TLC04/MF4A-50, TLC14/MF4A-100 BUTTERWORTH FOURTH-ORDER LOW-PASS SWITCHED-CAPACITOR FILTERS SLAS021A – NOVEMBER 1986 – REVISED MARCH 1995

- Low Clock-to-Cutoff-Frequency Ratio Error TLC04/MF4A-50...±0.8% TLC14/MF4A-100...±1%
- Filter Cutoff Frequency Dependent Only on External-Clock Frequency Stability
- Minimum Filter Response Deviation Due to External Component Variations Over Time and Temperature
- Cutoff Frequency Range From 0.1 Hz to 30 kHz, V_{CC±} = ±2.5 V
- 5-V to 12-V Operation
- Self Clocking or TTL-Compatible and CMOS-Compatible Clock Inputs
- Low Supply-Voltage Sensitivity
- Designed to be Interchangeable With National MF4-50 and MF4-100

description

The TLC04/MF4A-50 and TLC14/MF4A-100 are monolithic Butterworth low-pass switched-capacitor filters. Each is designed as a low-cost, easy-to-use device providing accurate fourth-order low-pass filter functions in circuit design configurations.

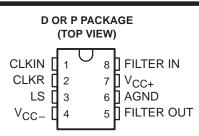
Each filter features cutoff frequency stability that is dependent only on the external-clock frequency stability. The cutoff frequency is clock tunable and has a clock-to-cutoff frequency ratio of 50:1 with less than $\pm 0.8\%$ error for the TLC04/MF4A-50 and a clock-to-cutoff frequency ratio of 100:1 with less than $\pm 1\%$ error for the TLC14/MF4A-100. The input clock features self-clocking or TTL- or CMOS-compatible options in conjunction with the level shift (LS) terminal.

The TLC04C/MF4A-50C and TLC14C/MF4A-100C are characterized for operation from 0°C to 70°C. The TLC04I/MF4A-50I and TLC14I/MF4A-100I are characterized for operation from -40°C to 85°C. The TLC04M/MF4A-50M and TLC14M/MF4A-100M are characterized over the full military temperature range of -55°C to 125°C.

	CLOCK-TO-CUTOFF	PACKAGE							
T _A	FREQUENCY RATIO	SMALL OUTLINE (D)	PLASTIC DIP (P)						
0°C to 70°C	50:1 100:1	TLC04CD/MF4A-50CD TLC14CD/MF4A-100CD	TLC04CP/MF4A-50CP TLC14CP/MF4A-100CP						
-40°C to 85°C	50:1 100:1	TLC04ID/MF4A-50ID TLC14ID/MF4A-100ID	TLC04IP/MF4A-50IP TLC14IP/MF4A-100IP						
–55°C to 125°C	50:1 100:1		TLC04MP/MF4A-50MP TLC14MP/MF4A-100MP						

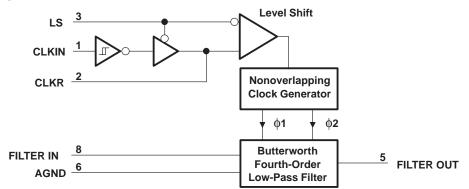
AVAILABLE OPTIONS

The D package is available taped and reeled. Add the suffix R to the device type (e.g., TLC04CDR/MF4A-50CDR).



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 1995, Texas Instruments Incorporated

SLAS021A - NOVEMBER 1986 - REVISED MARCH 1995

functional block diagram

Terminal Functions

TERMINA	Ĺ	1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
AGND	6	Ι	Analog ground. The noninverting input to the operational amplifiers of the Butterworth fourth-order low-pass filter.
CLKIN	1	I	Clock in. CLKIN is the clock input terminal for CMOS-compatible clock or self-clocking options. For either option, LS is at V_{CC-} . For self-clocking, a resistor is connected between CLKIN and CLKR and a capacitor is connected from CLKIN to ground.
CLKR	2	I	Clock R. CLKR is the clock input for a TTL-compatible clock. For a TTL clock, LS is connected to midsupply and CLKIN can be left open, but it is recommended that it be connected to either V_{CC+} or V_{CC-} .
FILTER IN	8	I	Filter input
FILTER OUT	5	0	Butterworth fourth-order low-pass filter output
LS	3	I	Level shift. LS accommodates the various input clocking options. For CMOS-compatible clocks or self-clocking, LS is at V _{CC} and for TTL-compatible clocks, LS is at midsupply.
V _{CC+}	7	I	Positive supply voltage terminal
V _{CC} -	4	I	Negative supply voltage terminal

