
TMP112-Q1 and TMP112D-Q1 Automotive Grade High-Accuracy, Low-Power, Digital Temperature Sensor in SOT563 and X2SON Packages

1 Features

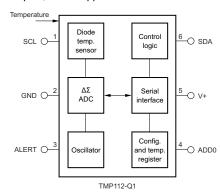
- AEC-Q100 qualified for automotive applications:
 - TMP112-Q1/TMP112D-Q1: –40°C to 125°C
 - Device HBM ESD classification level 2
 - Device CDM ESD classification level C6
- Functional Safety-Capable
 - Documentation available to aid functional safety system design
- **TMP112-Q1** Accuracy without calibration:
 - ±0.5°C (Max) over 0°C to 65°C
 - ±1°C (Max) over –40°C to 125°C
- TMP112D-Q1 Accuracy without calibration:
 - ±0.4°C (Max) over 0°C to 65°C
 - ±0.5°C (Max) over -25°C to 85°C
 - ±0.7°C (Max) over –40°C to 125°C
- Low quiescent current:
 - TMP112-Q1: 10µA active (Max), 1µA shutdown
 - TMP112D-Q1: 9μA active (Max), 0.35μA shutdown (Max)
- Available packages:
 - SOT563 package (1.6mm × 1.6mm)
 - X2SON package (0.8mm × 0.8mm)
- Supply range: 1.4V to 3.6V
- Resolution: 12 bits
- Digital output: SMBus, two-wire and I²C interface compatibility

2 Applications

- Automotive
- Infotainment & cluster
- Head unit & digital cockpit
- In-cabin sensing
- Battery management unit
- Vehicle control unit (VCU)
- Surround view system ECU

Simplified Schematic (SOT563 Package)

3 Description


The TMP112-Q1 and TMP112D-Q1 devices are digital temperature sensors designed for NTC/PTC thermistor replacement where high accuracy is required. These devices offer an accuracy of ±0.4°C/ ±0.5°C without requiring calibration or external component signal conditioning. TMP112-Q1 and TMP112D-Q1 are highly linear and do not require complex calculations or lookup tables to derive the temperature. The calibrating for improved accuracy feature in TMP112-Q1 (see the Calibrating for Improved Accuracy section) allows users to calibrate for an accuracy as good as ±0.17°C. The on-chip 12bit ADC offers resolutions down to 0.0625°C.

TMP112-Q1 and TMP112D-Q1 come with 0.8mm × 0.8mm X2SON (DPW) and 1.6mm × 1.6mm SOT563 (DRL) packages. These devices feature SMBus™, two-wire and I²C interface compatibility, and allow up to four devices on one bus along with SMBus alert function. These devices are specified to operate over 1.4V to 3.6V supply voltage. The maximum quiescent current is around 10µA over the full operating range.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾
TMP112-Q1 TMP112D-Q1	SOT563 (6)	1.60mm × 1.60mm
TMP112D-Q1	X2SON (5)	0.8mm × 0.8mm

- For all available packages, see the orderable addendum at (1) the end of the data sheet.
- The package size (length × width) is a nominal value and includes pins, where applicable.

Block Diagram (SOT563 Package)

Table of Contents

1 Features1	7.2 Functional Block Diagram	15
2 Applications1	7.3 Feature Description	
3 Description1	7.4 Device Functional Modes	
4 Device Comparison3	7.5 Programming	23
5 Pin Configuration and Functions5	8 Application and Implementation	
6 Specifications6	8.1 Application Information	
6.1 Absolute Maximum Ratings6	8.2 Typical Application	
6.2 ESD Ratings	8.3 Power Supply Recommendations	
6.3 Recommended Operating Conditions6	8.4 Layout	34
6.4 Thermal Information6	9 Device and Documentation Support	
6.5 Electrical Characteristics7	9.1 Documentation Support	37
6.6 Specifications for User-Calibrated Systems	9.2 Receiving Notification of Documentation Updates	37
(TMP112-Q1 Only)8	9.3 Support Resources	37
6.7 Timing Requirements9	9.4 Trademarks	
6.8 Timing Diagrams9	9.5 Electrostatic Discharge Caution	37
6.9 Typical Characteristics (TMP112-Q1)10	9.6 Glossary	37
6.10 Typical Application (TMP112D-Q1)12	10 Revision History	37
7 Detailed Description15	11 Mechanical, Packaging, and Orderable	
7.1 Overview	Information	38

4 Device Comparison

Table 4-1. Device Comparison

Feature V _{DD} (V) Temp Range (°C) Automotive	TMP112-Q1 1.4 - 3.6 -40 to 125 Grade-1	TMP112D-Q1 1.4 - 3.6 -40 to 125 Grade-1	TMP102-Q1 1.4 - 3.6 -40 to 125	TMP75B-Q1 1.4 - 3.6 -40 to 125	TMPx75-Q1 2.7 - 5.5	TMP100-Q1 TMP101-Q1 2.7 - 5.5	TMP126-Q1 1.62 - 5.5	TMP127-Q1
Temp Range (°C)	-40 to 125	-40 to 125			2.7 - 5.5	2.7 - 5.5	1.62 - 5.5	1.62 - 5.5
(°C)			-40 to 125	-40 to 125				
	Grade-1	Grade-1			-40 to 125	-55 to 125	-55 to 175	-55 to 175
Grade			Grade-1	Grade-1	Grade-1	Grade-1	Grade-0	Grade-0
Functional Safety Capable	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes
		Typical	Current Consu	umption and Co	onversion Time	(25°C)		
I _{AVG} (μA)	7 (at 4Hz)	3.2 (at 1Hz) 4.8 (at 4Hz)	7 (at 4Hz)	6.5 (at 4Hz)	-	-	1 (at 1Hz)	2.65 (at 4Hz)
I _{Q_ACTIVE} (μA)	40	55	40	45	50	45	77	77
I _{SB} (μA)	2.2	2.6	2.2	1	-	-	0.5	0.5
I _{SD} (μA)	0.5	0.15	0.5	0.3	0.1	0.1	0.35	0.35
Conversion Time (ms)	26	10	26	27	27.5 to 220	40 to 320	6	6
			Maximum T	emperature Ac	curacy (°C)		l	
0 to 65	±0.5	±0.4	-	-	-	-	-	-
-25 to 85	-	±0.5	±2	-	±1.5	±2	±0.3	-
-40 to 125	±1	±0.7	±3	±2	±2	-	±0.4	-
-55 to 125	-	-	-	-	-	±2	-	-
-55 to 150	-	-	-	-	-	-	±0.5	±0.8
-55 to 175	-	-	-	-	-	-	±0.75	±1
				Features			•	
Interface			l ²	С			S	PI
Resolution (Bit)	12	12	12	12	9 to 12	9 to 12	14	14
Number of Addresses	4 (ADD0 pin)	4 (ADD0 pin)	4 (ADD0 pin)	8 (A2/A1/A0 pins)	Up to 27 (A2/A1/A0 pins)	Up to 8 (ADD0/ADD1 pins)	1	1
				Packaging				
Dimensions [mm × mm × mm]	SOT563 (6-pin) 1.6× 1.6 × 0.6	SOT563 (6-pin) 1.6× 1.6 × 0.6 X2SON (5-pin) 0.8× 0.8 × 0.4	SOT563 (6-pin) 1.6× 1.6 × 0.6	VSSOP (8-pin) 3 × 4.9 × 1.1 SOIC (8-pin) 4.9 × 6 × 1.75	VSSOP (8-pin) 3 × 4.9 × 1.1 SOIC (8-pin) 4.9 × 6 × 1.75	SOT23 (6-pin) 2.9×2.8×1.45	\$OT23 (6-pin) 2.9×2.8×1.45 \$C70 (6-pin) 2×2.1×1.1	SOT23 (6-pin) 2.9×2.8×1.45

Table 4-2. TMP112-Q1 and TMP112D-Q1 Device Orderable Options

DEVICE NAME	PART NUMBER	PACKAGE	ACCURACY	SPECIFIED TEMPERATURE AND SUPPLY RANGE		
	TMP112 A QDRLRQ1		±0.1°C (Typ)	T _A = 25°C V+ = 3.3V		
TMP112-Q1		SOT563 (DRL)		(DRL)	±0.5°C (Max)	0°C ≤ T _A ≤ 65°C V+ = 3.3V
			±1°C (Max)	-40°C ≤ T _A ≤ 125°C 1.4V ≤ V+ ≤ 3.6V		
	TMD440B0BD1 B04	SOT563	±0.1°C (Typ)	T _A = 25°C V+ = 3.3V		
TMP442D 04	TMP112 D Q DRL RQ1	(DRL) 6-pin	±0.4°C (Max)	$0^{\circ}C \le T_{A} \le 65^{\circ}C$ 1.5V \le V + \le 3.6V		
TMP112D-Q1	TMD443POPPWPO4	X2SON	±0.5°C (Max)	-25°C ≤ T _A ≤ 85°C 1.5V ≤ V+ ≤ 3.6V		
	TMP112 D Q DPW RQ1	(DPW) 5-pin	±0.7°C (Max)	-40°C ≤ T _A ≤ 125°C 1.4V ≤ V+ ≤ 3.6V		

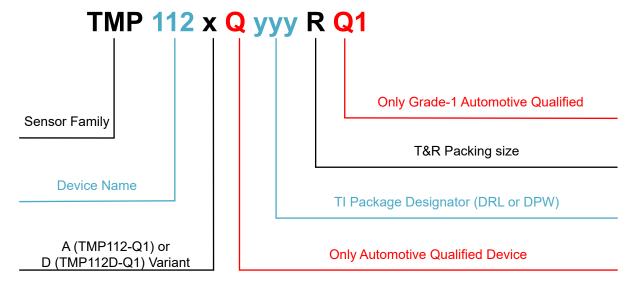


Figure 4-1. TMP112-Q1 and TMP112D-Q1 Device Nomenclature

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

5 Pin Configuration and Functions

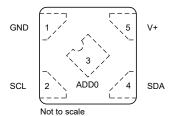


Figure 5-1. DPW Package 5-Pin X2SON Just Address Option TMP112D-Q1 (Top View)



Figure 5-2. DRL Package 6-Pin SOT563 Address and Alert Option TMP112D-Q1 and TMP112-Q1 (Top View)

Table 5-1. Pin Functions

	PIN			
NAME	NO. (DPW package)	NO. (DRL package)	TYPE ⁽¹⁾	DESCRIPTION
NAME	TMP112D-Q1	TMP112-Q1 TMP112D-Q1		
GND	1	2	_	Ground
SCL	2	1	I	Serial clock
ADD0	3	4	I	Address select. Connect to GND, SCL, SDA or V+. Pin-3 curvature is overlooked pin-1 on DPW package.
ALERT	_	3	0	Overtemperature alert. Open-drain output; requires a pullup resistor. Note-1: Only available on DRL package. Note-2: Connecting to GND if Alert pin is not used is preferred.
SDA	4	6	I/O	Serial data input. Open-drain output; requires a pullup resistor.
V+	5	5	I	Supply voltage, 1.4V to 3.6V

⁽¹⁾ I = Input, O = Output, I/O = Input or Output.

