

CLASS V. ADVANCED LinCMOS™ LOW NOISE PRECISION OPERATIONAL AMPLIFIER

Check for Samples: TLC2201-SP

FEATURES

- QML-V Qualifed SMD 5962-9088203V2A
- Low Input Offset Voltage: 400 µV Max
- Excellent Offset Voltage Stability With Temperature: 0.5 μV/°C Typ
- Rail-to-Rail Output Swing
- Low Input Bias Current: 1 pA Typ at $T_{\Delta} = 25^{\circ}C$
- Common-Mode Input Voltage Range Includes the Negative Rail
- Fully Specified For Both Single-Supply and Split-Supply Operation

NC - No internal connection

DESCRIPTION

The TLC2201 is a precision, low-noise operational amplifier using Texas Instruments Advanced LinCMOS™ process. This device combines the noise performance of the lowest-noise JFET amplifiers with the dc precision available previously only in bipolar amplifiers. The Advanced LinCMOS™ process uses silicon-gate technology to obtain input offset voltage stability with temperature and time that far exceeds that obtainable using metal-gate technology. In addition, this technology makes possible input impedance levels that meet or exceed levels offered by top-gate JFET and expensive dielectric-isolated devices.

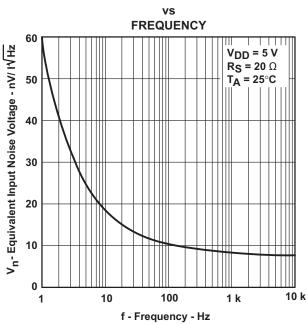
The combination of excellent DC and noise performance with a common-mode input voltage range that includes the negative rail makes these devices an ideal choice for high-impedance, low-level signal-conditioning applications in either single-supply or split-supply configurations.

The device inputs and outputs are designed to withstand -100-mA surge currents without sustaining latch-up. In addition, internal ESD-protection circuits prevent functional failures at voltages up to 2000 V as tested under MIL-PRF-38535, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in degradation of the parametric performance.

The TLC2201 is characterized for operation over the full military temperature range of −55°C to 125°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinCMOS is a trademark of Texas Instruments. Parts, PSpice are trademarks of MicroSim Corporation.


SLOS710 – FEBRUARY 2011 www.ti.com

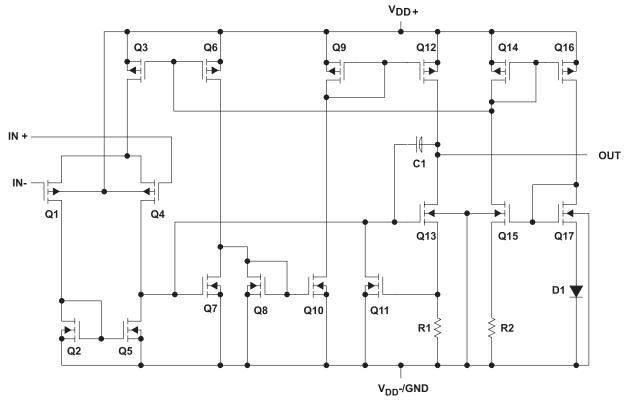
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

TYPICAL EQUIVALENT INPUT NOISE VOLTAGE

ORDERING INFORMATION(1)

TEMPERATURE	TEMPERATURE PACKAGE ⁽²⁾		TOP-SIDE MARKING		
–55°C to 125°C T _{case}	20-pin FK	5962-9088203V2A	5962-9088203V2A TLC2201AMFKBQMLV		


⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

Submit Documentation Feedback

EQUIVALENT SCHEMATIC

ACTUAL DEVICE COMPONENT COUNT					
COMPONENT	TLC2201				
Transistors	17				
Resistors	2				
Diodes	1				
Capacitors	1				

SLOS710 – FEBRUARY 2011 www.ti.com

ABSOLUTE MAXIMUM RATINGS(1)

Over operating free-air temperature range (unless otherwise noted).