SLAS021A - NOVEMBER 1986 - REVISED MARCH 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC+} (see Note 1)	±7 V
	TLC04C/MF4A-50C, TLC14C/MF4A-100C 0°C to 70°C
	TLC04I/MF4A-50I, TLC14I/MF4A-100I –40°C to 85°C
	TLC04M/MF4A-50M, TLC14M/MF4A-100M –55°C to 125°C
Storage temperature range, T _{stg}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from	a case for 10 seconds 260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to the AGND terminal.

recommended operating conditions

		TLC04/I	MF4A-50	TLC14/N	IF4A-100	UNIT			
		MIN	MAX	MIN	MAX	UNIT			
Positive supply voltage, V _{CC+}		2.25	6	2.25	6	V			
Negative supply voltage, V _{CC} _		-2.25	-6	-2.25	-6	V			
High-level input voltage, VIH		2		2		V			
Low-level input voltage, VIL			0.8		0.8	V			
Clock frequency f	$V_{CC\pm} = \pm 2.5 V$	5	1.5 x 10 ⁶	5	1.5x10 ⁶	Hz			
Clock frequency, f _{clock} (see Note 2)	$V_{CC\pm} = \pm 5 V$	5	2x10 ⁶	5	2x10 ⁶	ΠZ			
Cutoff frequency, f _{CO} (see Note 3)		0.1	40 x 10 ³	0.05	20x10 ³	Hz			
	TLC04C/MF4A-50C, TLC14C/MF4A-100C	0	70	0	70				
Operating free-air temperature, T _A	TLC04I/MF4A-50I, TLC14I/MF4A-100I	-40	85	-40	85	°C			
	TLC04M/MF4A-50M, TLC14M/MF4A-100M	-55	125	-55	125				

NOTES: 2. Above 250 kHz, the input clock duty cycle should be 50% to allow the operational amplifiers the maximum time to settle while processing analog samples.

3. The cutoff frequency is defined as the frequency where the response is 3.01 dB less than the dc gain of the filter.

electrical characteristics over recommended operating free-air temperature range, V_{CC+} = 2.5 V, V_{CC-} = –2.5 V, f_{clock} \leq 250 kHz (unless otherwise noted)

filter section

	DADAMETED		TEAT CONDITIONS	TLC	04/MF4A	-50	TLC1	-100	UNIT		
	PARAMETER		TEST CONDITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT	
Voo	Output offset voltage				25			50		mV	
Vou	Peak output voltage	V _{OM+}	R _I = 10 kΩ	1.8	2		1.8	2		V	
VOM	Feak oulput voltage	V _{OM} -		-1.25	-1.7		-1.25	-1.7		v	
	Short airquit autout aurrant	Source	T _A = 25°C, See Note 4		-0.5			-0.5		mA	
los	Short-circuit output current	Sink	$T_A = 25 \text{ C}, \text{ See Note 4}$		4			4		IIIA	
ICC	Supply current		f _{clock} = 250 kHz		1.2	2.25		1.2	2.25	mA	

[‡] All typical values are at $T_A = 25^{\circ}C$.

NOTE 4: IOS(source) is measured by forcing the output to its maximum positive voltage and then shorting the output to the VCC- terminal IOS(sink) is measured by forcing the output to its maximum negative voltage and then shorting the output to the VCC+ terminal.