6 Specifications

6.1 Absolute Maximum Ratings

Over free-air temperature range unless otherwise noted⁽¹⁾

			MIN	MAX	UNIT
Supply voltage	TMP112-Q1	V			
Dutput Current Departing temperature	VT	TMP112D-Q1	-0.3	6	V
Input/Output Voltage	SCL ADD0 and SDA	TMP112-Q1	-0.5	4	
	SCL, ADDO, and SDA	TMP112D-Q1	-0.3	6	
	ALERT	TMP112-Q1	-0.5	((V+) + 0.3) and ≤ 4	V
		TMP112D-Q1	-0.3	6	
Output Current	Output Current			±10	mA
Operating temperature			-40	125	°C
Junction temperature, T _J				150	°C
Storage temperature, T _{stg}			-60	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human body model (HBM), per AEC Q100-002 ⁽¹⁾	±2000	V
V _(ESD)		Charged device model (CDM), per AEC Q100-011	±1000	V

⁽¹⁾ AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V+	Supply voltage	1.4	3.3	3.6	V
T _A	Operating free-air temperature	-40		125	°C

6.4 Thermal Information

		TMP112-Q1	TMP11	2D-Q1	
	THERMAL METRIC ⁽¹⁾	DRL (SOT563)	DRL (SOT563)	DPW (X2SON)	UNIT
		6 PINS	6 PINS	5 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	210.3	240.2	230	°C/W
R ₀ JC(top)	Junction-to-case (top) thermal resistance	105.0	96.4	194	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	87.5	124.3	158.4	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	6.1	4.0	20	°C/W
ΨЈВ	Junction-to-board characterization parameter	87.0	123.1	158.3	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	108.4	°C/W
M _T	Thermal Mass	-	1.97	0.46	mJ/°C

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application note, SPRA953.

Product Folder Links: TMP112-Q1 TMP112D-Q1

6.5 Electrical Characteristics

At $T_A = 25$ °C and V+ = 1.4V to 3.6V, unless otherwise noted

P	ARAMETER	TEST CONDITION	s	MIN	TYP	MAX	UNIT
TEMPERAT	URE SENSOR					'	
T _A	Temperature range			-40		125	°C
		25°C, V+ = 3.3V		-0.5	±0.1	0.5	°C
		0°C to 65°C, V+ = 3.3V	TMP112-Q1	-0.5	±0.25	0.5	
	Accuracy (temperature error)	–40°C to 125°C		-1	±0.5	1	
T _{ERR}		25°C			±0.1		
	(temperature error)	0°C to 65°C, V+ ≥ 1.5V	TMP440D 04	-0.4		0.4	20
		-25°C to 85°C, V+ ≥ 1.5V		-0.5		0.5	°C
		-40°C to 125°C		-0.7		0.7	
PSR	DC power-supply sensitivity	–40°C to 125°C		-0.25	0.0625	0.25	°C/V
T _{LTD}	Long-term drift	3000 hours at 125°C	TMP112-Q1 TMP112D-Q1 (DRL package)		< 1		LSB
	3		TMP112D-Q1 (DPW package)		< 2		
T _{RES}	Resolution (LSB)		'		0.0625		°C
DIGITAL INI	PUT/OUTPUT						
C _{IN}	Input capacitance				3		pF
V _{IH}	Innut logic lovel			0.7×(V+)		3.6	V
V _{IL}	Input logic level					0.3×(V+)	v
1	Input current	0 < V _{IN} < 3.6V	TMP112-Q1			1	
I _{IN}		0 - V _{IN} - 3.0V	TMP112D-Q1			0.1	μA
V 6DV	Output logic low SDA	V+ > 2 V, I _{OL} = 3mA		0		0.4	
V _{OL} SDA	Output logic low, SDA	V+ < 2 V, I _{OL} = 3mA		0		0.2×(V+)	V
V _{OL} ALERT	Output logic low,	V+ > 2 V, I _{OL} = 3mA		0		0.4	V
VOL ALLINI	ALERT	V+ < 2 V, I _{OL} = 3mA		0		0.2×(V+)	
T _{RES}	Resolution				12		Bits
t	Conversion time		TMP112-Q1		26	35	ms
t _{ACT}	Conversion time		TMP112D-Q1		10.25	11.25	1115
		CR1 = 0, CR0 = 0			0.25		
taanne	Conversion modes	CR1 = 0, CR0 = 1			1		Convis
CONV	(Set by user)	CR1 = 1, CR0 = 0 (default)			4		Conv/s
		CR1 = 1, CR0 = 1			8		
	Timeout time	SCL = GND or SDA = GND			30	40	ms
POWER SU	PPLY						
	Operating supply range			1.4		3.6	V
1	Supply current during	Active Conversion, serial bus idle	TMP112-Q1		40		^
IDD_ACTIVE	active conversion	Active Conversion, serial bus idle	TMP112D-Q1		55		μA

At $T_A = 25$ °C and V+ = 1.4V to 3.6V, unless otherwise noted

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
IDD_AVG		Serial bus inactive, CR1 = 1, CR0 = 0 (default)			7	10	
		Serial bus active, f _{SCL} = 400kHz	IMP112-Q1		15		μA
		Serial bus inactive, CR1 = 1, CR0 = 0 (default)					
$I_{DD_AVG} \begin{tabular}{lllllllllllllllllllllllllllllllllll$			3.2	6			
IDD_AVG	consumption				4.8	9	
		Serial bus active, f _{SCL} = 400kHz	TMP112D-Q1		10		μA
		Serial bus active, f _{SCL} = 1MHz			18		
	_AVG consumption	Serial bus active, f _{SCL} = 2.85MHz			40		
		Serial bus inactive			0.5	1	μА
		Serial bus active, f _{SCL} = 400kHz	TMP112-Q1		10		
		Serial bus active, f _{SCL} = 3.4MHz			80		
I _{DD_SD}	Shutdown current	Serial bus inactive			0.15	0.35	
		Serial bus active, f _{SCL} = 400kHz	TMD112D 01		5.5		
		Serial bus active, f _{SCL} = 1MHz	TIMP 112D-Q1		13		μA
		Serial bus active, f _{SCL} = 2.85MHz			15 85 3.2 6 4.8 9 10 18 40 0.5 1 10 80 0.15 0.35 5.5 13 35 2.2		
	Standby ourrant	Continuous conversion mode Serial	TMP112-Q1		2.2		
I _{DD_SB}	Standby current	bus idle	TMP112D-Q1		2.6		μA

6.6 Specifications for User-Calibrated Systems (TMP112-Q1 Only)

For additional information on the slopes listed in this table, see the Calibrating for Improved Accuracy section.

PARAMETER	CONDITION	MIN	MAX	UNIT
	V+ = 3.3, -40°C to 25°C	-7	0	
Average Slope (Temperature Error vs. Temperature) ⁽¹⁾	V+ = 3.3, 25°C to 85°C	0	5	m°C/°C
	V+ = 3.3, 85°C to 125°C	0	8	

(1) User-calibrated temperature accuracy can be within ±1LSB because of quantization noise

Submit Document Feedback

6.7 Timing Requirements

See the Two-Wire Timing Diagram for more information.

			FAST MO	DDE	FAST MOD	E PLUS	HIGH-SPEED MODE		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	UNII
f _(SCL)	SCL operating frequency		0.001	0.4	0.001	1	0.001	2.85	MHz
t _(BUF)	Bus-free time between STOP and START conditions		600	_	500		160	-	ns
t _(HDSTA)	Hold time after repeated START condition. After this period, the first clock is generated.		600	_	260		160	-	ns
t _(SUSTA)	Repeated START condition setup time		600	-	260		160	_	ns
t _(SUSTO)	STOP condition setup time		600	-	260		160	_	ns
+	Data hold time	TMP112-Q1	100	900	12	150	25	105	ns
t _(HDDAT)	Data Hold time	TMP112D-Q1	0	900	0	150	50 25	105	ns
t _(SUDAT)	Data setup time		100	_	50		25	-	ns
t _(LOW)	SCL clock low period	V+	1300	_	500		210	_	ns
t _(HIGH)	SCL clock high period		600	-	260		60	_	ns
t _{FD}	Data fall time		_	300	-	120	_	80	ns
	Data rise time		_	300	_	120	_	_	ns
t_{RD}	Data rise time	SCLK ≤ 100kHz	_	1000	_	-	_	_	ns
t _{FC}	Clock fall time		_	300	_	120	_	40	ns
t _{RC}	Clock rise time		_	300	_	120	_	40	ns

6.8 Timing Diagrams

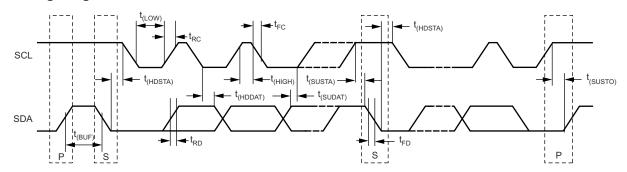
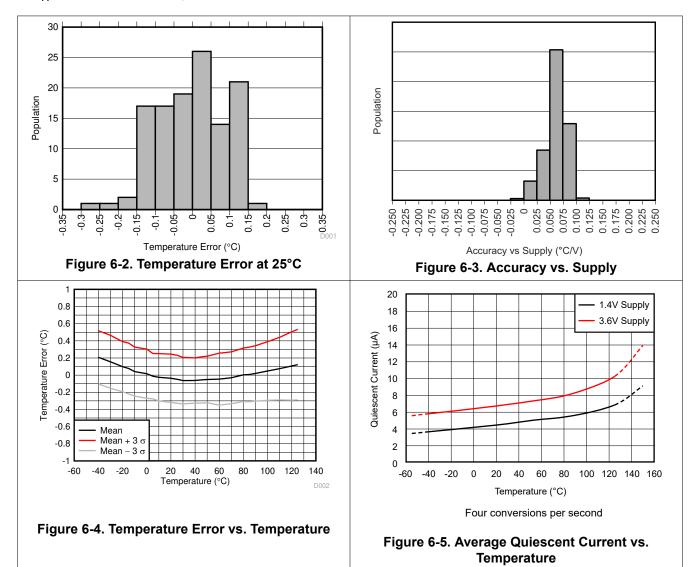
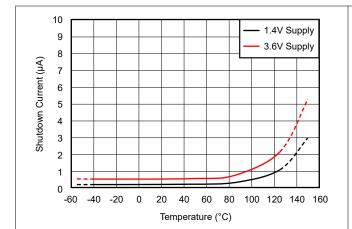



Figure 6-1. Two-Wire Timing Diagram


6.9 Typical Characteristics (TMP112-Q1)

At $T_A = 25$ °C and V+ = 3.3V, unless otherwise noted.

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

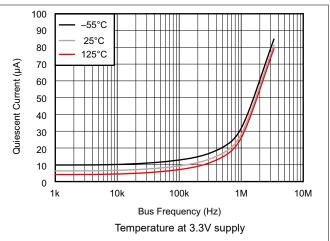


Figure 6-6. Shutdown Current vs. Temperature

Figure 6-7. Quiescent Current vs. Bus Frequency

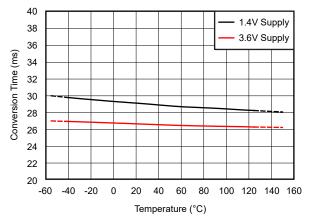
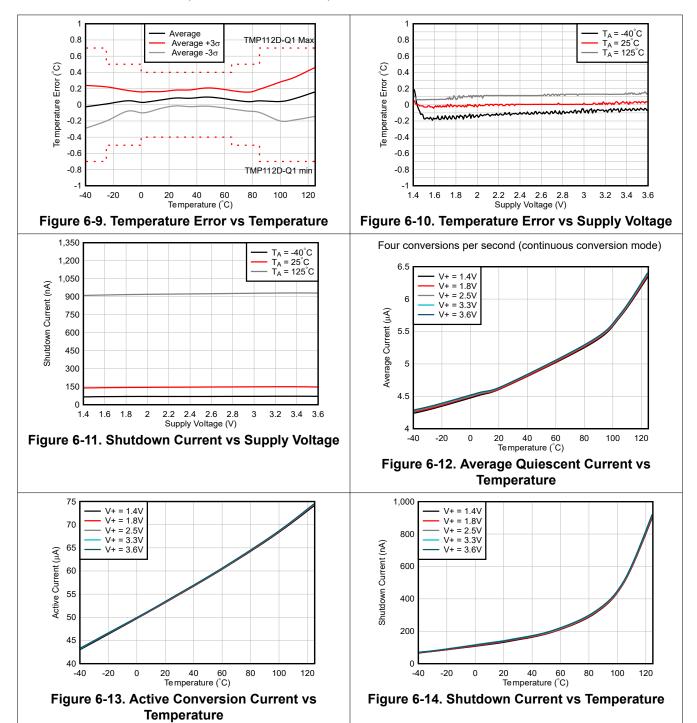
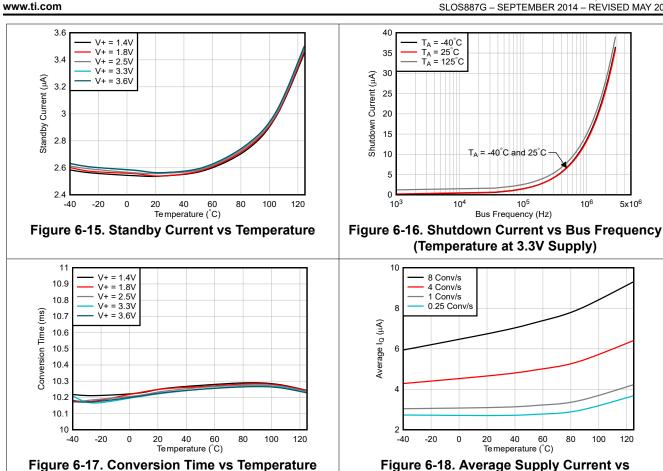
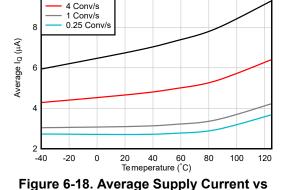



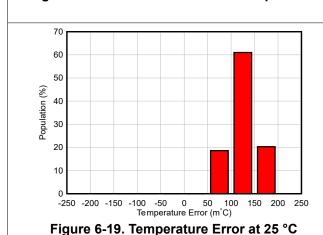
Figure 6-8. Conversion Time vs. Temperature


6.10 Typical Application (TMP112D-Q1)


At $T_A = 25$ °C and V+ = 3.3V (unless otherwise noted)

10⁶

5x10⁶



-40°C and 25°C

10⁵

Bus Frequency (Hz)

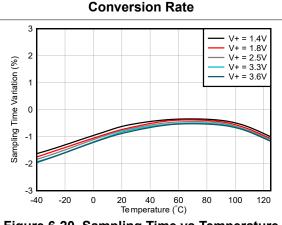
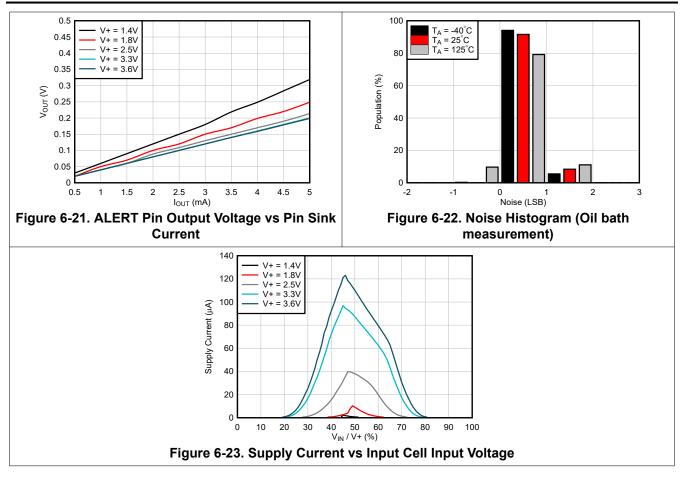



Figure 6-20. Sampling Time vs Temperature

7 Detailed Description

7.1 Overview

The TMP112-Q1/TMP112D-Q1 device is a digital temperature sensor that is designed for thermal-management and thermal-protection applications. The TMP112-Q1/TMP112D-Q1 device is two-wire, SMBus and I²C interface-compatible. The device is specified over an operating temperature range of –40°C to 125°C. Figure 7-1 shows a block diagram of the TMP112-Q1/TMP112D-Q1 device. Figure 7-2 and Figure 7-3 illustrate the ESD protection circuitry contained in the TMP112-Q1 and TMP112D-Q1 devices.

The temperature sensor in the TMP112-Q1/TMP112D-Q1 device comprises the whole chip. Thermal paths run through the package leads as well as the plastic package. The package leads provide the primary thermal path because of the lower thermal resistance of the metal.

An alternative version of the TMP112-Q1/TMP112D-Q1 device is available. The TMP102-Q1 device has reduced accuracy, the same micro-package, and is pin-to-pin compatible.

	Table 7-1. Advantages of Time 112-Q1 and Time 1125-Q1 vs Time 102-Q1												
Device	Compatible Interfaces	Package	Supply Current	Supply Voltage (Min)	Supply Voltage (Max)	Resolution	Local Sensor Accuracy (Max)	Specified Calibration Drift Slope					
TMP112-Q1	I ² C SMBus	SOT563 (1.6 × 1.6 × 0.6)	10μΑ	1.4V	3.6V	12-bit 0.0625°C	±0.5°C: (0°C to 65°C) ±1°C: (-40°C to 125°C)	Yes					
TMP112D- Q1	l ² C SMBus	X2SON (0.8 × 0.8 × 0.4) SOT563 (1.6 × 1.6 × 0.6)	9μΑ	1.4V	3.6V	12-bit 0.0625°C	±0.4°C: (0°C to 65°C) ±0.5°C: (-25°C to 85°C) ±0.7°C: (-40°C to 125°C)	No					
TMP102-Q1	I ² C SMBus	SOT563 (1.6 × 1.6 × 0.6)	10μΑ	1.4V	3.6V	12-bit 0.0625°C	±2°C: (-25°C to 85°C) ±3°C: (-40°C to 125°C)	No					

Table 7-1. Advantages of TMP112-Q1 and TMP112D-Q1 vs TMP102-Q1

7.2 Functional Block Diagram

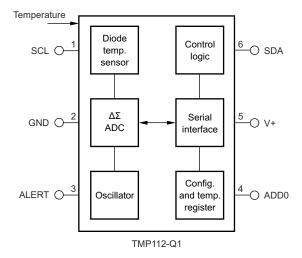
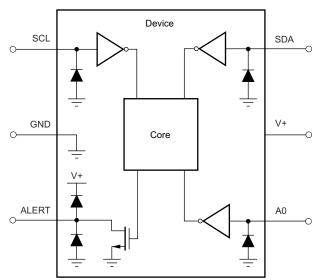



Figure 7-1. Internal Block Diagram (SOT563 Package)

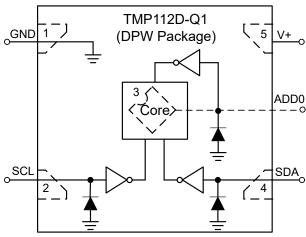


Figure 7-3. Equivalent Internal ESD Circuitry (X2SON Package)

Figure 7-2. Equivalent Internal ESD Circuitry (SOT563 Package)

7.3 Feature Description

7.3.1 Digital Temperature Output

The digital output from each temperature measurement conversion is stored in the read-only temperature register. The temperature register of the TMP112-Q1/TMP112D-Q1 device is configured as a 12-bit read-only register (setting the EM bit to 0 in the configuration register; see the *Extended Mode (EM)* section), or as a 13-bit read-only register (setting the EM bit to 1 in the configuration register) that stores the output of the most recent conversion. Two bytes must be read to obtain data and are listed in Table 7-8. Byte 1 is the most significant byte (MSB), followed by byte 2, the least significant byte (LSB). The first 12 bits (13 bits in extended mode) are used to indicate temperature. The least significant byte does not have to be read if that information is not needed. The data format for temperature is listed in Table 7-2 and Table 7-3. One LSB equals 0.0625°C. Negative numbers are represented in binary twos complement format. Following power up or reset, the temperature register reads 0°C until the first conversion is complete. Bit D0 of byte 2 indicates normal mode (EM bit equals 0) or extended mode (EM bit equals 1), and can be used to distinguish between the two temperature register data formats. The unused bits in the temperature register always read 0.

Table 7-2. 12-Bit Temperature Data Format (1)

TEMPERATURE (°C)	DIGITAL OUTPUT (BINARY)	HEX
128	0111 1111 1111	7FF
127.9375	0111 1111 1111	7FF
100	0110 0100 0000	640
80	0101 0000 0000	500
75	0100 1011 0000	4B0
50	0011 0010 0000	320
25	0001 1001 0000	190
0.25	0000 0000 0100	004
0	0000 0000 0000	000
-0.25	1111 1111 1100	FFC
-25	1110 0111 0000	E70
-55	1100 1001 0000	C90

(1) The resolution for the temperature ADC in internal temperature mode is 0.0625°C/count.

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

Table 7-2 does not list all temperatures. Use the following rules to obtain the digital data format for a given temperature or the temperature for a given digital data format.

To convert positive temperatures to a digital data format:

- 1. Divide the temperature by the resolution
- 2. Convert the result to binary code with a 12-bit, left-justified format, and MSB = 0 to denote a positive sign.

Example: $(50^{\circ}C) / (0.0625^{\circ}C / LSB) = 800 = 320h = 0011 0010 0000$

To convert a positive digital data format to temperature:

- 1. Convert the 12-bit, left-justified binary temperature result, with the MSB = 0 to denote a positive sign, to a decimal number.
- 2. Multiply the decimal number by the resolution to obtain the positive temperature.

Example: $0011\ 0010\ 0000 = 320h = 800 \times (0.0625^{\circ}C / LSB) = 50^{\circ}C$

To convert negative temperatures to a digital data format:

- 1. Divide the absolute value of the temperature by the resolution, and convert the result to binary code with a 12-bit, left-justified format.
- 2. Generate the twos complement of the result by complementing the binary number and adding one. Denote a negative number with MSB = 1.

Example: $(|-25^{\circ}C|) / (0.0625^{\circ}C / LSB) = 400 = 190h = 0001 1001 0000$

Two's complement format: 1110 0110 1111 + 1 = 1110 0111 0000

To convert a negative digital data format to temperature:

- 1. Generate the twos compliment of the 12-bit, left-justified binary number of the temperature result (with MSB = 1, denoting negative temperature result) by complementing the binary number and adding one. This represents the binary number of the absolute value of the temperature.
- 2. Convert to decimal number and multiply by the resolution to get the absolute temperature, then multiply by -1 for the negative sign.

Example: 1110 0111 0000 has twos compliment of 0001 1001 0000 = 0001 1000 1111 + 1

Convert to temperature: 0001 1001 0000 = 190h = 400; $400 \times (0.0625^{\circ}\text{C} / \text{LSB}) = 25^{\circ}\text{C} = (|-25^{\circ}\text{C}|); (|-25^{\circ}\text{C}|) \times (-1) = -25^{\circ}\text{C}$

Table 7-3. 13-Bit Temperature Data Format

TEMPERATURE (°C)	DIGITAL OUTPUT (BINARY)	HEX
150	0 1001 0110 0000	0960
128	0 1000 0000 0000	0800
127.9375	0 0111 1111 1111	07FF
100	0 0110 0100 0000	0640
80	0 0101 0000 0000	0500
75	0 0100 1011 0000	04B0
50	0 0011 0010 0000	0320
25	0 0001 1001 0000	0190
0.25	0 0000 0000 0100	0004
0	0 0000 0000 0000	0000
-0.25	1 1111 1111 1100	1FFC
-25	1 1110 0111 0000	1E70
- 55	1 1100 1001 0000	1C90

7.3.2 Serial Interface

The TMP112-Q1/TMP112D-Q1 device operates as a target device only on the I²C, SMBus and two-wire interface-compatible bus. Connections to the bus are made through the open-drain I/O lines, SDA and SCL. The SDA and SCL pins feature integrated spike suppression filters and Schmitt triggers to minimize the effects of input spikes and bus noise. The TMP112-Q1/TMP112D-Q1 device supports the transmission protocol for both fast (1kHz to 400kHz) and high-speed (1kHz to 2.85MHz) modes. All data bytes are transmitted MSB first.

7.3.2.1 Bus Overview

The device that initiates the transfer is called a *controller*, and the devices controlled by the controller are *targets*. The bus must be controlled by a controller device that generates the serial clock (SCL), controls the bus access, and generates the START and STOP conditions.

To address a specific device, a START condition is initiated, indicated by pulling the data-line (SDA) from a highto low-logic level when the SCL pin is high. All targets on the bus shift in the target address byte on the rising edge of the clock, with the last bit indicating whether a read or write operation is intended. During the ninth clock pulse, the target being addressed responds to the controller by generating an acknowledge and pulling the SDA pin low.

A data transfer is then initiated and sent over eight clock pulses followed by an acknowledge bit. During the data transfer the SDA pin must remain stable when the SCL pin is high, because any change in the SDA pin when the SCL pin is high is interpreted as a START or STOP signal.

When all data have been transferred, the controller generates a STOP condition indicated by pulling the SDA pin from low to high when the SCL pin is high.

7.3.2.2 Serial Bus Address

To communicate with the TMP112-Q1/TMP112D-Q1 device, the controller must first address target devices through a target-address byte. The target-address byte consists of seven address bits and a direction bit indicating the intent of executing a read or write operation.

The TMP112-Q1/TMP112D-Q1 device features an address pin to allow up to four devices to be addressed on a single bus. Table 7-4 lists the pin logic levels used to properly connect up to four devices.

DEVICE OF	RDERABLE	ADD0 PIN CONNECTION	DEVICE I ² C BUS ADDRESS	DEVICE I ² C BUS ADDRESS (Hex)
		GND	1000000	40h
Address Variant Only	TMP112D-Q1	V+	1000001	41h
(X2SON-5 package)		SDA	1000010	42h
		SCL	1000011	43h
		GND	1001000	48h
Address and Alert Variant	TMP112-Q1	V+	1001001	49h
(SOT563-6 package)	TMP112D-Q1	SDA	1001010	4Ah
		SCL	1001011	4Bh

Table 7-4. Address and Alert Variant Device Target Address

7.3.2.3 Writing and Reading Operation

Accessing a particular register on the TMP112-Q1/TMP112D-Q1 device is accomplished by writing the appropriate value to the pointer register. The value for the pointer register is the first byte transferred after the target address byte with the R/W bit low. Every write operation to the TMP112-Q1/TMP112D-Q1 device requires a value for the pointer register (see Figure 7-4).

When reading from the TMP112-Q1/TMP112D-Q1 device, the last value stored in the pointer register by a write operation is used to determine which register is read by a read operation. To change the register pointer for a read operation, a new value must be written to the pointer register. This action is accomplished by issuing a target-address byte with the R/W bit low, followed by the pointer register byte. No additional data are required.

Product Folder Links: TMP112-Q1 TMP112D-Q1

The controller can then generate a START condition and send the target address byte with the R/W bit high to initiate the read command. See Figure 7-5 for details of this sequence. If repeated reads from the same register are desired, continuously sending the pointer register bytes is not necessary because the TMP112-Q1/TMP112D-Q1 device retains the pointer register value until the value is changed by the next write operation.

Register bytes are sent with the most significant byte first, followed by the least significant byte.

7.3.2.4 Target Mode Operation

The TMP112-Q1/TMP112D-Q1 device can operate as a target receiver or target transmitter. As a target device, the TMP112-Q1/TMP112D-Q1 device never drives the SCL line.

7.3.2.4.1 Target Receiver Mode

The first byte transmitted by the controller is the target address with the R/W bit low. The TMP112-Q1/TMP112D-Q1 device then acknowledges reception of a valid address. The next byte transmitted by the controller is the pointer register. The TMP112-Q1/TMP112D-Q1 device then acknowledges reception of the pointer register byte. The next byte or bytes are written to the register addressed by the pointer register. The TMP112-Q1/TMP112D-Q1 device acknowledges reception of each data byte. The controller can terminate data transfer by generating a START or STOP condition.

7.3.2.4.2 Target Transmitter Mode

The first byte transmitted by the controller is the target address with the R/\overline{W} bit high. The target acknowledges reception of a valid target address. The next byte is transmitted by the target and is the most significant byte of the register indicated by the pointer register. The controller acknowledges reception of the data byte. The next byte transmitted by the target is the least significant byte. The controller acknowledges reception of the data byte. The controller can terminate data transfer by generating a *not-acknowledge* on reception of any data byte or by generating a START or STOP condition.

7.3.2.5 SMBus Alert Function

The TMP112-Q1/TMP112D-Q1 device supports the SMBus alert function. When the TMP112-Q1/TMP112D-Q1 device operates in interrupt mode (TM = 1), the ALERT pin can be connected as an SMBus alert signal. When a controller senses that an alert condition is present on the alert line, the controller sends an SMBus ALERT command (0001 1001) to the bus. If the ALERT pin is active, the device acknowledges the SMBus ALERT command and responds by returning the target address on the SDA line. The eighth bit (LSB) of the target address byte indicates if the alert condition is caused by the temperature exceeding $T_{(HIGH)}$ or falling below $T_{(LOW)}$. The LSB is high if the temperature is greater than $T_{(HIGH)}$, or low if the temperature is less than $T_{(LOW)}$. See Figure 7-6 for details of this sequence.

If multiple devices on the bus respond to the SMBus ALERT command, arbitration during the target address portion of the SMBus ALERT command determines which device clears the alert status of that device. The device with the lowest two-wire address wins the arbitration. If the TMP112-Q1/TMP112D-Q1 device wins the arbitration, the TMP112-Q1/TMP112D-Q1 ALERT pin becomes inactive at the completion of the SMBus ALERT command. If the TMP112-Q1/TMP112D-Q1 device loses the arbitration, the TMP112-Q1/TMP112D-Q1 ALERT pin remains active.

7.3.2.6 General Call

The TMP112-Q1/TMP112D-Q1 device responds to a two-wire general-call address (0000 000) if the eighth bit is 0. The device acknowledges the general-call address and responds to commands in the second byte. If the second byte is 0000 0110, the TMP112-Q1/TMP112D-Q1 internal registers are reset to power-up values. The TMP112-Q1/TMP112D-Q1 device does not support the general-address acquire command.

7.3.2.7 High-Speed (Hs) Mode

For the two-wire bus to operate at frequencies above 400kHz, the controller device must issue an Hs-mode controller code (0000 1xxx) as the first byte after a START condition to switch the bus to high-speed operation. The TMP112-Q1/TMP112D-Q1 device does not acknowledge this byte, but switches the input filters on the SDA and SCL pins and the output filters on the SDA pin to operate in Hs-mode thus allowing transfers at up to

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

2.85MHz. After the Hs-mode controller code has been issued, the controller transmits a two-wire target address to initiate a data-transfer operation. The bus continues to operate in Hs-mode until a STOP condition occurs on the bus. Upon receiving the STOP condition, the TMP112-Q1/TMP112D-Q1 device switches the input and output filters back to fast-mode operation.

7.3.2.8 Timeout Function

The TMP112-Q1/TMP112D-Q1 device resets the serial interface if the SCL pin is held low for 30ms (typical) between a start and stop condition. The TMP112-Q1/TMP112D-Q1 releases the SDA line if the SCL pin is pulled low and waits for a start condition from the host controller. To avoid activating the timeout function, maintain a communication speed of at least 1kHz for SCL operating frequency.

7.3.2.9 Timing Diagrams

The TMP112-Q1/TMP112D-Q1 device is two-wire, SMBus and I²C interface-compatible. Figure 7-4 to Figure 7-6 illustrate the various operations on the TMP112-Q1/TMP112D-Q1 device. Parameters for Figure 6-1 are listed in the *Timing Requirements* table. The bus definitions are defined as follows:

Bus Idle: Both SDA and SCL lines remain high.

Start Data A change in the state of the SDA line, from high to low, when the SCL line is high, defines a

Transfer: START condition. Each data transfer is initiated with a START condition.

Stop Data A change in the state of the SDA line from low to high when the SCL line is high defines Transfer:

a STOP condition. Each data transfer is terminated with a repeated START or STOP

condition.

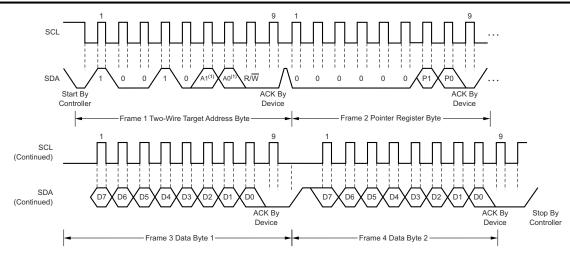
Data Transfer: The number of data bytes transferred between a START and a STOP condition is not

limited and is determined by the controller device. Using the TMP112-Q1/TMP112D-Q1 device for single byte updates is also possible. To update only the most-significant (MS) byte, terminate the communication by issuing a START or STOP communication on the

bus.

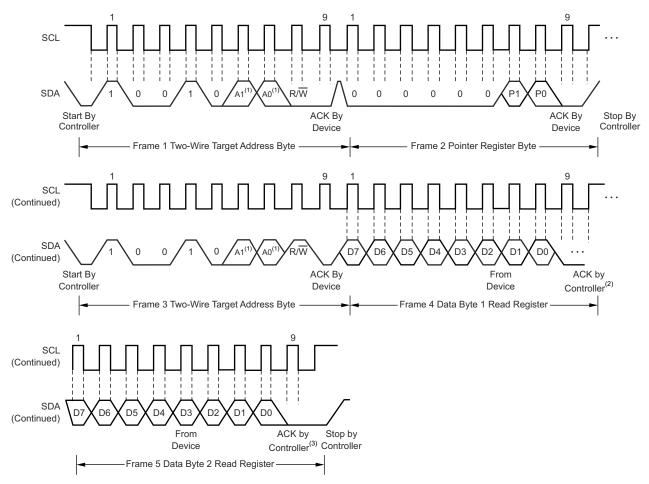
Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge bit. A

> device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable low during the high period of the acknowledge clock pulse. Setup and hold times must be taken into account. On a controller receive, the termination of the data transfer can be signaled by the controller generating a *not*-


acknowledge (1) on the last byte that has been transmitted by the target.

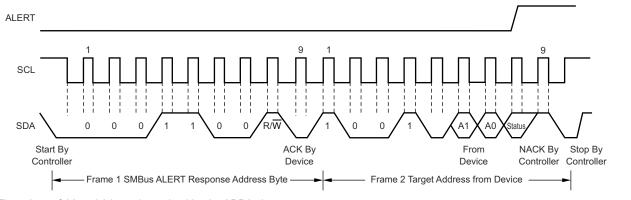
7.3.2.9.1 Two-Wire Timing Diagrams

See the *Timing Requirements* table for timing specifications.


Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

A. The values of A0 and A1 are determined by the ADD0 pin.


Figure 7-4. Two-Wire Timing Diagram for Write Word Format

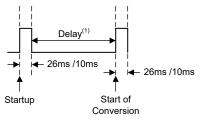
- A. The values of A0 and A1 are determined by the ADD0 pin.
- B. The controller must leave the SDA pin high to terminate a single-byte read operation.
- C. The controller must leave the SDA pin high to terminate a two-byte read operation.

Figure 7-5. Two-Wire Timing Diagram for Read Word Format

A. The values of A0 and A1 are determined by the ADD0 pin.

Figure 7-6. Timing Diagram for SMBus ALERT

7.4 Device Functional Modes


7.4.1 Continuous-Conversion Mode

The default mode of the TMP112-Q1/TMP112D-Q1 device is continuous conversion mode. During continuous conversion mode, the ADC performs continuous temperature conversions and stores each results to the temperature register, overwriting the result from the previous conversion. The conversion rate bits, CR1 and CR0, configure the TMP112-Q1/TMP112D-Q1 device for conversion rates of 0.25Hz, 1Hz, 4Hz, or 8Hz. The default rate is 4Hz. The TMP112-Q1 device has a typical conversion time of 26ms while TMP112D-Q1 has a typical conversion time of 10ms. To achieve different conversion rates, the TMP112-Q1/TMP112D-Q1 device makes a conversion and then powers down and waits for the appropriate delay set by CR1 and CR0. Table 7-5 lists the settings for CR1 and CR0.

Table 7-5. Conversion Rate Settings

CR1	CR0	CONVERSION RATE
0	0	0.25Hz
0	1	1Hz
1	0	4Hz (default)
1	1	8Hz

After a power up or general-call reset, the TMP112-Q1/TMP112D-Q1 device immediately begins a conversion as shown in Figure 7-7. The first result is available after 26ms (typical) for TMP112-Q1 and 10ms (typical) for TMP112D-Q1. The active quiescent current during conversion is $40\mu\text{A}$ (typical at 27°C) for TMP112D-Q1 and $55\mu\text{A}$ (typical at 27°C) for TMP112D-Q1. The quiescent current during delay is $2.2\mu\text{A}$ (typical at 27°C) for TMP112D-Q1.

A. The delay is set by CR1 and CR0 bits in the configuration register.

Figure 7-7. Conversion Start

Product Folder Links: TMP112-Q1 TMP112D-Q1

7.4.2 Extended Mode (EM)

The extended mode bit configures the device for normal mode operation (EM = 0) or extended mode operation (EM = 1). In normal mode, the temperature register and the high and low limit registers use a 12-bit data format. Normal mode is used to make the TMP112-Q1/TMP112D-Q1 device compatible with the TMP75 device.

Extended mode (EM = 1) allows measurement of temperatures above 128°C by configuring the temperature register and the high and low limit registers for 13-bit data format.

7.4.3 Shutdown Mode (SD)

The shutdown mode bit saves maximum power by shutting down all device circuitry other than the serial interface which reduces current consumption to typically less than 0.5µA for TMP112-Q1 and 0.15µA for TMP112D-Q1. Shutdown mode is enabled when the SD bit is set to 1. When this bit is set to 1 the device shuts down when current conversion is completed. When the SD bit is set to 0 the device maintains a continuous conversion state.

7.4.4 One-Shot and Conversion Ready Mode (OS)

The TMP112-Q1/TMP112D-Q1 device features a one-shot temperature-measurement mode. When the device is in shutdown mode, writing a 1 to the OS bit begins a single temperature conversion. During the conversion, the OS bit reads 0. The device returns to the SHUTDOWN state at the completion of the single conversion. After the conversion, the OS bit reads 1. This feature is useful for reducing power consumption in the TMP112-Q1/TMP112D-Q1 device when continuous temperature monitoring is not required.

As a result of the short conversion time, the TMP112-Q1/TMP112D-Q1 device can achieve a higher conversion rate. A single conversion typically occurs for 26ms/10ms and a read can occur in less than 20µs. When using one-shot mode, 30 or more conversions per second are possible.

7.4.5 Thermostat Mode (TM)

The thermostat mode bit indicates to the device whether to operate in comparator mode (TM = 0) or interrupt mode (TM = 1).

7.4.5.1 Comparator Mode (TM = 0)

In Comparator mode (TM = 0), the Alert pin is activated when the temperature equals or exceeds the value in the $T_{(HIGH)}$ register and remains active until the temperature falls below the value in the $T_{(LOW)}$ register. For more information on the comparator mode, see the *High- and Low-Limit Registers* section.

7.4.5.2 Interrupt Mode (TM = 1)

In Interrupt mode (TM = 1), the Alert pin is activated when the temperature exceeds $T_{(HIGH)}$ or goes below $T_{(LOW)}$ registers. The Alert pin is cleared when the host controller reads the temperature register. For more information on the interrupt mode, see the *High- and Low-Limit Registers* section.

7.5 Programming

7.5.1 Pointer Register

Figure 7-8 shows the internal register structure of the TMP112-Q1/TMP112D-Q1 device. The 8-bit pointer register of the device is used to address a given data register. The pointer register uses the two LSBs (see Table 7-12) to identify which of the data registers must respond to a read or write command. The power-up reset value of the P[1:0] byte is 00. By default, the TMP112-Q1/TMP112D-Q1 device reads the temperature on power up.

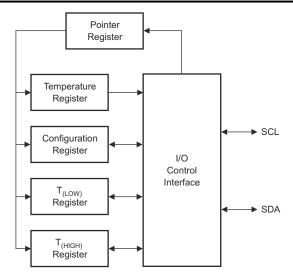


Figure 7-8. Internal Register Structure

Table 7-6 lists the pointer address of the registers available in the TMP112-Q1/TMP112D-Q1 device. Table 7-7 lists the bits of the pointer register byte. During a write command, bytes P2 through P7 must always be 0.

Table 7-6. Pointer Addresses

P1	P0	REGISTER				
0	0	Temperature register (read only [R])				
0	1	Configuration register (read-write [R/W])				
1	0	T _(LOW) register (R/W)				
1	1	T _(HIGH) register (R/W)				

Table 7-7. Pointer Register Byte

P7	P6	P5	P4	P3	P2	P1	P0
0	0	0	0	0	0	Regist	er Bits

7.5.2 Temperature Register

The temperature register of the TMP112-Q1/TMP112D-Q1 device is configured as a 12-bit read-only register (setting the EM bit to 0 in the configuration register; see the *Extended Mode (EM)* section), or as a 13-bit read-only register (setting the EM bit to 1 in the configuration register) that stores the output of the most recent conversion. Two bytes must be read to obtain data and are listed in Table 7-8. Byte 1 is the most significant byte (MSB), followed by byte 2, the least significant byte (LSB). The first 12 bits (13 bits in extended mode) are used to indicate temperature. The least significant byte does not have to be read if that information is not needed.

Table 7-8. Bytes 1 and 2 of Temperature Register (1)

BYTE	D7	D6	D5	D4	D3	D2	D1	D0
1	T11	T10	Т9	Т8	T7	Т6	T5	T4
	(T12)	(T11)	(T10)	(T9)	(T8)	(T7)	(T6)	(T5)
2	Т3	T2	T1	ТО	0	0	0	0
	(T4)	(T3)	(T2)	(T1)	(T0)	(0)	(0)	(1)

(1) Extended mode 13-bit configuration shown in parentheses.

7.5.3 Configuration Register

The configuration register is a 16-bit R/W register used to store bits that control the operational modes of the temperature sensor. Read-write operations are performed MSB first. Table 7-9 lists the format and power-up and

Product Folder Links: TMP112-Q1 TMP112D-Q1

reset values of the configuration register. For compatibility, the first byte corresponds to the configuration register in the TMP75 and TMP275 devices. All registers are updated byte by byte.

Table 7-3. Configuration and Fower-op and Reset Formats										
BYTE	D7	D6	D5	D4	D3	D2	D1	D0		
4	os	R1	R0	F1	F0	POL	TM	SD		
1	0	1	1	0	0	0	0	0		
2	CR1	CR0	AL	EM	0	0	0	0		
	1	0	1	0	0	0	0	0		

Table 7-9. Configuration and Power-Up and Reset Formats

7.5.3.1 Shutdown Mode (SD)

The shutdown mode bit saves maximum power by shutting down all device circuitry other than the serial interface which reduces current consumption to typically less than 0.5µA for TMP112-Q1 and 0.15µA for TMP112D-Q1. Shutdown mode is enabled when the SD bit is set to 1. When this bit is set to 1 the device shuts down when current conversion is completed. When the SD bit is set to 0 the device maintains a continuous conversion state.

7.5.3.2 Thermostat Mode (TM)

The Thermostat mode bit indicates to the device whether to operate in comparator mode (TM = 0 shown in Figure 7-9) or interrupt mode (TM = 1 shown in Figure 7-10). For more information on comparator and interrupt modes, see the *High- and Low-Limit Registers* section.

7.5.3.3 Polarity (POL)

The polarity bit allows the user to adjust the polarity of the ALERT pin/flag output. If the POL bit is set to 0 (default), the ALERT pin/flag becomes active low . When the POL bit is set to 1, the ALERT pin/flag becomes active high and the state of the ALERT pin/flag is inverted. The operation of the ALERT pin/flag in various modes is shown in Figure 7-9 and Figure 7-10.

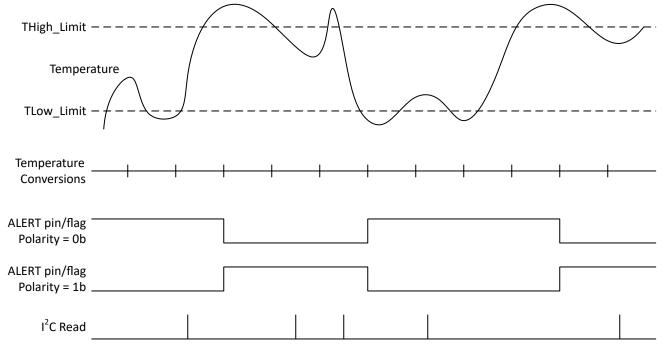


Figure 7-9. Comparator Mode

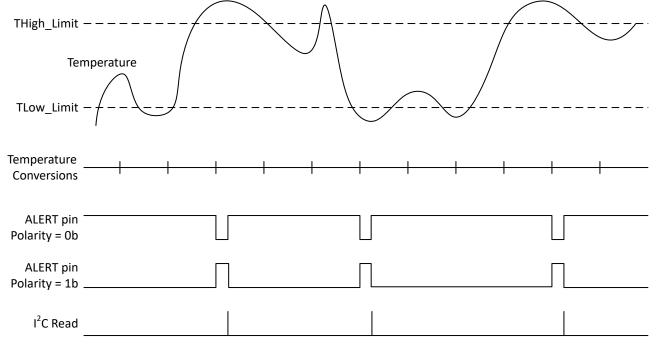


Figure 7-10. Interrupt Mode

7.5.3.4 Fault Queue (F1/F0)

A fault condition exists when the measured temperature exceeds the user-defined limits set in the $T_{(HIGH)}$ and $T_{(LOW)}$ registers. Additionally, the number of fault conditions required to generate an alert can be programmed using the fault queue. The fault queue is provided to prevent a false alert as a result of environmental noise. The fault queue requires consecutive fault measurements to trigger the alert function. Table 7-10 lists the number of measured faults that can be programmed to trigger an alert condition in the device. For $T_{(HIGH)}$ and $T_{(LOW)}$ register format and byte order, see the *High- and Low-Limit Registers* section.

 F1
 F0
 CONSECUTIVE FAULTS

 0
 0
 1

 0
 1
 2

 1
 0
 4

 1
 1
 6

Table 7-10. TMP112-Q1/TMP112D-Q1 Fault Settings

7.5.3.5 Converter Resolution (R1 and R0)

The converter resolution bits, R1 and R0, are read-only bits. The TMP112-Q1/TMP112D-Q1 converter resolution is set on start up to 11 which sets the temperature register to a 12 bit-resolution.

7.5.3.6 One-Shot (OS)

When the device is in shutdown mode, writing a 1 to the OS bit begins a single temperature conversion. During the conversion, the OS bit reads 0. The device returns to the SHUTDOWN state at the completion of the single conversion. For more information on the one-shot conversion mode, see the *One-Shot and Conversion Ready Mode (OS)* section.

7.5.3.7 Extended Mode (EM)

The extended mode bit configures the device for normal mode operation (EM = 0) or extended mode operation (EM = 1). In normal mode, the temperature register and the high and low limit registers use a 12-bit data format. For more information on the extended mode, see the *Extended Mode (EM)* section.

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

7.5.3.8 Alert (AL)

The AL bit is a read-only function. Reading the AL bit provides information about the comparator mode status. The state of the POL bit inverts the polarity of data returned from the AL bit. When the POL bit equals 0, the AL bit reads as 1 until the temperature equals or exceeds $T_{(HIGH)}$ for the programmed number of consecutive faults, causing the AL bit to read as 0. The AL bit continues to read as 0 until the temperature falls below $T_{(LOW)}$ for the programmed number of consecutive faults, when the bit again reads as 1. The status of the TM bit does not affect the status of the AL bit.

7.5.3.9 Conversion Rate (CR)

The conversion rate bits, CR1 and CR0, configure the TMP112-Q1/TMP112D-Q1 device for conversion rates of 0.25Hz, 1Hz, 4Hz, or 8Hz. The default rate is 4Hz. For more information on conversion rate bits, see the *Continuous-Conversion Mode* section.

7.5.4 High- and Low-Limit Registers

The temperature limits are stored in the $T_{(LOW)}$ and $T_{(HIGH)}$ registers in the same format as the temperature result, and the values are compared to the temperature result on every conversion. The outcome of the comparison drives the behavior of the ALERT pin, which operates as a comparator output or an interrupt, and is set by the TM bit in the configuration register.

In Comparator mode (TM = 0), the ALERT pin becomes active when the temperature equals or exceeds the value in the $T_{(HIGH)}$ register and generates a consecutive number of faults according to fault bits F1 and F0. The ALERT pin remains active until the temperature falls below the indicated $T_{(LOW)}$ value for the same number of faults.

In interrupt mode (TM = 1), the ALERT pin becomes active when the temperature equals or exceeds the value in $T_{(HIGH)}$ for a consecutive number of fault conditions (as shown in Table 7-10). The ALERT pin remains active until a read operation of any register occurs, or the device successfully responds to the SMBus alert response address. The ALERT pin is also cleared if the device is placed in shutdown mode. When the ALERT pin is cleared, the pin becomes active again only when temperature falls below $T_{(LOW)}$, and remains active until cleared by a read operation of any register or a successful response to the SMBus alert response address. When the ALERT pin is cleared, the above cycle repeats, with the ALERT pin becoming active when the temperature equals or exceeds $T_{(HIGH)}$. The ALERT pin can also be cleared by resetting the device with the general-call Reset command. This action also clears the state of the internal registers in the device, returning the device to comparator mode (TM = 0).

Both operating modes are represented in Figure 7-9 and Figure 7-10. Table 7-11 and Table 7-12 list the format for the $T_{(HIGH)}$ and $T_{(LOW)}$ registers. The most significant byte is sent first, followed by the least significant byte. The power-up reset values for $T_{(HIGH)}$ and $T_{(LOW)}$ are:

- T_(HIGH) = 80°C
- $T_{(LOW)} = 75^{\circ}C$

The format of the data for $T_{(HIGH)}$ and $T_{(LOW)}$ is the same as for the temperature register.

Table 7-11. Bytes 1 and 2 of T_(HIGH) Register ⁽¹⁾

	BYTE	D7	D6	D5	D4	D3	D2	D1	D0
1	H11	H10	H9	H8	H7	H6	H5	H4	
	'	(H12)	(H11)	(H10)	(H9)	(H8)	(H7)	(H6)	(H5)
	2	H3	H2	H1	H0	0	0	0	0
2	(H4)	(H3)	(H2)	(H1)	(H0)	(0)	(0)	(0)	

(1) Extended mode 13-bit configuration shown in parenthesis.

Table 7-12. Bytes 1 and 2 of T_(LOW) Register ⁽¹⁾

BYTE	D7	D6	D5	D4	D3	D2	D1	D0
4	L11	L10	L9	L8	L7	L6	L5	L4
	(L12)	(L11)	(L10)	(L9)	(L8)	(L7)	(L6)	(L5)

Table 7-12. Bytes 1 and 2 of T_(LOW) Register ⁽¹⁾ (continued)

BYTE	D7	D6	D5	D4	D3	D2	D1	D0
2	L3	L2	L1	L0	0	0	0	0
	(L4)	(L3)	(L2)	(L1)	(L0)	(0)	(0)	(0)

Extended mode 13-bit configuration shown in parenthesis.

Product Folder Links: TMP112-Q1 TMP112D-Q1

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

8.1.1 Calibrating for Improved Accuracy (TMP112-Q1 Only)

Many temperature monitoring applications require better than 0.5°C accuracy over a limited temperature range. Knowing the offset of a temperature sensor at a given temperature in conjunction with the average temperature span (slope) error over a fixed range makes achieving this improved accuracy possible.

The TMP112-Q1 device has three distinct slope regions that conservatively approximate the inherent curvature. The following lists the three distinct slope regions:

- 1. Slope1 applies over -40°C to 25°C
- 2. Slope2 applies over 25°C to 85°C
- 3. Slope3 applies over 85°C to 125°C

The Section 6.6 table defines these slopes which are also shown in Figure 8-1.

Note

Each slope listed in the Section 6.6 table is increasing with respect to 25°C.

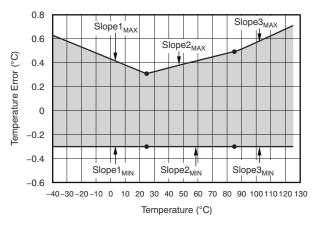


Figure 8-1. Accuracy and Slope Curves Versus Temperature

Use Equation 1 to calculate the worst-case accuracy at a specific temperature.

$$Accuracy_{(worst-case)} = Accuracy_{(25^{\circ}C)} + \Delta T \times Slope$$
 (1)

8.1.1.1 Example 1: Finding Worst-Case Accuracy From -15°C to 50°C

As an example, if the user is concerned only about the temperature accuracy between -15°C to 50°C, the worst-case accuracy can be determined by using the two slope calculations shown in Equation 2 and Equation 4:

$$Accuracy(worst-case) = Accuracy(25^{\circ}C) + \Delta T \times Slope$$
 (2)

Accuracy
$$(MAX[-15^{\circ}C \text{ to } 25^{\circ}C]) = 0.3^{\circ}C + (-15^{\circ}C - 25^{\circ}C) \times \left(-7\frac{m^{\circ}C}{^{\circ}C}\right) = 0.58^{\circ}C$$
 (3)

$$Accuracy(MAX[25^{\circ}C \text{ to } 50^{\circ}C]) = Accuracy(25^{\circ}C) + \Delta T \times Slope2(MAX)$$
(4)

Accuracy
$$(MAX[25^{\circ}C \text{ to } 50^{\circ}C]) = 0.3^{\circ}C + (50^{\circ}C - 25^{\circ}C) \times \left(5\frac{\text{m}^{\circ}C}{^{\circ}C}\right) = 0.425^{\circ}C$$
 (5)

The same calculations must be applied to the minimum case:

$$Accuracy(MIN[-15^{\circ}C \text{ to } 25^{\circ}C]) = Accuracy(25^{\circ}C) + \Delta T \times Slope1(MIN)$$
(6)

Accuracy (MIN[-15°C to 25°C]) =
$$-0.5$$
°C + $\left[(-15$ °C - 25 °C) × $\left(0 \frac{\text{m}$ °C}{\text{°C}} \right) \right] = -0.5°C (7)

$$Accuracy(MIN[25^{\circ}C \text{ to } 50^{\circ}C]) = Accuracy(25^{\circ}C) + \Delta T \times Slope2(MIN)$$
(8)

Accuracy (MIN[25°C to 50°C]) =
$$-0.5$$
°C + $\left[(50$ °C -25 °C) × $\left(0 \frac{\text{m}$ °C}{\text{°C}} \right) \right] = -0.5 °C (9)

Based on these calculations, a user can expect a worst-case accuracy of 0.58° C to -0.5° C in the temperature range of -15° C to 50° C.

8.1.1.2 Example 2: Finding Worst-Case Accuracy From 25°C to 100°C

If the desired temperature range falls in the region of slope 3, first calculate the worst-case value from 25°C to 85°C and add the value to the change in temperature multiplied by the span error of slope 3. As an example, consider the temperature range of 25°C to 125°C as shown in Equation 10:

$$\frac{\text{Accuracy}(\text{MAX}[25^{\circ}\text{C to } 100^{\circ}\text{C}])}{\text{MAX}[25^{\circ}\text{C to } 100^{\circ}\text{C}]} = \frac{\text{Accuracy}(25^{\circ}\text{C})}{\text{MAX}} + \frac{\Delta T \times \text{Slope3}(\text{MAX})}{\text{MAX}}$$

$$(10)$$

Accuracy
$$(MAX[25^{\circ}C \text{ to } 100^{\circ}C]) = 0.3^{\circ}C + (85^{\circ}C - 25^{\circ}C) \times \left(4.5 \frac{m^{\circ}C}{^{\circ}C}\right) + (100^{\circ}C - 85^{\circ}C) \times \left(8 \frac{m^{\circ}C}{^{\circ}C}\right) = 0.69^{\circ}C$$
 (11)

Then perform the same calculation for the minimum case as shown in Equation 12:

$$Accuracy(MIN[25^{\circ}C \text{ to } 100^{\circ}C]) = Accuracy(25^{\circ}C) + \Delta T \times Slope2(MIN) + \Delta T \times Slope3(MIN)$$
(12)

Accuracy (MIN[25°C to 100°C]) =
$$-0.5$$
°C + $\left[(85$ °C -25 °C) × $\left(0 \frac{m^{\circ}C}{^{\circ}C} \right) \right]$ + $\left[(100$ °C -85 °C) × $\left(0 \frac{m^{\circ}C}{^{\circ}C} \right) \right]$ = -0.5 °C (13)

8.1.2 Using The Slope Specifications With a 1-Point Calibration (TMP112-Q1 Only)

The initial accuracy assurance at 25°C with the slope regions provides an accuracy that is high enough for most applications. However, if higher accuracy is desired, this increase can be achieved with a 1-point calibration at 25°C. This calibration removes the offset at room temperature, thereby reducing the source of error in a TMP112-Q1 temperature reading down to the curvature. Figure 8-2 shows the error of a calibrated TMP112-Q1 device.

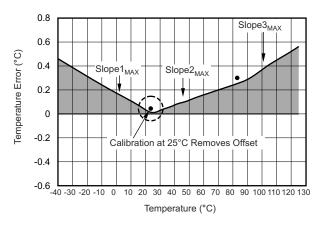


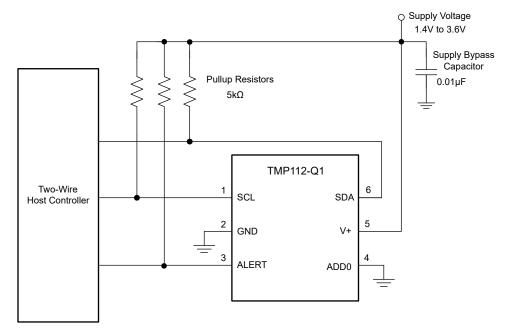
Figure 8-2. Calibrated Accuracy and Slope Curves Versus Temperature

Using the previous example temperature range of 0° C to 50° C, the worst-case temperature error is now reduced to the worst-case slopes because the offset at 25° C (that is, the maximum and minimum temperature errors of 0.3° C and -0.5° C) is removed. Therefore, a user can expect the worst-case accuracy to improve to 0.175° C.

8.1.2.1 Power Supply-Level Contribution to Accuracy

The accuracy that can be achieved with the TMP112-Q1 device is complemented by the immunity-to-DC variations from a 3.3V supply voltage. This immunity is important because the immunity spares the user from having to use another LDO regulator to produce 3.3V to achieve accuracy. Nevertheless, the noise quantization that results from changing supply can add some slight change in temperature measurement accuracy. As an example, if the user chooses to operate the device at 1.8V, the worst-case expected change in accuracy can be calculated with Equation 14:

$$Accuracy_{(PSR)} = \pm (V^{+} - 3.3V) \times \left[\frac{0.25^{\circ}C}{V}\right]$$
 (14)


Accuracy_(PSR) =
$$\pm (1.8V - 3.3V) \times \left[\frac{0.25^{\circ}C}{V}\right] = \pm 0.375^{\circ}C$$
 (15)

This example is a worst-case accuracy contribution as a result of variation in power supply that must be added to the accuracy plus the slope maximum.

8.2 Typical Application

The TMP112-Q1/TMP112D-Q1 device is used to measure the PCB temperature of the board location where the device is mounted. The programmable address options allow up to four locations on the board to be monitored on a single serial bus.

Note

The SCL, SDA, and ALERT pins require pullup resistors.

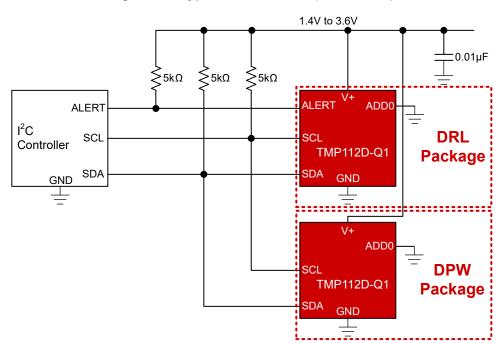


Figure 8-3. Typical Connections (TMP112-Q1)

Figure 8-4. Typical Connections (TMP112D-Q1)

Submit Document Feedback

8.2.1 Design Requirements

The TMP112-Q1/TMP112D-Q1 device requires pullup resistors on the SCL, SDA, and/or ALERT pins. The recommended value for the pullup resistors is $5k\Omega$. In some applications the pullup resistor can be lower or higher than $5k\Omega$ but must not exceed 3mA of current on any of those pins. A $0.01\mu F$ bypass capacitor on the supply is recommended as shown in Figure 8-3 and Figure 8-4. The SCL and SDA lines can be pulled up to a supply that is equal to or higher than V+ through the pullup resistors. To configure one of four different addresses on the bus, connect the ADD0 pin to either the GND, V+, SDA, or SCL pin.

8.2.2 Detailed Design Procedure

Place the TMP112-Q1/TMP112D-Q1 device in close proximity to the heat source that must be monitored, with a proper layout for good thermal coupling. This placement verifies that temperature changes are captured within the shortest possible time interval. To maintain accuracy in applications that require air or surface temperature measurement, care must be taken to isolate the package and leads from ambient air temperature. A thermally-conductive adhesive is helpful in achieving accurate surface temperature measurement.

The TMP112-Q1/TMP112D-Q1 device is a very low-power device and generates very low noise on the supply bus. Applying an RC filter to the V+ pin of the TMP112-Q1/TMP112D-Q1 device can further reduce any noise that the TMP112-Q1/TMP112D-Q1 device can propagate to other components. $R_{(F)}$ in Figure 8-5 must be less than $5k\Omega$ and $C_{(F)}$ must be greater than 10nF.

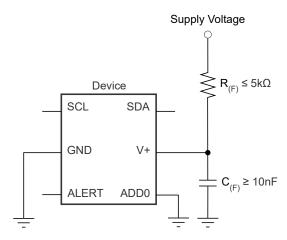


Figure 8-5. Noise Reduction Techniques (for SOT563-6 Package as an Example)

8.2.3 Application Curve

Figure 8-6 shows the step response of the TMP112-Q1/TMP112D-Q1 device to a submersion in an oil bath of 100°C from room temperature (27°C). The time-constant, or the time for the output to reach 63% of the input step, is 1.2s for both packages. The time-constant result depends on the printed circuit board (PCB) that the TMP112-Q1/TMP112D-Q1 device is mounted. For this test, the TMP112-Q1/TMP112D-Q1 device is soldered to a two-layer PCB that measured 0.5 inches × 0.5 inches.

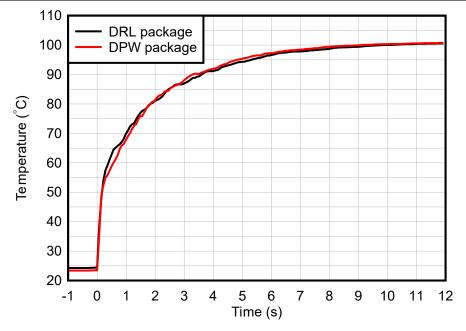


Figure 8-6. TMP112-Q1/TMP112D-Q1 Temperature Step Response

8.3 Power Supply Recommendations

The TMP112-Q1/TMP112D-Q1 device operates with power supply in the range of 1.4V to 3.6V. The device is optimized for operation at 3.3V supply but can measure temperature accurately in the full supply range. For TMP112-Q1 only, refer to the *Power Supply-Level Contribution to Accuracy* section for more information about the power supply impact on the accuracy of the device.

A power-supply bypass capacitor is required for proper operation. Place this capacitor as close as possible to the supply and ground pins of the device. A typical value for this supply bypass capacitor is 0.01µF. Applications with noisy or high-impedance power supplies can require additional decoupling capacitors to reject power-supply noise.

8.4 Layout

8.4.1 Layout Guidelines

Place the power-supply bypass capacitor as close as possible to the supply and ground pins. The recommended value of this bypass capacitor is $0.01\mu F$. Additional decoupling capacitance can be added to compensate for noisy or high-impedance power supplies. Pull up the open-drain output pins (SDA , SCL and ALERT) through $5k\Omega$ pullup resistors.

8.4.2 Layout Example

There are special considerations that need to be taken for the TMP112D-Q1 X2SON package. These considerations are due to the center pad being electrically connected address pin and because of the dimensions of the package and the pads. With the address option, the center pad can be directly connected with a trace on the same layer to one of the 4 edge pins for setting the device address as shown in Figure 8-7.

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

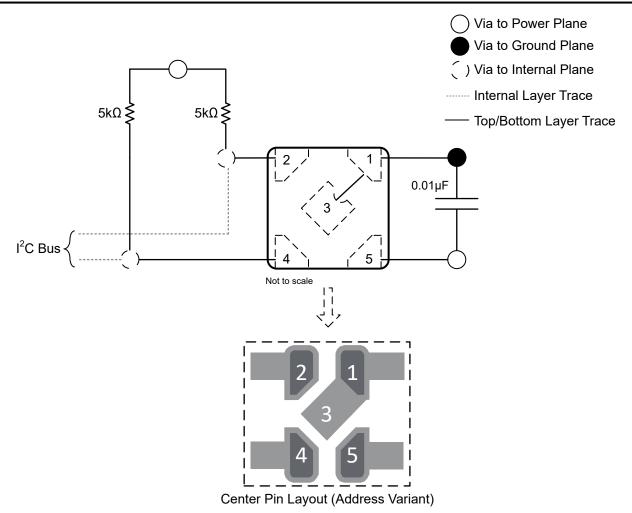


Figure 8-7. DPW Layout Example

When using the ALERT pin of the DRL package, the layout is shown as Figure 8-8:

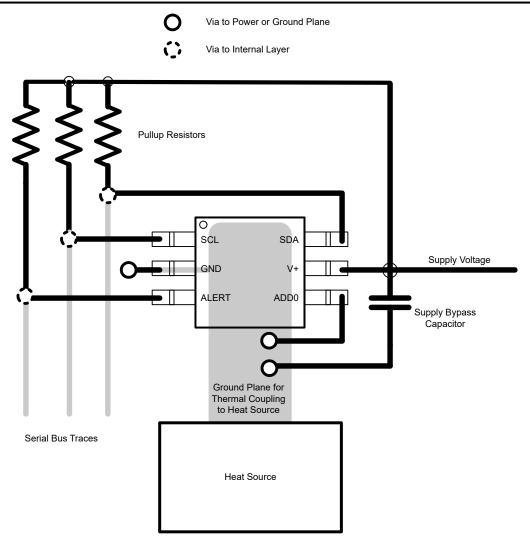


Figure 8-8. DRL Layout Example

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

9 Device and Documentation Support

9.1 Documentation Support

9.1.1 Related Documentation

For related documentation see the following:

- Texas Instruments, TMP102-Q1 Low-Power Digital Temperature Sensor With SMBus and Two-Wire Serial Interface in SOT563, data sheet
- Texas Instruments, TMP75B-Q1 1.8V Digital Temperature Sensor With Two-Wire Interface and Alert, data sheet
- Texas Instruments, TMPx75-Q1 Automotive Grade Temperature Sensor With I 2C and SMBus Interface in Industry-Standard LM75 Form Factor and Pinout, data sheet
- Texas Instruments, TMP112-Q1 Functional Safety FIT Rate, FMD and Pin FMA, Functional safety information
- Texas Instruments, Designing and Manufacturing with TI's X2SON Packages, design guide

9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.4 Trademarks

SMBus[™] is a trademark of Intel, Inc.

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Copyright © 2025 Texas Instruments Incorporated

•	Updated the Output Transfer Function Diagrams graph with Comparator Mode and Interrupt Mode graphs for
	more clarity
•	Updated the Temperature Step Response graph with the new TMP112-Q1/TMP112D-Q1 Temperature Step
	Response graph for better comparison between DPW and DRL package
•	Added the Support Resources, Electrostatic Discharge Caution, and Glossary sections37
<u> </u>	Deleted the Community Resources section
С	hanges from Revision E (December 2018) to Revision F (June 2022) Page
•	Updated the numbering format for tables, figures, and cross-references throughout the document
•	Changed all instances of legacy terminology to controller and target where I2C is mentioned1
•	Added the Functional Safety information to the <i>Features</i> section
С	hanges from Revision D (December 2015) to Revision E (December 2018) Page
•	Updated description for ADD0 pin for connection to SDA and SCL
С	hanges from Revision C (March 2015) to Revision D (December 2015) Page
	Added NIST Features bullet
• _	Added last paragraph to <i>Description</i> section
С	hanges from Revision B (November 2014) to Revision C (March 2015) Page
	Updated pin numbers on the schematic images
•	Changed the Temperature Error at 25°C graph in the Typical Characteristics section
• _	Changed the Temperature Error vs. Temperature graph in the Typical Characteristics section
С	hanges from Revision A (October 2014) to Revision B (November 2014) Page
_	hanges from Revision A (October 2014) to Revision B (November 2014) Changed device status from <i>Product Preview</i> to <i>Production Data</i>

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: TMP112-Q1 TMP112D-Q1

www.ti.com 7-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
TMP112AQDRLRQ1	Active	Production	SOT-5X3 (DRL) 6	4000 LARGE T&R	Yes	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	SLP
TMP112AQDRLRQ1.A	Active	Production	SOT-5X3 (DRL) 6	4000 LARGE T&R	Yes	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	SLP
TMP112AQDRLRQ1.B	Active	Production	SOT-5X3 (DRL) 6	4000 LARGE T&R	Yes	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	SLP
TMP112DQDRLRQ1	Active	Production	SOT-5X3 (DRL) 6	4000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1WQ

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. Tl bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. Tl has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. Tl and Tl suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TMP112-Q1, TMP112D-Q1:

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

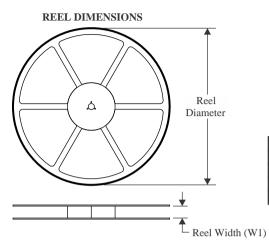
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

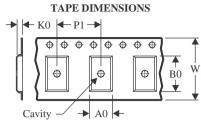
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 7-Nov-2025

● Catalog : TMP112, TMP112D


NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product

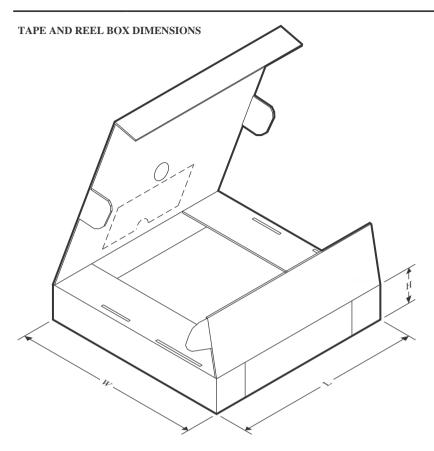
PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jun-2025

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

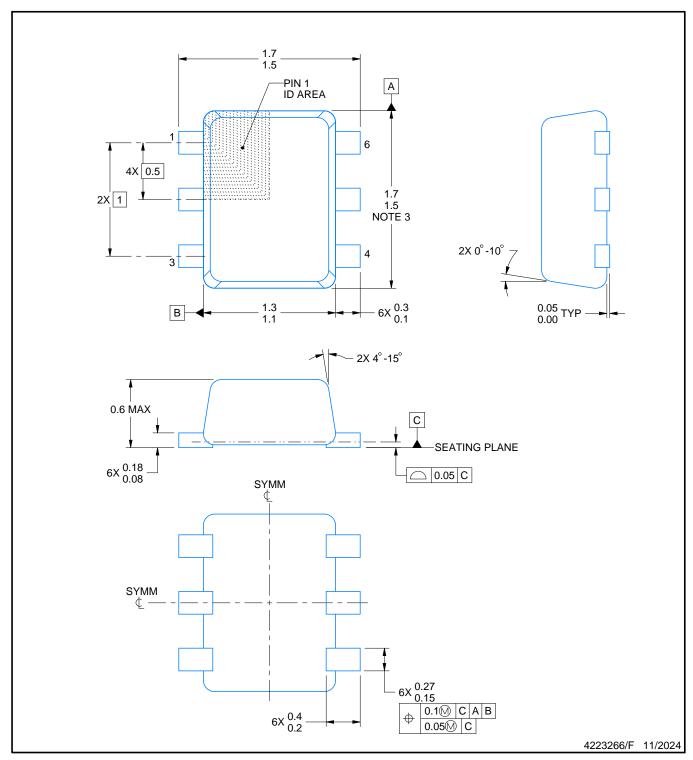


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TMP112AQDRLRQ1	SOT-5X3	DRL	6	4000	180.0	8.4	1.98	1.78	0.69	4.0	8.0	Q3
TMP112DQDRLRQ1	SOT-5X3	DRL	6	4000	180.0	8.4	2.0	1.8	0.75	4.0	8.0	Q3

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jun-2025

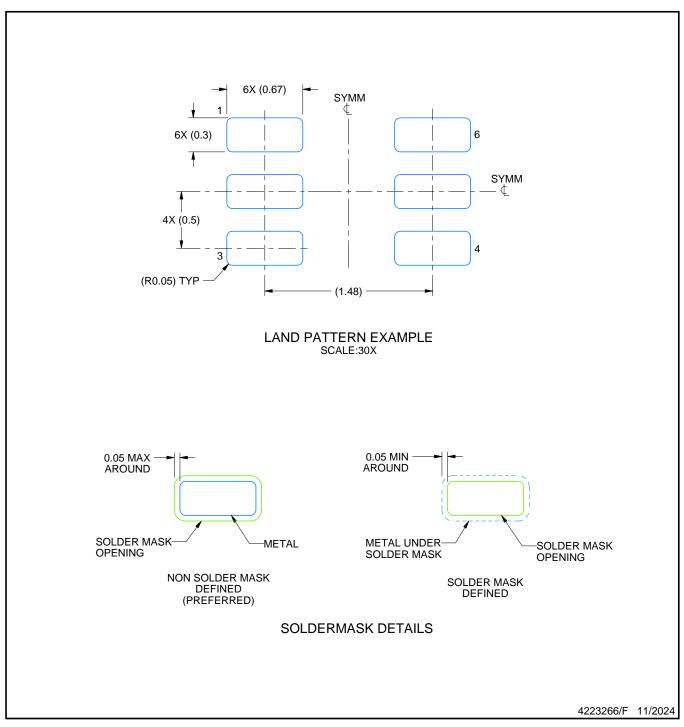


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TMP112AQDRLRQ1	SOT-5X3	DRL	6	4000	223.0	270.0	35.0
TMP112DQDRLRQ1	SOT-5X3	DRL	6	4000	210.0	185.0	35.0

PLASTIC SMALL OUTLINE

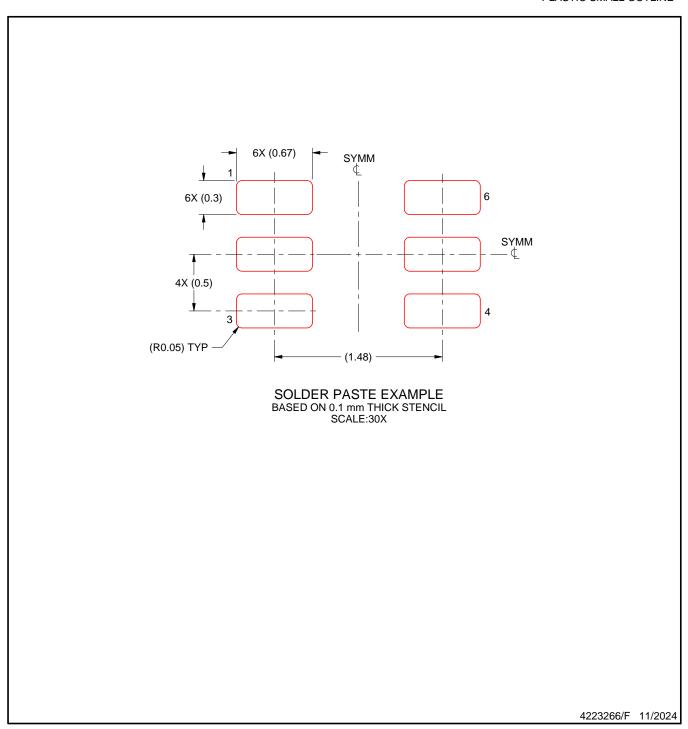
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-293 Variation UAAD

PLASTIC SMALL OUTLINE



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025