		VALUE	UNIT		
V_{DD}	Supply voltage ⁽²⁾ , V _{DD-} to V _{DD+}	-8 to 8	V		
V _{ID}	Differential input voltage (3)	±16	V		
VI	Input voltage (any input)	±8	V		
I	Input current (each input)	±5	mA		
Io	Output current (each output)	±50	mA		
	Duration of short-circuit current at (or below) 25°C (4)	Unlimited			
	Continuous total power dissipation	See Dissipation Ratings Table			
T _C	Operating case temperature	-55 to 125	°C		
T _{stg}	Storage temperature	-65 to 150	°C		
	Case temperature for 60 seconds	260	°C		

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

THERMAL RESISTANCE FOR FK PACKAGE⁽¹⁾⁽²⁾

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction-to-case thermal resistance	MIL-STD-883 test method 1012			16	°C/W

⁽¹⁾ Maximum power dissipation is a function of T_J (max), θ_{JC} and T_C . The maximum allowable power dissipation at any allowable case temperature is PD = $(T_J$ (max) - T_C)/ θ_{JC} . Operating at the absolute maximum T_J of 150°C can affect reliability.

RECOMMENDED OPERATING CONDITIONS

		MIN	MAX	UNIT
$V_{DD\pm}$	Supply voltage	±2.3	±8	V
V_{IC}	Common-mode input voltage	V_{DD-}	V _{DD+} -2.3	V
T _C	Operating case temperature	– 55	125	°C

Submit Documentation Feedback

⁽²⁾ All voltage values except differential voltages are with respect to the midpoint between VDD+ and VDD-

⁽³⁾ Differential voltages are at IN+ with respect to IN-.

⁽⁴⁾ The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating in not exceeded.

⁽²⁾ The package thermal impedance is calculated in accordance with MIL-STD-883.

ELECTRICAL CHARACTERISTICS

over operating free-air temperature range, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A ⁽¹⁾	MIN	TYP	MAX	UNIT	
\ /	land offert velters		25°C		80	200	/	
V_{IO}	Input offset voltage		Full range			400	μV	
α_{VIO}	Temperature coefficient of input offset voltage		Full range		0.5		μV/°C	
	Input offset voltage long-term drift ⁽²⁾	$V_{IC} = 0,$ $R_S = 50 \Omega$	25°C		0.001		μV/mo	
ı	Input offset ourrent		25°C		0.5		nΛ	
I _{IO}	Input offset current		Full range			500	pA	
l	Input bias current		25°C		1		pА	
I _{IB}	input bias current		Full range			500	рΛ	
V _{ICR}	Common-mode input voltage range	$R_S = 50 \Omega$	Full range	0 to 2.7			V	
V_{OH}	Maximum high-level output	$R_1 = 10 \text{ k}\Omega$	25°C	4.7	4.8		V	
VOH	voltage	IV_ = 10 K22	Full range	4.7			V	
V_{OL}	Maximum low-level output	$I_{O} = 0$	25°C		0	50	mV	
VOL	voltage	10 - 0	Full range			50	IIIV	
		$V_O = 1 V to 4 V$	25°C	150	315		V/mV	
A_{VD}	Large-signal differential voltage	$R_L = 500 \text{ k}\Omega$	Full range	75				
Ανυ	amplification	$V_O = 1 V \text{ to } 4 V,$	25°C	25	55			
		$R_L = 10 \text{ k}\Omega$	Full range	10				
OMBB		$V_{IC} = V_{ICR}min,$	25°C	90	110		dB	
CMRR	Common-mode rejection ratio	$V_O = 0$, $R_S = 50 \Omega$	Full range	85				
	Supply voltage rejection ratio		25°C	90	110			
K _{SVR}	$(\Delta V_{DD\pm}/\Delta V_{IO})$	$V_{DD} = 4.6 \text{ V to } 16 \text{ V}$	Full range	85			dB	
		V _O = 2.5 V,	25°C		1.1	1.5		
I _{DD}	Supply current	No load	Full range			1.5	mA	
		$V_0 = 0.5 \text{ V to } 2.5 \text{ V},$	25°C	1.8	2.5			
SR	Slew rate at unity gain	$R_L = 10 \text{ k}\Omega$ $C_L = 100 \text{ pF}$	Full range	1.1			V/µs	
\/	Equivalent input poins voltage	f = 10 Hz	25°C		18		nV/√ Hz	
V _n	Equivalent input noise voltage	f = 1 kHz	25°C		8		IIV/ VIIZ	
V	Peak-to-peak equivalent input	f = 0.1 to 1 Hz	25°C		0.5		μV	
$V_{n(pp)}$	noise voltage	f = 0.1 to 10 Hz	25°C		0.7		μν	
In	Equivalent input noise current		25°C		0.6		fA/√Hz	
	Gain-bandwidth product	$f = 10 \text{ kHz},$ $RL = 10 \text{ k}\Omega,$ $CL = 100 \text{ pF}$	25°C		1.8		MHz	
ϕ_{m}	Phase margin at unity gain	$R_L = 10 \text{ k}\Omega,$ $C_L = 100 \text{ pF}$	25°C		45°			