TLC04/MF4A-50, TLC14/MF4A-100 **BUTTERWORTH FOURTH-ORDER LOW-PASS** SWITCHED-CAPACITOR FILTERS SLAS021A - NOVEMBER 1986 - REVISED MARCH 1995

electrical characteristics over recommended operating free-air temperature range, V_{CC+} = 5 V, $V_{CC-} = -5 V$, f_{clock} $\leq 250 \text{ kHz}$ (unless otherwise noted)

filter section

PARAMETER		TEST	TLC	04/MF4A	-50	TLC14/MF4A-100			UNIT	
	PARAMETER		CONDITIONS	MIN	түр†	MAX	MIN	TYP [†]	MAX	UNIT
Voo	Output offset voltage				150			200		mV
Vari	Poak output voltago	V _{OM+}	$P_{\rm L} = 10 \rm kO$	3.75	4.3		3.75	4.5		V
V _{OM} Peak output voltage	reak ouiput voltage	V _{OM} -	$R_{L} = 10 \text{ k}\Omega$	-3.75	-4.1		-3.75	-4.1		V
laa	Short airquit autput aurrant	Source	T _A = 25°C,		-2			-2		mA
los	Short-circuit output current	Sink	See Note 4		5			5		mA
ICC	Supply current	-	f _{clock} = 250 kHz		1.8	3		1.8	3	mA
k _{SVS} Supply voltage sensitivity (see Figures 1 and 2)				-30			-30		dB	

[†] All typical values are at $T_A = 25^{\circ}C$.

NOTE 4: IOS(source) is measured by forcing the output to its maximum positive voltage and then shorting the output to the V_{CC}-terminal. IOS(sink) is measured by forcing the output to its maximum negative voltage and then shorting the output to the V_{CC+} terminal.

clocking section

	PARAMETER		TEST	CONDITIONS	MIN	TYP†	MAX	UNIT
\/. 	Desitive going input threshold voltage		V _{CC+} = 10 V,	$V_{CC-} = 0$	6.1	7	8.9	V
VIT+	Positive-going input threshold voltage		V _{CC+} = 5 V,	$V_{CC} = 0$	3.1	3.5	4.4	V
V	Negative-going input threshold voltage		$V_{CC+} = 10 V,$	$V_{CC} = 0$	1.3	3	3.8	V
VIT-	Negative-going input timeshold voltage	CLRIN	V _{CC+} = 5 V,	$V_{CC} = 0$	0.6	1.5	1.9	v
	Hysteresis voltage (VIT+ - VIT-)		$V_{CC+} = 10 V,$	$V_{CC} = 0$	2.3	4	7.6	V
V _{hys}	$ y_{Stelesis} = = = = = = = $		V _{CC+} = 5 V,	$V_{CC} = 0$	1.2	2	3.8	v
Vali	High-level output voltage		$V_{CC} = 10 V$	I _O = -10 μA	9			V
Vон	nigh-level output voltage		$V_{CC} = 5 V$	10 = - 10 μΑ	4.5			·
Val	Low-level output voltage	7	$V_{CC} = 10 V$	I _O = 10 μA			1	V
VOL			$V_{CC} = 5 V$	10 = 10 μΑ			0.5	v
	Input leakage current	CLKR	$V_{CC} = 10 V$	LS at midsupply,			2	μA
	input leakage current		$V_{CC} = 5 V$	T _A = 25°C			2	μA
		7	$V_{CC} = 10 V$	CLKR and CLKIN	- 3	-7		
	Output current		V _{CC} = 5 V	shortened to V_{CC-}	-0.75	-2		mA
10	Output current		V _{CC} = 10 V	CLKR and CLKIN	3	7		mA
			V _{CC} = 5 V	shortened to V_{CC+}	0.75	2		

[†] All typical values are at $T_A = 25^{\circ}C$.

operating characteristics over recommended operating free-air temperature range, $V_{CC+} = 2.5 \text{ V}$, $V_{CC-} = -2.5 \text{ V}$ (unless otherwise noted)

	TEAT CON	TEST CONDITIONS			\-50	TLC	4/MF4A	·100		
PARAMETER	TESTCON				MAX	MIN	TYP†	MAX	UNIT	
Maximum clock frequency, fmax	See Note 2		1.5	3		1.5	3		MHz	
Clock-to-cutoff-frequency ratio (f _{clock} /f _{co})	$f_{clock} \le 250 \text{ kHz},$	$T_A = 25^{\circ}C$	49.27	50.07	50.87	99	100	101	Hz/Hz	
Temperature coefficient of clock-to-cutoff frequency ratio	f _{clock} ≤ 250 kHz			±25			±25		ppm/°C	
	$f_{CO} = 5 \text{ kHz},$	f = 6 kHz	-7.9	-7.57	-7.1				dB	
Frequency response above and below	$f_{clock} = 250 \text{ kHz},$ $T_A = 25^{\circ}C$	f = 4.5 kHz	-1.7	-1.46	-1.3				aв	
cutoff frequency (see Note 5)	$f_{CO} = 5 \text{ kHz},$	f = 3 kHz				-7.9	-7.42	-7.1	dP	
	$f_{clock} = 250 \text{ kHz},$ $T_A = 25^{\circ}C$	f = 2.25 kHz				-1.7	-1.51	-1.3	dB	
Dynamic range (see Note 6)	$T_A = 25^{\circ}C$			80			78		dB	
Stop-band frequency attentuation at 2 f_{CO}	f _{clock} ≤ 250 kHz		24	25		24	25		dB	
Voltage amplification, dc	$f_{clock} \le 250 \text{ kHz},$	$\text{RS} \le 2 \ \text{k}\Omega$	-0.15	0	0.15	-0.15	0	0.15	dB	
Peak-to-peak clock feedthrough voltage	$T_A = 25^{\circ}C$			5			5		mV	

[†] All typical values are at $T_A = 25^{\circ}C$.

NOTES: 2. Above 250 kHz, the input clock duty cycle should be 50% to allow the operational amplifiers the maximum time to settle while processing analog samples.

5. The frequency responses at f are referenced to a dc gain of 0 dB.

 The dynamic range is referenced to 1.06 V rms (1.5 V peak) where the wideband noise over a 30-kHz bandwidth is typically 106 μV rms for the TLC04/MF4A-50 and 135 μV rms for the TLC14/MF4A-100.

operating characteristics over recommended operating free-air temperature range, $V_{CC+} = 5 V$, $V_{CC-} = -5 V$ (unless otherwise noted)

BARAMETER	TEAT CON		TLC	04/MF4/	\-50	TLC	14/MF4A	-100		
PARAMETER	TEST CONE	DITIONS	MIN	TYP†	MAX	MIN	түр†	MAX	UNIT	
Maximum clock frequency, fmax	See Note 2		2	4		2	4		MHz	
Clock-to-cutoff-frequency ratio (f _{clock} /f _{co})	$f_{clock} \le 250 \text{ kHz},$	$T_A = 25^{\circ}C$	49.58	49.98	50.38	99	100	101	Hz/Hz	
Temperature coefficient of clock-to-cutoff frequency ratio	f _{clock} ≤ 250 kHz			±15			±15		ppm/°C	
	$f_{CO} = 5 \text{ kHz},$	f = 6 kHz	-7.9	-7.57	-7.1				40	
Frequency response above and below	f _{clock} = 250 kHz, T _A = 25°C	f = 4.5 kHz	-1.7	-1.44	-1.3				dB	
cutoff frequency (see Note 5)	$f_{CO} = 5 \text{ kHz},$	f = 3 kHz				-7.9	-7.42	-7.1	dB	
	$f_{clock} = 250 \text{ kHz},$ $T_A = 25^{\circ}C$	f = 2.25 kHz				-1.7	-1.51	-1.3	uв	
Dynamic range (see Note 6)	$T_A = 25^{\circ}C$			86			84		dB	
Stop-band frequency attentuation at 2 f _{CO}	f _{clock} ≤ 250 kHz		24	25		24	25		dB	
Voltage amplification, dc	f _{clock} ≤ 250 kHz,	$\text{RS} \le 2 \; \text{k}\Omega$	-0.15	0	0.15	-0.15	0	0.15	dB	
Peak-to-peak clock feedthrough voltage	$T_A = 25^{\circ}C$			7			7		mV	

[†] All typical values are at $T_A = 25^{\circ}C$.

NOTES: 2. Above 250 kHz, the input clock duty cycle should be 50% to allow the operational amplifiers the maximum time to settle while processing analog samples.

5. The frequency responses at f are referenced to a dc gain of 0 dB.

6. The dynamic range is referenced to 2.82 V rms (4 V peak) where the wideband noise over a 30-kHz bandwidth is typically 142 μV rms for the TLC04/MF4A-50 and 178 μV rms for the TLC14/MF4A-100.

SLAS021A - NOVEMBER 1986 - REVISED MARCH 1995

TYPICAL CHARACTERISTICS

FILTER OUTPUT

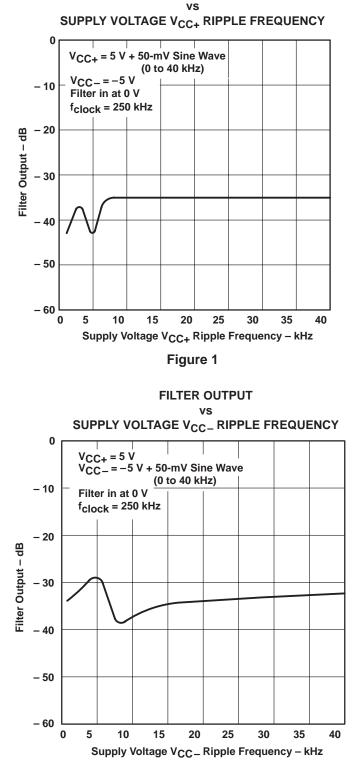
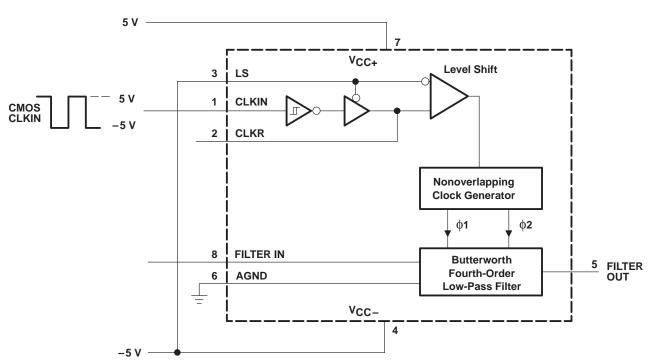



Figure 2

SLAS021A - NOVEMBER 1986 - REVISED MARCH 1995

APPLICATION INFORMATION

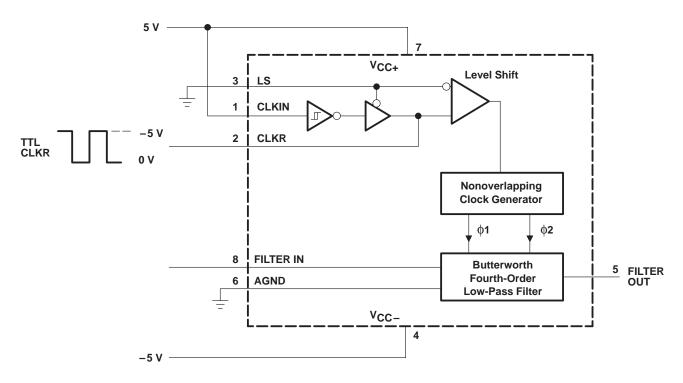


Figure 4. TTL-Clock-Driven Dual-Supply Operation

SLAS021A - NOVEMBER 1986 - REVISED MARCH 1995

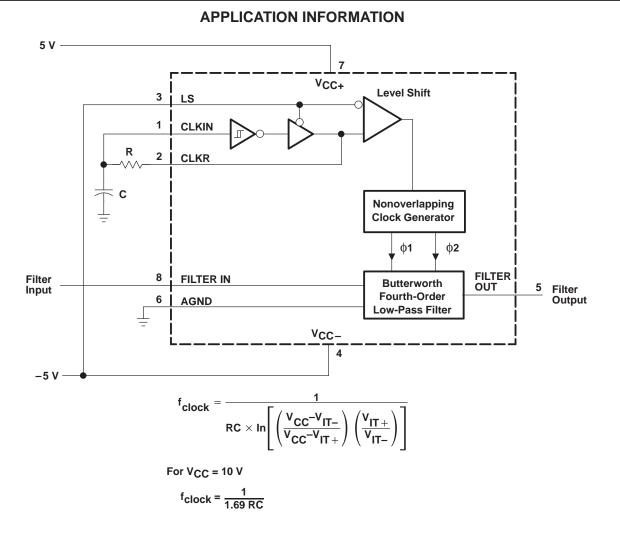
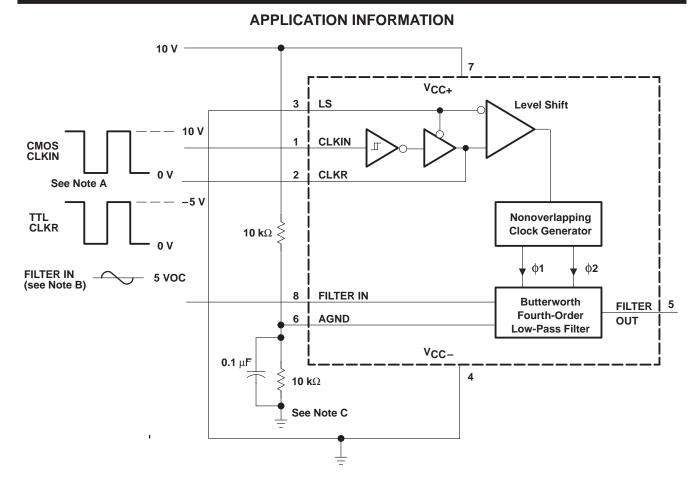
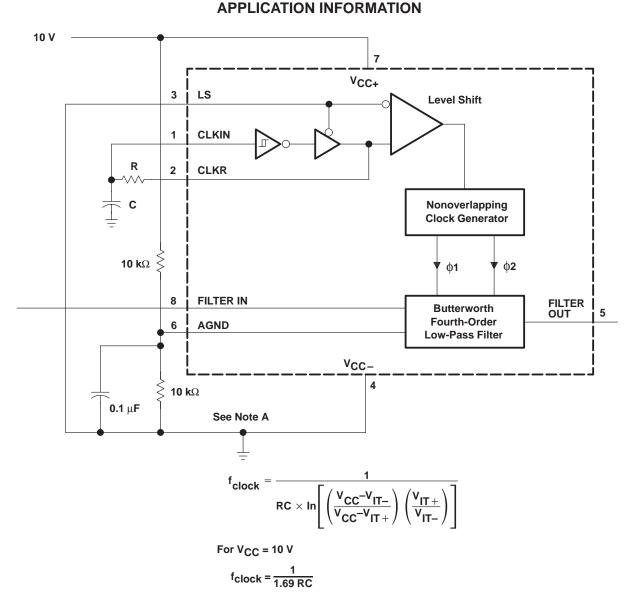



Figure 5. Self-Clocking Through Schmitt-Trigger Oscillator Dual-Supply Operation

SLAS021A - NOVEMBER 1986 - REVISED MARCH 1995



- NOTES: A. The external clock used must be of CMOS level because the clock is input to a CMOS Schmitt trigger.
 - B. The filter input signal should be dc-biased to midsupply or ac-coupled to the terminal.
 - C. AGND must be biased to midsupply.

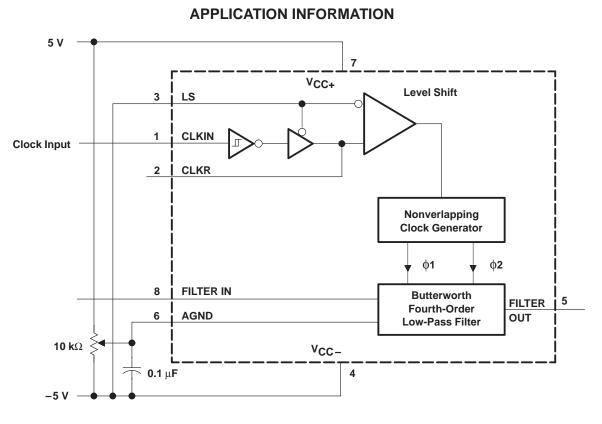
Figure 6. External-Clock-Driven Single-Supply Operation

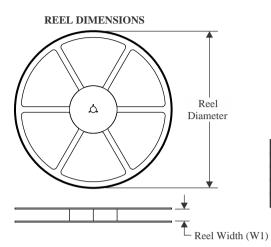
SLAS021A - NOVEMBER 1986 - REVISED MARCH 1995

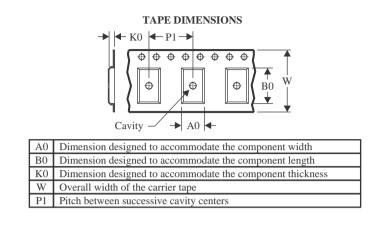
NOTE A: AGND must be biased to midsupply.

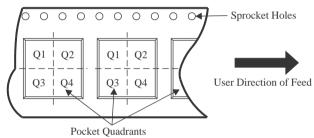
Figure 7. Self Clocking Through Schmitt-Trigger Oscillator Single-Supply Operation

SLAS021A - NOVEMBER 1986 - REVISED MARCH 1995




Figure 8. DC Offset Adjustment

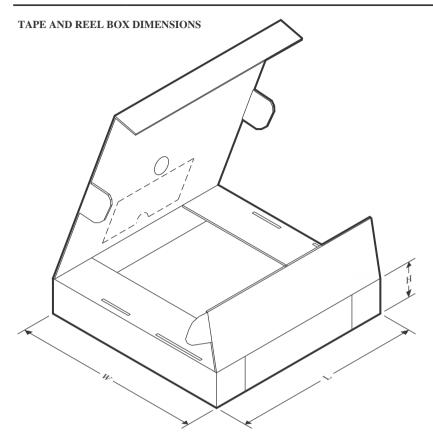



www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nomin	al
---------------------------	----

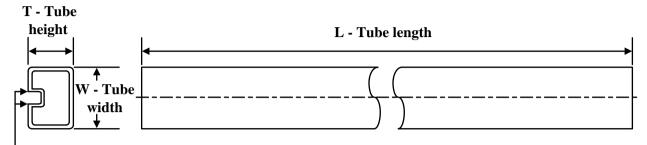

Device	0	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC04IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

23-May-2025

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC04IDR	SOIC	D	8	2500	350.0	350.0	43.0

TEXAS INSTRUMENTS

www.ti.com

23-May-2025

TUBE

- B - Alignment groove width

*All dimensions	are nominal
-----------------	-------------

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
TLC04CD	D	SOIC	8	75	505.46	6.76	3810	4
TLC04CD.A	D	SOIC	8	75	505.46	6.76	3810	4
TLC04ID	D	SOIC	8	75	505.46	6.76	3810	4
TLC04ID.A	D	SOIC	8	75	505.46	6.76	3810	4
TLC14CD	D	SOIC	8	75	505.46	6.76	3810	4
TLC14CD.A	D	SOIC	8	75	505.46	6.76	3810	4
TLC14ID	D	SOIC	8	75	505.46	6.76	3810	4
TLC14ID.A	D	SOIC	8	75	505.46	6.76	3810	4
TLC14IDG4	D	SOIC	8	75	505.46	6.76	3810	4

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated