ	Junction-to-top characterization parameter	49.2	°C/W
ΨЈВ	Junction-to-board characterization parameter	284.3	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.



5.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
V _{RWM}	Reverse standoff voltage	Any IO pin to ground				5.5	V
V_{BR}	Breakdown voltage	I _{IO} = 1mA	Any IO pin to ground	9			V
I _{IO}	IO port current	V _{IO} = 3.3V, V _{CC} = 5V	Any IO pin		0.01	0.1	μA
I _{off}	Current from IO port to supply pins	V _{IO} = 3.3V, V _{CC} = 5V	Any IO pin		0.01	0.1	μΑ
V _D	Diode forward voltage	I _{IO} = 8mA	Lower clamp diode	0.6	8.0	0.95	V
R _{DYN}	Dynamic resistance	I = 1A	Any IO pin		1.1		Ω
C _{IO}	IO capacitance	V _{CC} = 5V, V _{IO} = 2.5V	Any IO pin		0.8		pF
I _{CC}	Operating supply current	V _{IO} = Open, V _{CC} = 5V	V _{CC} pin		0.1	1	μA

5.6 Typical Characteristics

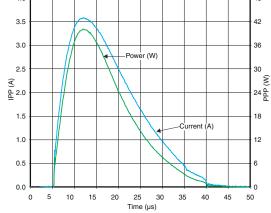
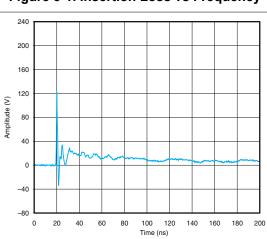



Figure 5-2. Peak Pulse Waveforms

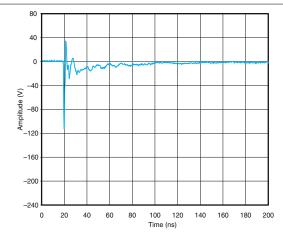
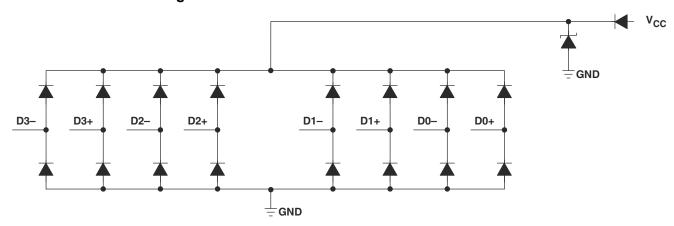


Figure 5-3. IEC Clamping Waveforms (8-kV Contact)

Figure 5-4. Figure 3. IEC Clamping Waveforms (– 8-kV Contact)


6 Detailed Description

6.1 Overview

The TPD8S009 is an eight-channel TVS diode array for ESD protection. TPD8S009 is rated to dissipate contact ESD strikes at the maximum level specified in the IEC 61000-4-2 international standard (Level 4), with ±8kV contact discharge ESD protection. The low capacitance (0.8pF) of this device, coupled with the excellent matching between differential signal pairs enables this device to provide transient voltage suppression circuit protection for high-speed idfferential data rates (3dB bandwidth > 4GHz).

The TPD8S009 offers an optional V_{CC} supply pin which can be connected to system supply plane. There is a blocking diode at the V_{CC} pin to enable the I_{off} feature for the TPD8S009. The TPD8S009 can handle live signal at the signal pins when the V_{CC} pin is connected to 0V. The V_{CC} pin allows all the internal circuit nodes of the TPD8S009 to be at known potential during start-up time. However, connecting the optional V_{CC} pin to board supply plane doesn't affect the system level ESD performance of the TPD8S009.

6.2 Functional Block Diagram

6.3 Feature Description

6.3.1 IEC 61000-4-2 ESD Protection

The I/O pins can withstand ESD events up to ±8kV contact and ±9kV air. An ESD and surge clamp diverts the current to ground.

6.3.2 IEC 61000-4-5 Surge Protection

The I/O pins can withstand surge events up to 2.5A and 25W (8/20µs waveform). An ESD and surge clamp diverts this current to ground.

6.3.3 I/O Capacitance

The capacitance between each I/O pin to ground is 0.8pF (typical). This device can support data rates up to 3.4Gbps.

6.3.4 Low Leakage Current

The I/O pins feature a low leakage current of 10nA (typical) with an IO bias of 3.3V and V_{CC} bias of 5V.

6.3.5 Supports High-Speed Differential Data Rates

The I/O pins low capacitance of 0.8pF (typical) gives them a typical –3dB bandwidth > 4GHz. This allows the TPD8S009 to protect interfaces with high-speed signals like HDMI 1.4.

6.3.6 I_{off} Feature

The TPD8S009 offers an optional V_{CC} supply pin which can be connected to system supply plane. There is a blocking diode at the V_{CC} pin which makes it so the TPD8S009 can handle live signal at the D+, D- pins when

the V_{CC} pin is connected to 0V. This is the I_{off} feature, which is crucial for HDMI, as a live signal can be put on the IO pins when the system is powered off.

6.3.7 Industrial Temperature Range

This device features an industrial operating range of -40°C to +85°C.

6.3.8 Easy Straight Through Routing

The layout of this device makes it simple and easy to add protection to an existing layout. The packages offers flow-through routing, requiring minimal modification to an existing layout. Flow-through routing also allows the PCB designer to optimize the signal integrity of any high-speed signals being protected.

6.4 Device Functional Modes

TPD8S009 is a passive-integrated circuit that activates whenever voltages above V_{BR} or below the lower diodes $V_{forward}$ (-0.6V) are present upon the circuit being protected. During ESD events, voltages as high as ±9kV can be directed to ground and V_{CC} through the internal diode network. Once the voltages on the protected lines fall below the trigger voltage of the TPD8S009 (usually within 10's of nano-seconds) the device reverts back to a high-impedance state.

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

7.1 Application Information

The TPD8S009 can provide system-level ESD protection to the high-speed differential lines of the HDMI or display ports. The flow-through package offers flexibility for board routing with traces up to 15mm wide. Figure 7-1 shows the board-layout scheme for the four differential pair lines. The special pin configuration of the TPD8S009 matches the HDMI or DisplayPort pin assignments. It allows the differential signal pairs to couple together after they touch the ESD ports (pins 1–3, 4–6, 7–9, and 10–12) of the TPD8S009.

The TPD4E001 is recommended for ESD protection of slow-speed control lines.

7.2 Typical Application

PIN NO.	SIGNAL TYPE	PIN NAME	MATING ROW CONTACT LOCATION	VERTICALLY OPPOSED CONNECTOR FRONT VIEW	TPD8	S009	
1	Out	ML Lane 0(p)	Тор				
2	GND	GND	Bottom				
3	Out	ML Lane 0(n)	Тор			,	
4	Out	ML Lane 1(p)	Bottom			'	
8	GND	GND	Тор				
6	Out	ML Lane 1(n)	Bottom			,]
7	Out	ML Lane 2(p)	Тор			'	
8	GND	GND	Bottom]
9	Out	ML Lane 2(n)	Тор]
10	Out	ML Lane 3(p)	Bottom			'	Core Scalar/
11	GND	GND	Тор				Switch
12	Out	ML Lane 3(n)	Bottom]
13	GND	GND	Тор				
14	GND	GND	Bottom				
15	I/O	Aux CH (p)	Тор				
16	GND	GND	Bottom]
17	I/O	Aux CH (n)	Тор	-		TDD 4500 f]
18	In	Hot Plug Detect	Bottom			TPD4E001	
19	PWR Out	Return DP PWR	Тор]
20	PWR RIN	DP PWR	Bottom				

Display Port Connector

TPD8S009 and TPD4E001 provide complete ESD protection for display or HDMI interface

Figure 7-1. Typical Application

7.2.1 Design Requirements

For this design example, one TPD8S009 devices, and one TPD4E001 are being used in an HDMI 1.4 application. This provides a complete port protection scheme.

Given the HDMI 1.4 application, the following parameters are shown in Table 7-1.

Table 7-1. I	Desian	Parameters
---------------------	--------	-------------------

DESIGN PARAMETER	VALUE
Signal range on high-speed TMDS pins	0V to 3.6V
Operating Frequency	1.7GHz

7.2.2 Detailed Design Procedure

To begin the design process, some parameters must be decided upon; the designer must know the following:

- · Signal range on all the protected lines
- Operating frequency

7.2.2.1 Signal Range on High Speed TMDS Pins

TPD8S009 has 8 identical protection channels for signal lines. The symmetry of the device provides flexibility when selecting which of the 8 I/O channels protect which signal lines. The package is also designed to easily lay out on an HDMI connector, eliminating any tricky routing issues. Any I/O supports a signal range of 0 to 5.5V. Therefore, this device supports the HDMI 1.4 signal swing.

7.2.2.2 Bandwidth on High-Speed TMDS Pins

Each pin of the TPD8S009 has a typical –3dB bandwidth of 4GHz. Therefore, this device can handle HDMI 1.4 data rate of 3.4Gbps with operating frequency of 1.7GHz.

7.2.3 Application Curves

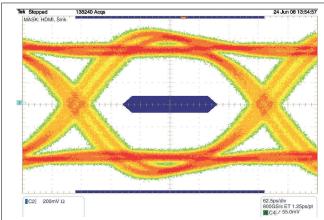


Figure 7-2. Eye Diagram Without TPD8S009 (2.5Gbps Data Rate)

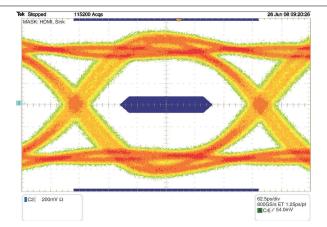


Figure 7-3. Eye Diagram With TPD8S009 (2.5Gbps Data Rate)

8 Power Supply Recommendations

This device is a passive ESD protection device so there is no need to power it. Take care to make sure that the maximum voltage specifications for each pin are not violated.

9 Layout

9.1 Layout Guidelines

- The optimum placement is as close to the connector as possible.
 - EMI during an ESD event can couple from the trace being struck to other nearby unprotected traces, resulting in early system failures.
 - The PCB designer must minimize the possibility of EMI coupling by keeping any unprotected traces away from the protected traces which are between the TVS and the connector.
- Route the protected traces as straight as possible.
- Eliminate any sharp corners on the protected traces between the TVS and the connector by using rounded corners with the largest radii possible.
 - Electric fields tend to build up on corners, increasing EMI coupling.

9.2 Layout Example

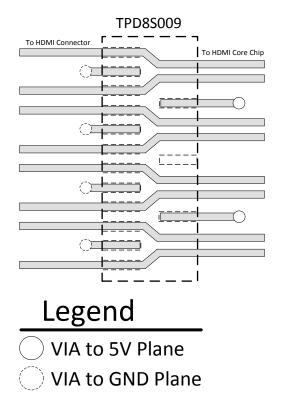


Figure 9-1. Typical Layout for HDMI Connector

10 Device and Documentation Support

10.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

10.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

10.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

11 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

C	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section		
•	Updated device name to TPD8S009	6	
С	changes from Revision * (July 2008) to Revision A (February 2015)	Page	
•	Implementation section, Power Supply Recommendations section, Layout section, Device and		
	Documentation Support section, and Mechanical, Packaging, and Orderable Information section	1	
•	Deleted Ordering Information table	1	
•	Deleted lead temperature from Absolute Maximum Ratings	4	

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 7-Nov-2025

PACKAGING INFORMATION

	Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
Ì	TPD8S009DSMR	Active	Production	SON (DSM) 15	3000 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	PK009
	TPD8S009DSMR.B	Active	Production	SON (DSM) 15	3000 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	PK009

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

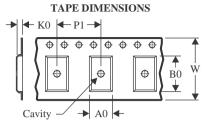
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

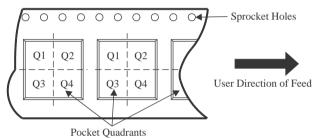
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

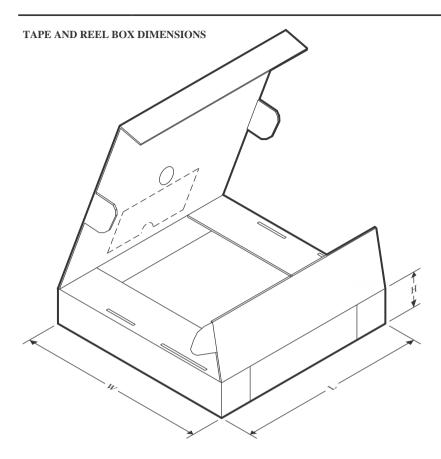
PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jan-2025


TAPE AND REEL INFORMATION

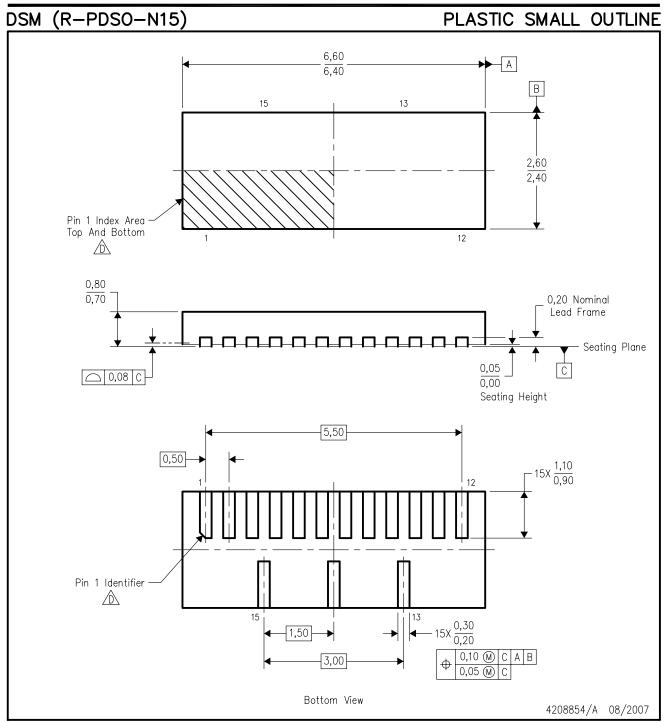
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

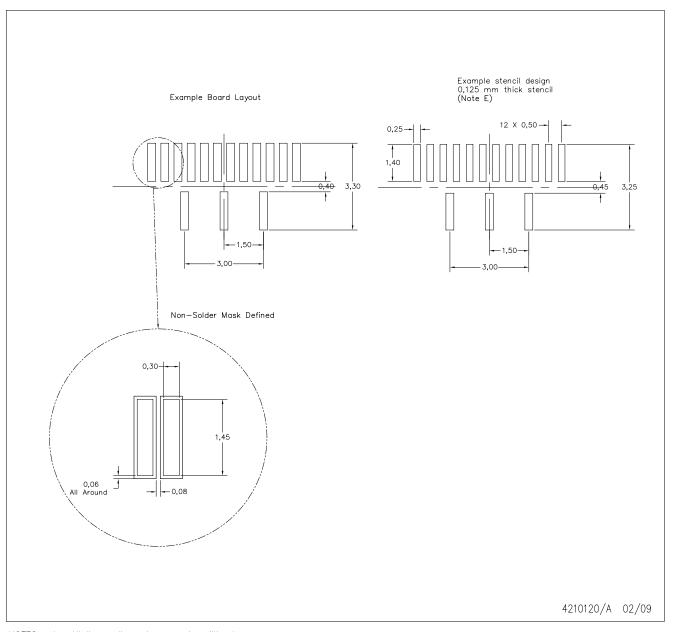
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPD8S009DSMR	SON	DSM	15	3000	180.0	12.4	2.75	6.75	0.95	4.0	12.0	Q1


PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jan-2025

*All dimensions are nominal

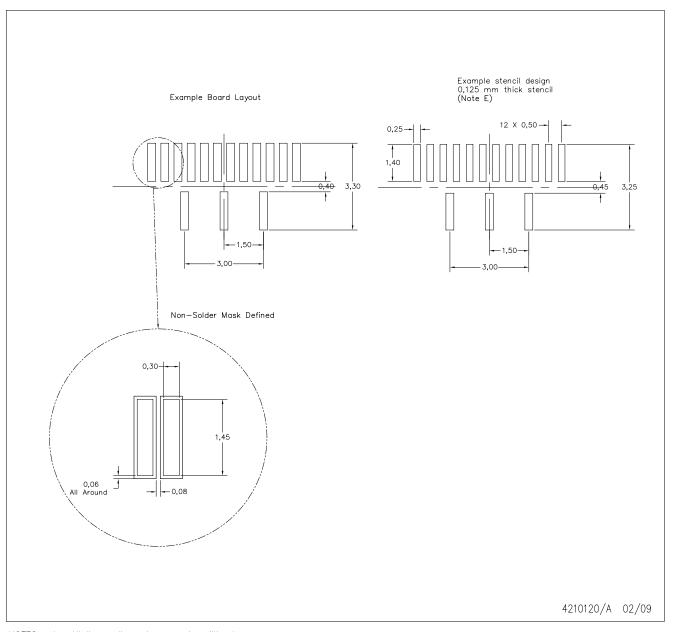
Device		Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ı	TPD8S009DSMR	SON	DSM	15	3000	200.0	183.0	25.0



NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. SON (Small Outline No-Lead) package configuration.
- Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.

DSM (R-PDSO-N15)



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- E. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

DSM (R-PDSO-N15)

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- E. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025