Product Folder Link(s): TLC2201-SP

 ⁽¹⁾ Full range is -55°C to 125°C.
 (2) Typical values are based on the input offset voltage shift observable through 168 hours of operating life test at T_A = 150°C extrapolated to T_A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

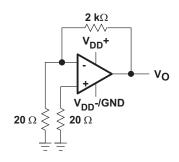
SLOS710 - FEBRUARY 2011 www.ti.com

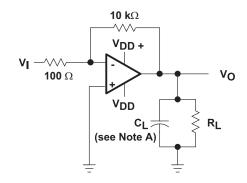
ELECTRICAL CHARACTERISTICS

over operating free-air temperature range, $V_{DD} = \pm 5 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A ⁽¹⁾	MIN	TYP	MAX	UNIT	
V	lanut effect voltage		25°C		80	200	\/	
V _{IO}	Input offset voltage		Full range			400	μV	
α_{VIO}	Temperature coefficient of input offset voltage		Full range		0.5		μV/°C	
	Input offset voltage long-term drift ⁽²⁾	$V_{IC} = 0,$ $R_S = 50 \Omega$	25°C		0.001		μV/mo	
	lanut affact aureant		25°C		0.5		~^	
I _{IO}	Input offset current		Full range			500	pА	
ı	Input bias current		25°C		1		pА	
I _{IB}	input bias current		Full range			500	ÞΑ	
V _{ICR}	Common-mode input voltage range	$R_S = 50 \Omega$	Full range	-5 to 2.7			V	
V	Maximum positive peak output		25°C	4.7	4.8			
V _{OM+}	voltage swing	$R_L = 10 \text{ k}\Omega$	Full range	4.7			V V	
V	Maximum negative peak output	K_ = 10 K22	25°C	-4.7	-4.9			
V _{OM} -	voltage swing		Full range	-4.7				
	Large-signal differential voltage	$V_O = \pm 4 V$,	25°C	400	560			
^		$R_L = 500 \text{ k}\Omega$	Full range	200			V/mV	
A _{VD}	amplification	$V_O = \pm 4 V$,	25°C	90	100			
		$R_L = 10 \text{ k}\Omega$	Full range	45				
		$V_{IC} = V_{ICR}min,$	25°C	90	115		dB	
CMRR	Common-mode rejection ratio	$V_{O} = 0,$ $R_{S} = 50 \Omega$	Full range	85				
	Supply voltage rejection ratio	V .00V/10V/	25°C	90	110		Ē	
k _{SVR}	$(\Delta V_{DD\pm}/\Delta V_{IO})$	$V_{DD} = \pm 2.3 \text{ V to } \pm 8 \text{ V}$	Full range	85			dB	
	O	V _O = 0 V,	25°C		1.1	1.5	1	
I _{DD}	Supply current	No load	Full range			1.5	mA	
		$V_0 = \pm 2.3 \text{ V},$	25°C	2	2.7			
SR	Slew rate at unity gain	$R_L = 10 \text{ k}\Omega$ $C_L = 100 \text{ pF}$	Full range	1.3			V/µs	
		f = 10 Hz	25°C		18		\ // 	
V _n	Equivalent input noise voltage	f = 1 kHz	25°C		8		nV/√ Hz	
.,	Peak-to-peak equivalent input	f = 0.1 to 1 Hz	25°C		0.5		/	
$V_{n(pp)}$	noise voltage	f = 0.1 to 10 Hz	25°C		0.7		μV	
In	Equivalent input noise current		25°C		0.6		fA/√Hz	
	Gain-bandwidth product	$ f = 10 \text{ kHz}, \\ RL = 10 \text{ k}\Omega, \\ CL = 100 \text{ pF} $	25°C		1.9		MHz	
ϕ_{m}	Phase margin at unity gain	$R_L = 10 \text{ k}\Omega,$ $C_L = 100 \text{ pF}$	25°C		48°			

Submit Documentation Feedback


© 2011, Texas Instruments Incorporated


 ⁽¹⁾ Full range is -55°C to 125°C.
 (2) Typical values are based on the input offset voltage shift observable through 168 hours of operating life test at T_A = 150°C extrapolated to T_A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

SLOS710 - FEBRUARY 2011 www.ti.com

PARAMETER MEASUREMENT INFORMATION

NOTE A: C_I includes fixture capacitance.

Figure 1. Noise-Voltage Test Circuit

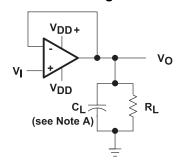
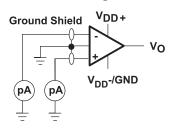



Figure 2. Phase-Margin Test Circuit

NOTE A: C_I includes fixture capacitance.

Figure 3. Slew-Rate Test Circuit

Figure 4. Input-Bias and Offset-Current Test Circuit

TYPICAL VALUES

Typical values presented in this data sheet represent the median (50% point) of device parametric performance.

INPUT BIAS AND OFFSET CURRENT

At the picoamp bias current level of the TLC2201 accurate measurement of the bias current becomes difficult. Not only does this measurement require a picoammeter, but test socket leakages can easily exceed the actual device bias currents. To measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied but with no device in the socket. The device is then inserted in the socket, and a second test measuring both the socket leakage and the device input bias current is performed. The two measurements are then subtracted algebraically to determine the bias current of the device.

NOISE

Texas Instruments offers automated production noise testing to meet individual application requirements. Noise voltage at f = 10 Hz and f = 1 kHz is sample tested on every TLC2201. For other noise requirements, please contact the factory.

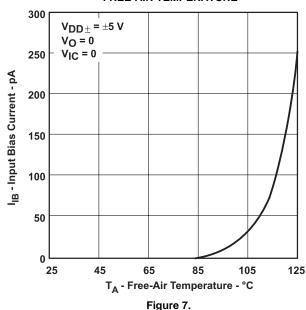
© 2011, Texas Instruments Incorporated Submit Documentation Feedback

SLOS710 – FEBRUARY 2011 www.ti.com

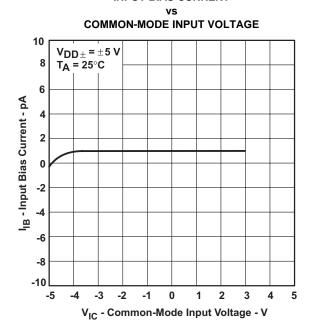
TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
V _{IO}	Input offset voltage	Distribution	Figure 5
	lanut higo gurrent	vs Common-mode input voltage	Figure 6
I _{IB}	Input bias current	vs Free-air temperature	Figure 7
V	Maximum made autout valtage	vs Output curre	Figure 8
V_{OM}	Maximum peak output voltage	vs Free-air temperature	Figure 9
$V_{O(PP)}$	Maximum peak-to-peak output voltage	vs Frequency	Figure 10
		vs Frequency	Figure 11
V_{OH}	High-level output voltage	vs High-level output current	Figure 12
		vs Free-air temperature	Figure 13
V	Low level output voltage	vs Low-level output current	Figure 14
V_{OL}	Low-level output voltage	vs Free-air temperature	Figure 15
۸	Lorge signal differential valtage emplification	vs Frequency	Figure 16
A_{VD}	Short-circuit output current MRR Common-mode rejection ratio	vs Free-air temperature	Figure 17
	Chart aireuit autaut aurrent	vs Supply voltage	Figure 18
los	Short-circuit output current	vs Free-air temperature	Figure 19
CMRR	Common-mode rejection ratio	vs Frequency	Figure 20
I	Supply current	vs Supply voltage	Figure 21
I _{DD}	Зирріу сипені	vs Free-air temperature	Figure 22
		Small signal	Figure 23
	Pulse response	Small signal	Figure 24
	ruise response	Large signal	Figure 25
		Large Signal	Figure 26
SR	Slew rate	vs Supply voltage	Figure 27
SIX	Siew rate	vs Free-air temperature	Figure 28
	Noise voltage (referred to input)	0.1 Hz to 1 Hz	Figure 29
	Noise voitage (referred to input)	0.1 Hz to 10 Hz	Figure 30
	Gain-bandwidth product	vs Supply voltage	Figure 31
	Call-ballowidil product	vs Free-air temperature	Figure 32
(0	Phase margin	vs Supply voltage	Figure 33
Φm	i nase maryin	vs Free-air temperature	Figure 34
	Phase shift	vs Frequency	Figure 16

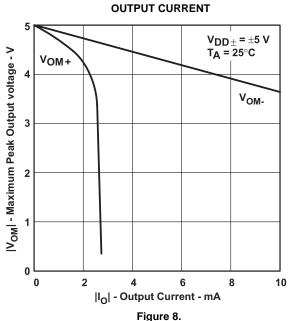


TYPICAL CHARACTERISTICS


INPUT OFFSET VOLTAGE DISTRIBUTION 20 408 Units Tested From 2 Wafer Lots $v_{DD\pm}$ = ±5 vT_A = 25°C P Package 16 Percentage of Units - % 12 8 300 -500 -100 100 500 -300 V_{IO} - Input Offset Voltage - μ V

INPUT BIAS CURRENT⁽¹⁾ FREE-AIR TEMPERATURE

Figure 5.



INPUT BIAS CURRENT

MAXIMUM PEAK OUTPUT VOLTAGE

Figure 6.

(1) Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

STRUMENTS

SLOS710 - FEBRUARY 2011 www.ti.com

TYPICAL CHARACTERISTICS (continued)

MAXIMUM PEAK OUTPUT VOLTAGE(2)

FREE-AIR TEMPERATURE |V_{OM}| - Maximum Peak Output voltage - V V_{OM+} 2 $V_{DD\pm}$ = ±5 V0 $R_L = 10 \text{ k}\Omega$ -2 V_{OM-} -6 50 -75 -50 25 75 T_A - Free-Air Temperature - °C

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

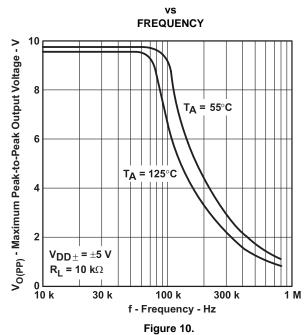
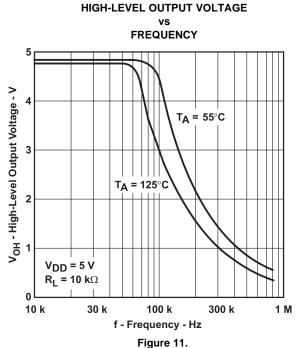



Figure 9.

HIGH-LEVEL OUTPUT VOLTAGE

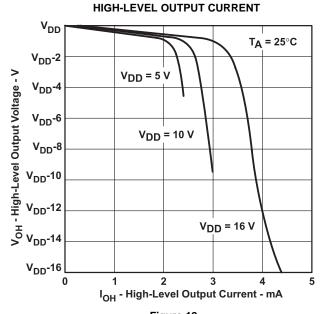
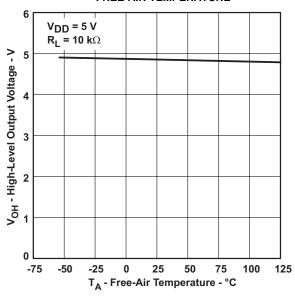


Figure 12.


Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. (2)

TYPICAL CHARACTERISTICS (continued)

HIGH-LEVEL OUTPUT VOLTAGE

FREE-AIR TEMPERATURE

Figure 13.

LOW-LEVEL OUTPUT VOLTAGE

LOW-LEVEL OUTPUT CURRENT

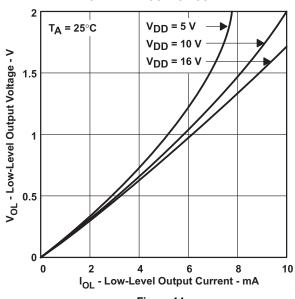


Figure 14.

LOW-LEVEL OUTPUT VOLTAGE

vs FREE-AIR TEMPERATURE

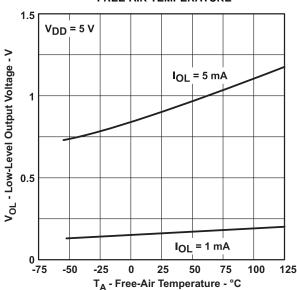


Figure 15.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE

AMPLIFICATION AND PHASE SHIFT

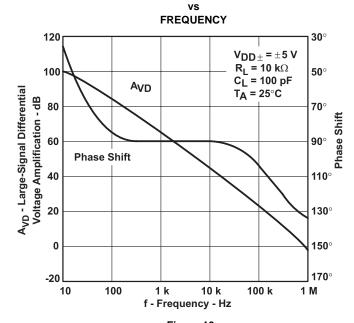
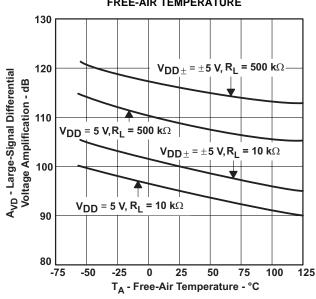
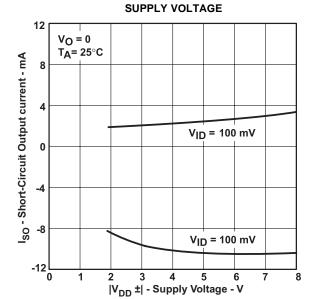


Figure 16.


© 2011, Texas Instruments Incorporated


TYPICAL CHARACTERISTICS (continued)

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

vs FREE-AIR TEMPERATURE

Figure 17.

SHORT-CIRCUIT OUTPUT CURRENT

Figure 18.

SHORT-CIRCUIT OUTPUT CURRENT

FREE-AIR TEMPERATURE

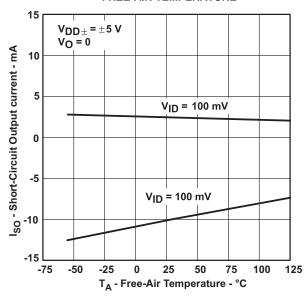


Figure 19.

COMMON-MODE REJECTION RATIO

VS

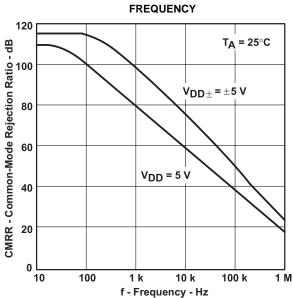


Figure 20.

TYPICAL CHARACTERISTICS (continued)

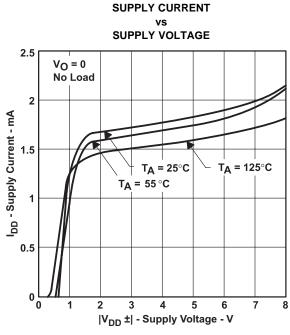
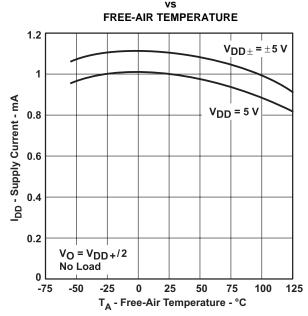



Figure 21.

VOLTAGE-FOLLOWER

SUPPLY CURRENT

Figure 22.

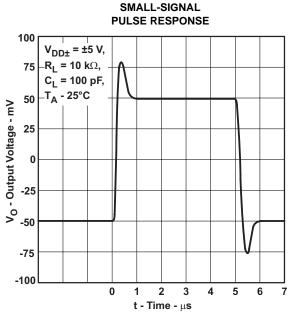


Figure 23.

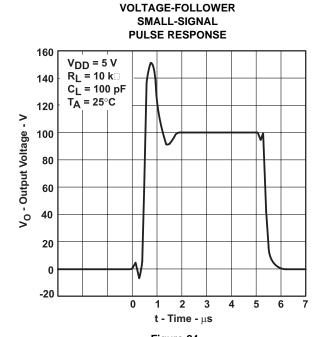


Figure 24.

© 2011, Texas Instruments Incorporated

Submit Documentation Feedback

SLOS710 – FEBRUARY 2011 www.ti.com

TYPICAL CHARACTERISTICS (continued)

VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE

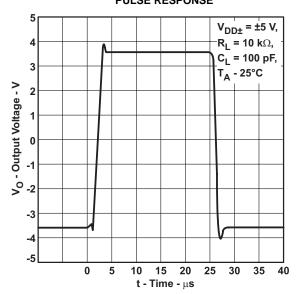


Figure 25.

VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE

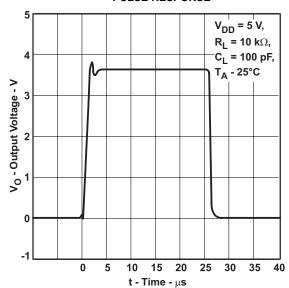
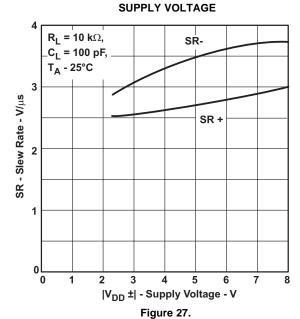



Figure 26.

SLEW RATE vs

SLEW RATE

FREE-AIR TEMPERATURE

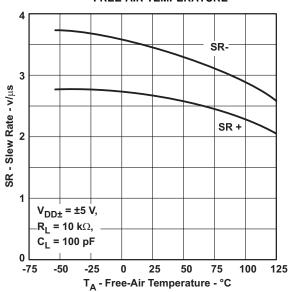
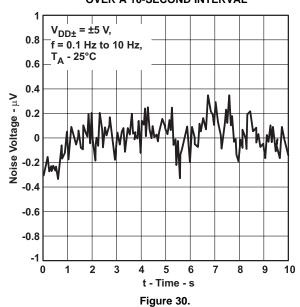
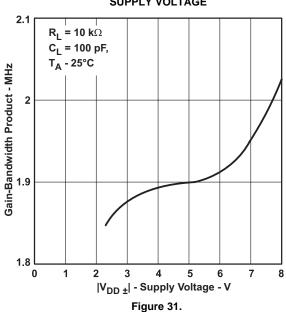


Figure 28.



TYPICAL CHARACTERISTICS (continued)

NOISE VOLTAGE (REFERRED TO INPUT) OVER A 10-SECOND INTERVAL



NOISE VOLTAGE (REFERRED TO INPUT) OVER A 10-SECOND INTERVAL

GAIN-BANDWIDTH PRODUCT

vs SUPPLY VOLTAGE

GAIN-BANDWIDTH PRODUCT

vs FREE-AIR TEMPERATURE

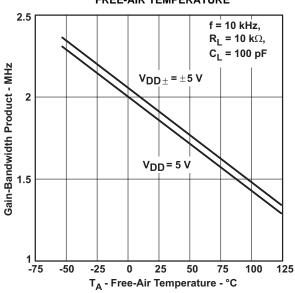


Figure 32.


Instruments

SLOS710 – FEBRUARY 2011 www.ti.com

TYPICAL CHARACTERISTICS (continued)

PHASE MARGIN VS SUPPLY VOLTAGE 50° R_L = 10 kΩ, C_L = 100 pF, 48° T_A - 25°C 40° 0 1 2 3 4 5 6 7 8 |V_{DD} ± | - Supply Voltage - V

Figure 33.

APPLICATION INFORMATION

LATCH-UP AVOIDANCE

Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC2201 inputs and outputs are designed to withstand -100-mA surge currents without sustaining latch-up; however, techniques reducing the chance of latch-up should be used whenever possible. Internal protection diodes should not be forward biased in normal operation. Applied input and output voltages should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 μ F typical) located across the supply rails as close to the device as possible.

ELECTROSTATIC DISCHARGE PROTECTION

These devices use internal ESD-protection circuits that prevent functional failures at voltages at or below 2000 V. Care should be exercised in handling these devices as exposure to ESD may result in degradation of the device parametric performance.

MACROMODEL INFORMATION

Macromodel information provided was derived using Microsim Parts[™], the model generation software used with Microsim PSpice[™]. The Boyle macromodel⁽³⁾ and subcircuit in Figure 35 were generated using the TLC2201 typical electrical and operating characteristics at 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- · Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- · Input bias current
- · Open-loop voltage amplification
- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- · Short-circuit output current limit

(3) G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", IEEE Journal of Solid-State Circuits, SC-9, 353 (1974).

Product Folder Link(s): TLC2201-SP

TEXAS INSTRUMENTS

SLOS710 – FEBRUARY 2011 www.ti.com

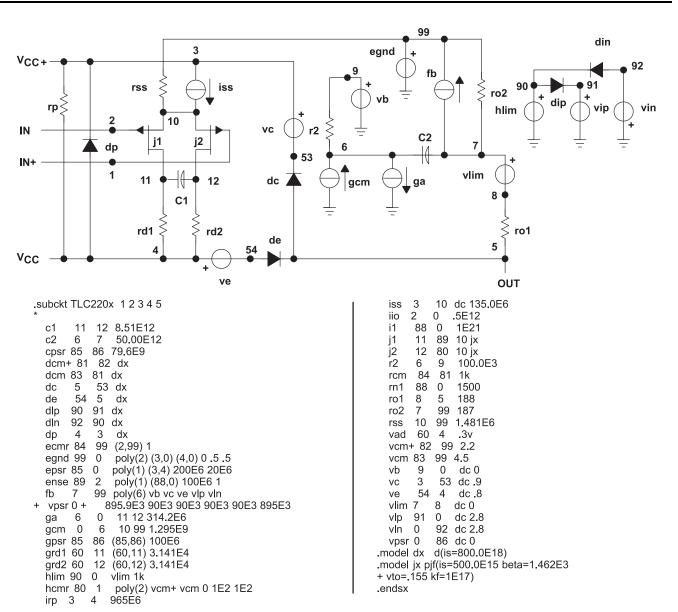


Figure 35. Boyle Macromodel and Subcircuit

Submit Documentation Feedback

www.ti.com 29-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
5962-9088203V2A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962- 9088203V2A TLC2201 AMFKBQMLV
5962-9088203V2A.A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962- 9088203V2A TLC2201 AMFKBQMLV

⁽¹⁾ Status: For more details on status, see our product life cycle.

- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

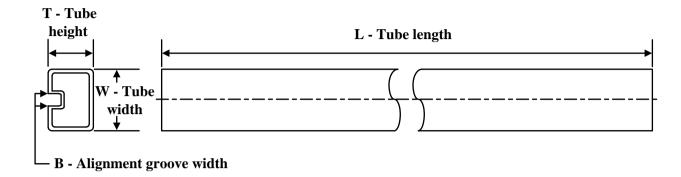
PACKAGE OPTION ADDENDUM

www.ti.com 29-May-2025

OTHER QUALIFIED VERSIONS OF TLC2201-SP:

Military : TLC2201M

NOTE: Qualified Version Definitions:

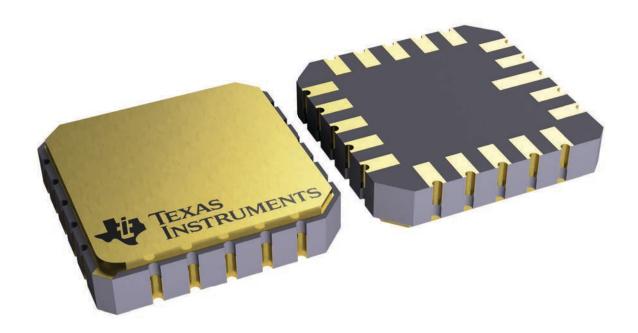

• Catalog - TI's standard catalog product

• Military - QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TUBE


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
5962-9088203V2A	FK	LCCC	20	55	506.98	12.06	2030	NA
5962-9088203V2A.A	FK	LCCC	20	55	506.98	12.06	2030	NA

8.89 x 8.89, 1.27 mm pitch

LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated